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APPROXIMATIONS USING HILBERT TRANSFORM OF WAVELETS

NIKHIL KHANNA, VARINDER KUMAR AND S. K. KAUSHIK

Abstract. Hilbert transform of wavelets has been used to approximate functions in L2(R) . It
is proved that Hilbert transform of wavelets with many vanishing moments does a good job in
approximating smooth functions in L2(R) . We also prove that Hölder continuity of a function
helps in the decay of wavelet coefficients and thereby helps in approximating it. Finally, we give
a result that relates the Hilbert transform of wavelet with dyadic scale differential operator and
use it to decrease the wavelet coefficients.

1. Introduction

Approximations using trigonometric polynomials of functions lying in different
classes of functions can be found in Zygmund [10]. In early 1950s, the finite element
method proposed by engineers was found to be very close to the approximation theory.
In 1964, Céa [1] proposed a lemma for proving error estimates for the finite element
method as an application to elliptic partial differential equations which acts as an ap-
proximation problem in Sobolev spaces. The approximate representation of a function
using splines significantly started in early 1970s. It has been observed in [2, 8] that
if ψ(t) is a real wavelet, then Hilbert transform of ψ(t) i.e., H ψ(t) is also a real
wavelet with same energy and admissibility coefficient of its generating wavelet, ψ(t) .
Hilbert transform of Gabor and Wilson systems was studied by Jarrah and Panwar [5].
For various details related to Hilbert transform one may refer to [3, 6]. Walnut [9] gave
the relationship between the vanishing moments of a wavelet and the decay of wavelet
coefficients of a function. Holschneider and Tchamitchian [4] discussed that the uni-
form continuity of a function is reflected in its wavelet transform by the decrease of
wavelet coefficients at small scale. Mallat [7] proved that “a wavelet with n vanishing
moments” can be written as the nth order derivative of a function θ and the resulting
wavelet transform is a multiscale differential operator.

In the present paper, we study approximation of a function using Hilbert transform
of wavelets and prove that vanishing moments play an important role in approximat-
ing smooth functions in L2(R) . Also, we show how wavelet coefficients, induced by
Hilbert transform of wavelets, can be reduced using the Hölder continuity of a func-
tion. At last, a result that relates the Hilbert transform of wavelets with dyadic scale
differential operator and a relation between the decay of |〈 f ,H ψ j,k〉| and the uniform
regularity of f is given.
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2. Main results

We begin this section with the following definition of Hilbert transform of a func-
tion given in [6]. The Hilbert transform of a function f on a real line is defined by

H f (x) =
1
π

lim
ε→0

∫
|x−t|�ε

f (t)
x− t

dt =
1
π

lim
ε→0

∫
|t|�ε

f (x− t)
t

dt,

provided that the limit exists in some sense.
Also recall from [6] that the moment formula for the Hilbert transform of f is

given by

H {xn f (x)} = xnH f (x)− 1
π

n−1

∑
m=0

xm
∫

R
zn−1−m f (z) dz, n � 0.

Note that the above formula holds if xn f (x) ∈ Lp(R) , 1 < p < ∞.
In the following result, we prove that the wavelet coefficients of a square integrable

function decay fast as j → +∞ depending on the smoothness of f and the number of
vanishing moments.

THEOREM 2.1. Given M ∈ N , suppose that the function f ∈ L2(R) is CM on R

and that f (M) ∈ L∞(R) . Let ψ ∈ L2(R) be a function with compact support such that

xM−1ψ(x) ∈ L2(R), (2.1)

and ∫
R

xmψ(x)dx = 0, 0 � m � M−2. (2.2)

Then there exists a constant K > 0 depending on M and f (x) such that for every

j,k ∈ Z ,
∣∣〈 f ,H ψ j,k〉

∣∣ � K 2− j(M+ 1
2 ) , where H ψ j,k denotes the Hilbert Transform of

wavelet ψ j,k given by ψ j,k(x) = 2
j
2 ψ(2 jx− k) , where j,k ∈ Z .

Proof. Suppose that ψ is supported in the interval J̃ = J̃0,0 = [0,b] for b > 0.

It follows that the function ψ j,k(x) = 2
j
2 ψ(2 jx− k) is supported in the interval J̃ j,k =

[2− jk,2− j(k + b)] and its length is 2− jb denoted by |J̃ j,k| . We denote the center of
the interval J̃ j,k by x̃ j,k where x̃ j,k = 2−( j+1)b+2− jk . Using (2.1), (2.2) and moment
formula for Hilbert transform, given any polynomial p(x) of degree not greater than
M−1 and for any j,k ∈ Z , we get∫

R
p(x)H ψ j,k(x)dx = 0.

Since f ∈CM(R) , for each j,k ∈ Z , we can apply the Taylor formula for f (x) about
the point x̃ j,k . That is

f (x) = f (x̃ j,k)+ (x− x̃ j,k) f (1)(x̃ j,k)+ ...+
1

(M−1)!
(x− x̃ j,k)M−1 f (M−1)(x̃ j,k)+RM(x),
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where RM(x) = 1
M! (x− x̃ j,k)M f (M)(ξ ) for some ξ between x̃ j,k and x .

This gives

H f (x) =
M−1

∑
r=0

1
r!

H [(x− x̃ j,k)r] f (r)(x̃ j,k)+H RM(x). (2.3)

Also note that

〈 f ,H ψ j,k〉 =
∫

R
f (x)H ψ j,k(x)dx

= −
∫

R
H f (x)ψ j,k(x)dx. (2.4)

Using equations (2.3) and (2.4), we get

〈 f ,H ψ j,k〉 = −
∫

R

[
M−1

∑
r=0

1
r!

H [(x− x̃ j,k)r] f (r)(x̃ j,k)+H RM(x)

]
ψ j,k(x)dx

= −
M−1

∑
r=0

1
r!

f (r)(x̃ j,k)
∫

R
H [(x− x̃ j,k)r]ψ j,k(x)dx

−
∫

R
H RM(x)ψ j,k(x)dx. (2.5)

Also
∫
J̃ j,k

|(x− x̃ j,k)r|2 dx < ∞ . So, we have∫
R

H [(x− x̃ j,k)r] ψ j,k(x)dx = −
∫

R
(x− x̃ j,k)r H ψ j,k(x)dx

= 0, (2.6)

where r = 0, ...,M−1.
From (2.5) and (2.6), we obtain

|〈 f ,H ψ j,k〉| =
∣∣∣∣−∫

R
H [RM(x)] ψ j,k(x)dx

∣∣∣∣
=

| f (M)(ξ )|
M!

∣∣∣∣−∫
R
(x− x̃ j,k)M H [ψ j,k(x)]dx

∣∣∣∣
=

| f (M)(ξ )|
M!

∣∣∣∣∫
R

F [(x− x̃ j,k)M](γ) FH [ψ j,k(x)](γ)dγ
∣∣∣∣

=
| f (M)(ξ )|

M!

∣∣∣∣∫
R

F [(x− x̃ j,k)M](γ) F [ψ j,k(x)](γ)dγ
∣∣∣∣

=
| f (M)(ξ )|

M!

∣∣∣∣∫
R
(x− x̃ j,k)M ψ j,k(x)dx

∣∣∣∣
� 1

M!
max
x∈J̃ j,k

| f (M)(x)|
∫

J̃ j,k

∣∣∣(x− x̃ j,k)Mψ j,k(x)
∣∣∣dx

� 1
M!

max
x∈J̃ j,k

| f (M)(x)|
[∫

J̃ j,k

∣∣(x− x̃ j,k)M
∣∣2 dx

] 1
2

·
[∫

J̃ j,k

|ψ j,k(x)|2dx

] 1
2

.
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Since ψ ∈ L2(R) , there exists a positive constant C′ such that[∫
J̃ j,k

|ψ j,k(x)|2dx

] 1
2

� C′.

Therefore,

|〈 f ,H ψ j,k〉| � C′

M!
max
x∈J̃ j,k

| f (M)(x)|
[∫

J̃ j,k

2−2M( j+1) b2Mdx

] 1
2

� C′

M!
max
x∈J̃ j,k

| f (M)(x)| 2−M( j+1) bM |J̃ j,k| 1
2

� C′

M!
|| f (M)||∞ 2−M b

1
2 +M 2− jM 2−

j
2

= K 2− j(M+ 1
2 ),

where

K =
C′

M!
|| f (M)||∞ 2−M b

1
2 +M.

The wavelet coefficients of such a function will have rapid decay as j → +∞. �
The following example illustrates the above result.

EXAMPLE 2.2. Daubechies wavelets form an orthonormal basis through a mul-
tiresolution analysis.

Let ψ be the Daubechies wavelet with N vanishing moments that lead to an or-
thonormal basis of L2(R) . It has a basic support equal to [−N +1,N] and the support
of the corresponding scaling function φ is [0,2N +1] .

For the Daubechies wavelet ψ of order N, we have∫
R

xn ψ(x) dx = 0, n = 0,1, ...,N−1.

We consider a smooth signal f ∈ L2(R) which is twice continuously differentiable
and f (2) ∈ L∞(R) and take ψ to be Daubechies wavelet of order N = 2 supported on
[−1,2] . Now using moment formula for Hilbert transform, we have∫

R
xnH {ψ(x)} dx = 0, n = 0,1,2.

Using these moments we approximate the wavelet coefficients for smooth signal f and
proceeding as in Theorem 2.1, we conclude that

|〈 f ,H ψ j,k〉| � C ·2−5 j
2 , where C is a constant. �

In the following result, uniform Hölder continuity of a function is used to obtain
sufficient conditions that result in decreasing the wavelet coefficients of a function.
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THEOREM 2.3. Let f ∈ L2(R) is a Hölder continuous function with exponent β ,
0 < β < 1 and let ψ ∈ L2(R) be a wavelet such that

xψ(x) ∈ L1(R)∩L2(R), (2.7)∫
R
xpψ(x) dx = 0, for p = 0,1. (2.8)

Then |〈 f ,H ψ j,k〉| � C 2− j(β+ 1
2 ).

Proof. Note that

〈 f ,H ψ j,k〉 = 2
j
2

∫
R

f (x)H ψ(2 jx− k) dx

= 2
j
2

∫
R
[ f (x)− f (2− jk)]H ψ(2 jx− k) dx.

Since f is a Hölder continuous function with exponent β , we have

|〈 f ,H ψ j,k〉| � 2
j
2 C′

∫
R
|x−2− jk|β |H ψ(2 jx− k)| dx.

Write 2 jx− k = u , then

|〈 f ,H ψ j,k〉| � C′ 2
j
2 2− jβ 2− j

∫
R
|uβ H ψ(u)| du.

Now using (2.7), (2.8) and moment formula for the Hilbert transform, we obtain

|〈 f ,H ψ j,k〉| � C 2− j(β+ 1
2 ). �

The next result is a general version of above result.

THEOREM 2.4. Let f ∈ L2(R) be n-times continuously differentiable function
such that f (n) is Hölder continuous with exponent β for 0 < β < 1 and let ψ ∈ L2(R)
be a wavelet satisfying the following conditions

xn+1ψ(x) ∈ L1(R)∩L2(R), (2.9)∫
R
xpψ(x) dx = 0, for p = 0,1,2, ...,n+1. (2.10)

Then |〈 f ,H ψ j,k〉| � C 2− j(n+β+ 1
2 ).

Proof. By hypothesis, we may write f (x)= Pb,n−1(x)+Rn−1(x) , where Rn−1(x)=
1

(n−1)!
∫ x
b (x−t)n−1 f (n)(t) dt and Pb,n−1(x) = ∑n−1

j=0
(x−b) j

j! f ( j)(b) is a polynomial of de-

gree (n−1) .
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This gives

| f (x)−Pb,n(x)| � 1
(n−1)!

∫ x

b
|x−b|n−1 | f (n)(t)− f (n)(b)| dt.

Since f (n) is Hölder continuous with exponent β , there exists a constant C′ and 0 <
β < 1 such that

| f (n)(x)− f (n)(b)| � C′ |x−b|β .

So, we have

| f (x)−Pb,n(x)| � C′′ |x−b|n+β , where C′′ =
C′

(β +1) (n−1)!
.

Now 〈 f ,H ψ j,k〉 =
∫
R[ f (x)−Pb,n(x)] 2

j
2 H ψ(2 jx− k) dx.

This gives |〈 f ,H ψ j,k〉| �
∫
RC′′ |x−b|n+β 2

j
2 H ψ(2 jx− k) dx.

Writing b = 2− jk , we get

|〈 f ,H ψ j,k〉| � C′′ 2− j(n+β ) 2
j
2

∫
R
|2 jx− k|n+β H ψ(2 jx− k) dx.

If we write 2 jx− k = u, we have

|〈 f ,H ψ j,k〉| � C′′ 2− j(n+β+ 1
2 )

∫
R
|un+β H ψ(u)| du. (2.11)

Using (2.9), (2.10) and moment formula for the Hilbert transform, (2.11) reduces to

|〈 f ,H ψ j,k〉| � C 2− j(n+β+ 1
2 ), where C is a constant independent of j. �

Recall from [7] that
A bounded function f ∈Cn(R) is said to have decay rate m ∈ N if there exists a

constant Cm such that | f (p)(x)| � Cm
1+|x|m , 0 � p � n , for all x ∈ R.

In the following result, we obtain a relationship between the Hilbert transform of
wavelets and dyadic scale differential operator in order to decrease the wavelet coeffi-
cients 〈 f ,H ψ j,k〉 and thereby to approximate the function f ∈ Cn with bounded nth

order derivative.

THEOREM 2.5. Let m and n be integers such that m � n + 2 . Suppose that a
wavelet ψ ∈ L2(R) satisfies the conditions:

(i) xnψ(x) ∈ L2(R) ,

(ii) ψ has (n−1) vanishing moments,

(iii) |ψ(t)| � Cm
1+|t|m and H ψ having decay rate m.
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Then there exists a bounded function μ such that H μ is also bounded with decay rate
m and satisfying

H ψ(t) = (−i)n H μ (n)(t). (2.12)

Moreover, if f ∈Cn with bounded nth order derivative then

|〈 f ,H ψ j,k〉| = O(2
j(n+1)

2 ).

Proof. Since |ψ(t)| � Cm
1+|t|m with m � n+2, we have∫

R
|ψ(−ω)| (1+ |ω |m−2) dω �

∫
R

Cm

1+ |ω |m (1+ |ω |m−2) dω < ∞.

Therefore, by Theorem 2.5 [7] ψ̂ ∈ Cn(R) is bounded. Also by using the Fourier

transform property t̂nψ(t)(ω) = inψ̂(n)(ω), we have t̂ k ψ(0) = 0 for 0 � k < n .
Thus, ψ̂(k)(0)= 0 for 0 � k < n . Hence, there exists a bounded function μ̂ ∈C(R)

such that ψ̂(ω) = ωn μ̂(ω). This gives

Ĥ ψ(ω) =
1
in

F

{
dn

dtn
H μ(t)

}
(ω)

which yields H ψ(t) = (−i)n dn

dtn H μ(t). This verifies (2.12).
Now, for n = 1, we have H μ (1)(t) = i H ψ(t).

This gives |H μ (1)(t)| � Cm
1+|t|m .

Also, we have H μ(t) = −i
∫ ∞
t H ψ(x) dx.

For t � 0, we have
∫ ∞
t |H ψ(x)| dx � Cm

∫ ∞
t

1
1+xm dx.

The function t �→ ∫ ∞
t

1
1+xm is continuous function which has finite value at t = 0. This

means that this function is bounded for all t � 0. Therefore, we have

|H μ(t)| � Cm

∫ ∞

t

1
1+ xmdx � K′. (2.13)

Similarly, we can obtain (2.13) for t < 0.
It is easy to verify that

|H μ (p)(t)| � Cm

1+ |t|m for 0 � p � n, for all t ∈ R.

Thus H μ has decay rate m . Now

〈 f ,H ψ j,k〉 =
∫

R
f (t)H ψ j,k(t) dt

=
∫

R
f (t) ·2− j

2 H ψ(2− jt − k) dt.

=
∫

R
f (t) H ψ ′

2 j (2 jk− t) dt, where H ψ ′
2 j (t) = 2

− j
2 H ψ(−2− jt)

= f ∗H ψ ′
2 j(2 jk).
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Now using (2.12), we have

H ψ ′
2 j(u) = in 2 jn dn

dun H μ ′
2 j(u), (2.14)

where u = 2 jk and H μ ′
2 j (u) = 2

− j
2 H μ(−2− ju).

This gives 〈 f ,H ψ j,k〉 = in 2 jn dn

dun ( f ∗H μ ′
2 j (u)).

Also we have
∫
R tn H ψ(t) dt = in n!

∫
R H μ(t) dt.

Now we find that H ψ has n vanishing moments which implies∫
R

tn H ψ(t) dt 
= 0.

This gives
∫
R H μ(t) dt 
= 0.

Let
∫
R H μ(t) dt = K . Then, by using weak convergence of dirac delta function

δ , we find that

lim
j→−∞

H μ ′
2 j(u)

2
j
2

= Kδ .

From (2.14), we have

〈 f ,H ψ j,k〉 = in 2 jn
(

dn f
dtn

∗H μ ′
2 j(u)

)
.

Thus,

lim
j→−∞

〈 f ,H ψ j,k〉
2 j(n+ 1

2 )
= lim

j→−∞
in 2 jn

(
f (n) ∗H μ ′

2 j(u)
)

2 j(n+ 1
2 )

= in
(

f (n)(u)∗Kδ
)

= K in f (n)(u).

Since f ∈Cn with bounded nth order derivative, we have

|〈 f ,H ψ j,k〉| = O(2 j(n+ 1
2 ). �
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