
Journal of
Classical

Analysis

Volume 7, Number 2 (2015), 113–127 doi:10.7153/jca-07-11

ASYMPTOTIC EXPANSIONS PERTAINING TO THE

LOGARITHMIC SERIES AND RELATED TRIGONOMETRIC SUMS

G. FIKIORIS AND P. ANDRIANESIS

Abstract. The partial sum of the Maclaurin series of − ln(1− z) is fn(z) ≡ ∑n−1
k=1 zk/k . We

find concise closed-form expressions, involving Eulerian polynomials, for the full asymptotic
expansion of fn(z) as n→ ∞ . We then use our expressions to find large-n compound asymptotic
expansions, involving real quantities only, for cn(θ ) ≡ ∑n−1

k=1 coskθ/k , sn(θ ) ≡ ∑n−1
k=1 sinkθ/k ,

rn(θ )≡ ∑n−1
k=0 (−1)k cos [(2k+1)θ ]/(2k+1) , and a number of other trigonometric sums. Many

of these sums are ubiquitous in the literature on the Gibbs phenomenon in the context of Fourier
series.

1. Introduction

Let fn(z) be the sum defined by

fn(z) ≡
n−1

∑
k=1

zk

k
, z ∈ C, n = 2,3,4, . . . (1)

and recently encountered in an investigation related to superdirective-type effects aris-
ing in certain numerical solutions of electromagnetic scattering problems [1, 16]. For
the case where z is real with z > 1, ref. [16] deals with the full asymptotic expansion
of fn(z) as n → ∞ . While [16] shows how to determine as many terms as one desires,
the expansion therein does not have a simple and explicit form. It is the purpose of the
present paper to derive such an expansion for z ∈ C (i.e., not only for z ∈ (1,+∞) ). We
then derive similar expansions for a number of related trigonometric sums. Our explicit
expansions involve Eulerian polynomials, which often arise in combinatorial problems.

For |z|� 1 and z �= 1, fn(z) is the partial sum, with n−1 terms, of the convergent
series

f∞(z) ≡
∞

∑
k=1

zk

k
= − ln(1− z), |z| � 1 and z �= 1 (2)

[33, §4.6.1], which is the so-called Mercator series or Newton-Mercator series or log-
arithmic series. In (2), and throughout this paper, ln denotes the principal value (also
called principal branch) of the logarithm function. While f∞(z) converges under the
conditions stated in (2), it diverges otherwise.

The specific first goal of this paper (Sections 3 and 4) is to determine closed-form
asymptotic expansions of the following two quantities:
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(i) of fn(z) in the divergent case |z| > 1; and

(ii) of the remainder fn(z)− f∞(z) in the convergent case. We will denote this re-
mainder by gn(z) ,

gn(z) ≡ fn(z)− f∞(z) = fn(z)+ ln(1− z) = −
∞

∑
k=n

zk

k
, |z| � 1 and z �= 1. (3)

It is to be expected that fn(z) is exponentially large for |z| > 1 and that, for |z| < 1,
the remainder gn(z) is exponentially small. It is also logical to expect a more subtle
behaviour for |z| = 1.

We do not consider z = 1 because the asymptotic expansion of the quantity fn(1)=
ψ(n)+ γ (where ψ is the psi function and γ is Euler’s constant) is well known: the
said expansion is due to Euler and was stated by Ramanujan in his notebooks [3, pp.
150–151, p. 182]. Moreover, the quantity fn(1) was frequently used by Ramanujan to
express results related to analogues of the gamma function [3, p. 181].

It is apparent from (3) that

gn(z) = −znΦ(z,1,n) , |z| � 1 and z �= 1, (4)

where

Φ(z,s,α) ≡
∞

∑
k=0

zk

(k+ α)s (5)

is the Hurwitz-Lerch zeta-function or Lerch’s transcendent [35, p. 27], [33, §25.14],
[25, 31]. In Sections 3 and 4, we will point out further connections between fn and Φ .

In (1), set z = eiθ , where θ ∈ R , and separate the real and imaginary parts to
obtain the sums

cn(θ ) ≡ Re
{

fn
(
eiθ

)}
=

n−1

∑
k=1

coskθ
k

, n = 2,3,4, . . . , (6)

sn(θ ) ≡ Im
{

fn
(
eiθ

)}
=

n−1

∑
k=1

sinkθ
k

, n = 2,3,4, . . . . (7)

In the literature [10], sn(θ ) has been called the Fejér-Jackson sum.
In (2), set z = eiθ where θ ∈ (0,2π) , and separate the real and imaginary parts to

show that the sums in (6) and (7) are partial sums of the convergent series

c∞(θ ) ≡ Re
{

f∞
(
eiθ

)}
=

∞

∑
k=1

coskθ
k

= − ln

(
2sin

θ
2

)
, 0 < θ < 2π , (8)

s∞(θ ) ≡ Im
{

f∞
(
eiθ

)}
=

∞

∑
k=1

sinkθ
k

=
π −θ

2
, 0 < θ < 2π . (9)

The infinite summations in (8) and (9) are well known see, e.g., [18, eqs. 1.441.1,
1.441.4]; in fact, the series in (9) was summed by Euler [21].
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The second goal of this paper is to obtain asymptotic series for the remainders
cn(θ )− c∞(θ ) and sn(θ )− s∞(θ ) . This amounts to separating the real and imaginary
parts of fn(eiθ )− f∞(eiθ ) , something that turns out to be a nontrivial exercise (Section
5) within the context of Eulerian polynomials.

For θ ∈ R , the sum

rn(θ ) ≡
n−1

∑
k=0

(−1)k cos(2k+1)θ
2k+1

, n = 1,2,3, . . . (10)

can be found from sn(θ ) through

rn(θ ) =
1
2

[
s2n

(π
2
−θ

)
+ s2n

(π
2

+ θ
)]

.

Taking the limit and using (9) and rn(θ ) = rn(−θ ) =−rn(π −θ ) , we see that rn(θ ) is
the partial sum of the convergent series

r∞(θ ) ≡
∞

∑
k=0

(−1)k cos(2k+1)θ
2k+1

=
1
2

[
s∞

(π
2
−θ

)
+ s∞

(π
2

+ θ
)]

=

{ π
4 , |θ | < π

2 ,

− π
4 , π

2 < |θ | < π .

(11)

Equation (11), like (8) and (9), is well known [18, eq. 1.442.4]. From the above discus-
sions, it follows that the asymptotic expansion of rn(θ )− r∞(θ ) can be found from the
expansion of sn(θ )− s∞(θ ) .

The third goal of this paper (Section 6) is to provide the former expansion, and
to show how to similarly determine the expansions of a number of other trigonometric
sums.

The starting points of our discussions on fn(z) are two relations that can be found
in [16]. First, differentiation of (1) and use of fn(0) = 0 easily lead to the integral
representation

fn(z) =
∫ z

0

tn−1−1
t−1

dt, z ∈ C. (12)

Our second starting point is an asymptotic relation, shown in [16], that concerns the
case z ∈ (1,+∞) :

fn(z) ∼ zn
∫ y

0

e−nu

ze−u−1
du, as n → ∞ (z ∈ (1,+∞)) , 0 < y < lnz. (13)

In (13), y is an arbitrary positive number that is independent of n and smaller than lnz
(note that u = lnz is a simple pole of the integrand).

The quantity multiplying e−nu in the integrand of (13) admits a Maclaurin expan-
sion of the form

1
ze−u−1

=
∞

∑
k=0

ak(z)uk. (14)
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After giving explicit expressions for the first few terms in (14), [16] applies Watson’s
lemma to (13). That is, (14) is substituted into (13) and then formally integrated term
by term with the upper integration limit replaced by +∞ , thus yielding the first few
terms of the asymptotic expansion of fn(z) for the case z ∈ (1,+∞) . In Section 2, we
first demonstrate how the ak(z) in (14) can be expressed in terms of Eulerian polyno-
mials. This allows us to obtain (in Section 3) a closed-form representation of the full
asymptotic expansion of fn(z) (still for the case z ∈ (1,+∞)), and then to treat the case
z /∈ [1,+∞) in a similar manner.

2. Eulerian numbers, Eulerian polynomials

The Eulerian polynomials Ak(z) are given by [11]

Ak(z) =
k

∑
m=0

〈
k
m

〉
zk−m, k = 0,1,2, . . . , (15)

in which

〈
k
m

〉
are the Eulerian numbers given by

〈
k
m

〉
=

m

∑
p=0

(−1)p
(

k+1
p

)
(m+1− p)k, m = 0,1, . . . ,k; k = 0,1,2, . . . , (16)

where we use the usual notation for the binomial coefficients. The first few Eulerian
polynomials are

A0(z) = 1,

A1(z) = z,

A2(z) = z2 + z,

A3(z) = z3 +4z2 + z,

A4(z) = z4 +11z3 +11z2 + z,

A5(z) = z5 +26z4 +66z3 +26z2 + z.

(17)

Closely related to the Ak(z) are what have recently been called the “Apostol-Bernoulli
numbers” β1(z),β2(z), . . . [29, 7] (in [31], they are called the “Hurwitz-Lerch Bernoulli
numbers”). These quantities (which are actually rational functions of z rather than
numbers) are [7, eq. (4.6)]

βk(z) = (−1)k+1k
Ak−1(z)
(z−1)k , k = 1,2, . . . . (18)

The aforementioned references further define β0(z) = 0, but we will not use β0(z) . The
main result to be used herein is the closed-form expression for all terms of the series in
(14):

1
ze−u−1

=
∞

∑
k=0

Ak(z)
k!(z−1)k+1 uk =

∞

∑
k=0

(−1)k βk+1(z)
(k+1)!

uk. (19)
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While (16) can be found in the aforementioned references, it is in error in Comtet’s
well-known book [11], so we take the opportunity to derive (16) and correct the error
in Appendix A.

We will additionally employ the following properties of the Eulerian numbers [33,
§26.14]〈

0
0

〉
= 1;

〈
k
k

〉
= 0;

〈
k
1

〉
= 2k − k−1;

〈
k
m

〉
=

〈
k

k−1−m

〉
, k = 1,2, . . . ,

m = 0,1, . . . ,k−1. (20)

We close this section with a note on terminology and notation. We use the term
“Eulerian numbers” consistently with the NIST Digital Library of Functions [33, §26.14]
and the book of Graham, Knuth, and Patashnik [19, §6.2], but in a slightly different

context from Comtet [11]: the “Eulerian number” A(n,k) of [11] equals our

〈
n

k−1

〉
.

Nevertheless, Comtet’s “Eulerian polynomial” Ak(z) [11] is the same as ours. Berndt’s
edition of Ramanujan’s notebooks [3] retains Ramanujan’s original terminology and
notation regarding Eulerian numbers and polynomials; specifically, the “Eulerian poly-
nomial” ψn(p) of [3, p. 109, p. 116] is the polynomial in p of degree n− 1 given by
(−p)nAn(−1/p) . Ramanujan produced many results pertaining to Eulerian numbers
and polynomials (most of which were not new) [3, p. 109]. In particular, (16) can be
viewed as a straightforward corollary of Entry 3 of [3, p. 113].

3. Asymptotic expansion of fn(z): The case z ∈ (1,+∞)

Substitution of (19) into (13) and application of Watson’s lemma immediately
yields the full asymptotic expansion of fn(z) :

fn(z) ∼ zn
∞

∑
k=0

Ak(z)
(z−1)k+1

1
nk+1 , as n → ∞ (z ∈ (1,+∞)) . (21)

Equation (17) allows us to write down the leading terms of (21); these agree with the
results of [16] (which, as already mentioned, gives explicit expressions only for the first
few terms).

4. Asymptotic expansion of fn(z): The case z ∈ C\ [1,+∞)

Equation (19) is also useful when z ∈ C \ [1,+∞) , but we cannot proceed from
(13) as it stands. Instead, we choose an integration path in (12) that does not intersect
[1,+∞) and then split the resulting integral to get

fn(z) = − ln(1− z)+gn(z), z ∈ C\ [1,+∞), (22)

where, as already mentioned, ln denotes the principal value of the logarithm and

gn(z) ≡
∫ z

0

tn−1

t−1
dt, z ∈ C\ [1,+∞). (23)
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In the cut z-plane (the cut being the line [1,+∞)), the integral in (23) equals the “re-
mainder” gn(z) we defined in (3), or its analytic continuation. An additional integral
representation for gn(z) is obtained by setting u = ln(z/t) in (23); this gives

gn(z) = zn
∫ ∞

0

e−nu

ze−u−1
du, z ∈ C\ [1,+∞). (24)

Equation (23) provides yet another integral representation for gn(z) if one sets u = (1−
z)t/[z(1− t)] ; that result forms Entry 4.1.7.8 of the work [34] by Prudnikov, Brychkov,
and Marichev.1

Equation (24) is most useful for our purposes because it is suitable for the ap-
plication of Watson’s lemma: Substitution of (19) into (24) followed by term-by-term
integration yields

gn(z) ∼ zn
∞

∑
k=0

Ak(z)
(z−1)k+1

1
nk+1 , as n → ∞ (z ∈ C\ [1,+∞)) . (25)

In the convergent case, (25) is an asymptotic expansion for the remainder:

gn(z) = fn(z)− f∞(z) = fn(z)+ ln(1− z)∼ zn
∞

∑
k=0

Ak(z)
(z−1)k+1

1
nk+1 , as n → ∞

(|z| � 1 and z �= 1) . (26)

In the divergent case |z| > 1, (25) shows that the term − ln(1− z) in (22) is negli-
gible compared to gn(z) so that (22) and (25) yield the asymptotic expansion

fn(z) ∼ zn
∞

∑
k=0

Ak(z)
(z−1)k+1

1
nk+1 , as n → ∞ (|z| > 1 and z ∈ C\ [1,+∞)). (27)

It can be shown that our (25) is consistent with the asymptotic expansion of Lerch’s
transcendent in [15, Theorem 1]. However, the final result in [15] is not expressed in
terms of Eulerian polynomials. Furthermore, our (26) is consistent with the result in
[31, Theorem 7], which concerns what [31] calls the Hurwitz-Lerch digamma function.
Equation (26) is derived in a different way in [5]; compare [5, eqs. (5.35) and (3.18)] to
(26). The result in [5, eq. (5.35)] is expressed in terms of the so-called geometric poly-
nomials, which are closely related to the Eulerian polynomials. A related expression is
also derived by still different methods in [37]; that expression does not involve Eulerian
polynomials. In the special case |z| = 1 with z �= 1, our (26) is consistent with a result
in the literature [26] concerning so-called Lerch zeta-function

φ (ξ ,s,α) ≡ Φ
(
ei2πξ ,s,α

)
=

∞

∑
k=0

e2π ikξ

(k+ α)s , ξ ∈ R. (28)

1We note that all three integral representations of gn(z) (namely, (23), (24), and [34, Entry 4.1.7.8] possess
straightforward generalizations that represent Φ(z,s,α) . The generalization of (24), which is the simplest
of the three, is well known; it forms Entry 1.11.3 of [35] and Entry 25.14.5 of [33], and can also be found in
[25].
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We note that one often finds alternative notations for the function in (28) in the lit-
erature; for example, the second and third arguments are sometimes reversed [4, p.
259], [25]. It is easy to show that gn(z) is related to the hypergeometric function
2F1(n,1;n+ 1;z) . Very general results on the asymptotic expansions of 2F1(a,b;c;z)
for large values of the parameters a,b, and c can be found in [28, 32, 36, 12, 13, 14].
None of these references utilizes Eulerian polynomials.

The special case z = −1 of (26) is interesting because it is related to a formula of
Ramanujan and, also, because two related formulas in the literature are erroneous. We
discuss these issues in Appendix B.

5. Large-n expansions of cn (θ ) and sn (θ )

In this section, we apply our previous results to find asymptotic expansions, in-
volving real quantities only, for cn(θ ) and sn(θ ) . Setting z = eiθ in (22) and (24), and
comparing with (6) and (7), we obtain

cn(θ )− c∞(θ ) = λn(θ )cosnθ − μn(θ )sinnθ , 0 < θ < 2π , (29)

sn(θ )− s∞(θ ) = λn(θ )sinnθ + μn(θ )cosnθ , 0 < θ < 2π , (30)

where c∞(θ ) and s∞(θ ) are defined in (8) and (9) and where λn(θ ) and μn(θ ) are the
real-valued integrals

λn(θ ) ≡
∫ ∞

0
e−nu Re

{
1

eiθ e−u−1

}
du =

∫ ∞

0
e−nu cosθe−u−1

e−2u−2cosθe−u +1
du, (31)

μn(θ ) ≡
∫ ∞

0
e−nu Im

{
1

eiθ e−u−1

}
du =

∫ ∞

0
e−nu −sinθe−u

e−2u−2cosθe−u +1
du. (32)

Asymptotic expansions for λn(θ ) and μn(θ ) can be found via the first integral ex-
pressions in (31) and (32) by setting z = eiθ in (19) and applying Watson’s lemma.
We now proceed with the only nontrivial task involved in this procedure, which is the
determination of the real and imaginary parts of the Apostol-Bernoulli number βk(eiθ ) .

We do this by obtaining new (to the best of our knowledge), explicit expressions
for the quantities βk(eiθ ) (k = 1,2, . . .) and Ak(eiθ ) (k = 0,1, . . . ), where θ ∈R . By [7,
eq. (6.10)], βk(eiθ ) can be expressed via Pk−1 (cot(θ/2)) , where Pk(z) is the “deriva-
tive polynomial for the tangent.” However, the only explicit expression for Pk(z) that
we are aware of [6, eq. (2.11)] involves complex quantities, even if z is real. The final
formulas to be developed here, on the other hand, exclusively involve quantities that are
real.

From (15) and (20) we have

Ak(eiθ ) =
k−1

∑
m=0

〈
k
m

〉
ei(k−m)θ , k = 1,2, . . . . (33)

Let us first consider the case k = 2,4,6, . . . : Split the sum in (33) as ∑k/2−1
m=0 +∑k−1

m=k/2 .
In the second sum, set p = k−1−m and apply (20) to the resulting Eulerian number;
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the transformed second sum thus has identical summation limits (i.e., 0 and k/2− 1)
as does the first sum, as well as identical Eulerian numbers. Now combine the two sums
to obtain

Ak(eiθ ) =
k/2−1

∑
m=0

〈
k
m

〉[
ei(k−m)θ + ei(m+1)θ

]
, k = 2,4,6, . . . , (34)

which in turn gives

Ak(eiθ ) = 2exp

[
i(k+1)

θ
2

] k/2−1

∑
m=0

〈
k
m

〉
cos

[
(k−1−2m)

θ
2

]
, k = 2,4,6, . . . . (35)

For the case k = 1,3,5, . . . it can be shown in a similar manner that (33) yields

Ak(eiθ ) = exp

[
i(k+1)

θ
2

]{〈
k

k−1
2

〉
+2

(k−3)/2

∑
m=0

〈
k
m

〉
cos

[
(k−1−2m)

θ
2

]}
,

k = 1,3,5, . . . , (36)

in which the first term inside the braces corresponds to the middle term in (33) (i.e., the
term with m = (k− 1)/2), which we wrote separately. We point out, in passing, that
(35) and (36) are convenient for the calculation of the modulus and phase of Ak(eiθ ) ,
and may thus be of independent interest within the context of Eulerian polynomials.

Equations (36) and (18) now give

βk(eiθ ) =
k(−1)

k
2 +1

2k−1 csck θ
2

{
1
2

〈
k−1
k
2 −1

〉
+

k/2−2

∑
m=0

〈
k−1
m

〉
cos

[(
k
2
−m−1

)
θ
]}

,

k = 2,4,6, . . . . (37)

Similarly, from (35) and (18) we obtain

βk(eiθ ) =
ik(−1)

k+1
2

2k−1 csck θ
2

(k−3)/2

∑
m=0

〈
k−1
m

〉
cos

[
(k−2m−2)

θ
2

]
,

k = 3,5,7, . . . . (38)

When evaluated on the unit circle, the Apostol-Bernoulli number βk(z) is thus real
when k = 2,4,6, . . . and imaginary when k = 3,5,7, . . . . The case k = 1 is exceptional
because β1(eiθ ) is complex, with

β1(eiθ ) =
A0(eiθ )
eiθ −1

= −1
2
− i

1
2

cot
θ
2

. (39)

We thus set z = eiθ in (19) and transform (19) as follows.
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(i) We define the real quantities

σk(θ ) =
1
2k

β2k

(
eiθ

)
, k = 1,2,3, . . . , (40)

τk(θ ) =
1
i

1
2k+1

β2k+1

(
eiθ

)
, k = 1,2,3, . . . , (41)

where the factors 1/(2k) and 1/(2k+1) are chosen for later convenience.

(ii) We separately write the first term in (19) – i.e., the term involving the complex
quantity β1(eiθ ) – and substitute β1(eiθ ) using the expression in (39).

(iii) We then separate the real and imaginary parts of (19) to obtain

Re

{
1

eiθ e−u−1

}
= −1

2
−

∞

∑
k=1

1
(2k−1)!

σk(θ )u2k−1, (42)

Im

{
1

eiθ e−u−1

}
= −1

2
cot

θ
2

+
∞

∑
k=1

1
(2k)!

τk(θ )u2k. (43)

From (40) and (37),

σk(θ ) =
(−1)k+1

22k−1 csc2k θ
2

{
1
2

〈
2k−1
k−1

〉
+

k−2

∑
m=0

〈
2k−1

m

〉
cos [(k−m−1)θ ]

}
,

k = 1,2,3, . . . . (44)

From (41) and (38),

τk(θ ) =
(−1)k+1

22k csc2k+1 θ
2

k−1

∑
m=0

〈
2k
m

〉
cos

[
(2k−2m−1)

θ
2

]
, k = 1,2,3, . . . . (45)

Finally, substitution of (42) and (43) in (31) and (32) and application of Watson’s lemma
gives

λn(θ ) ∼− 1
2n

−
∞

∑
k=1

σk(θ )
1

n2k , as n → ∞, (46)

μn(θ ) ∼− 1
2n

cot
θ
2

+
∞

∑
k=1

τk(θ )
1

n2k+1 , as n → ∞. (47)

By (44), (45), and (20), the first few terms in (46) and (47) are

λn(θ ) = − 1
2n

− csc2 θ
2

1
4n2 +(2+ cosθ )csc4 θ

2
1

8n4 +O

(
1
n6

)
, as n → ∞, (48)

μn(θ ) = −cot
θ
2

1
2n

+ cot
θ
2

csc2 θ
2

1
4n3 +O

(
1
n5

)
, as n → ∞. (49)
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To summarize, in (29) and (30) we have expressed, exactly, the oscillatory quan-
tities cn(θ )− c∞(θ ) and sn(θ )− s∞(θ ) in terms of sines and cosines and the auxiliary
functions λn(θ ) and μn(θ ) . These two functions are non-oscillatory (in n ) and pos-
sess the asymptotic power series (Poincaré asymptotic expansions) provided in (46)
and (47). Together, equations (29), (30), (46), and (47) form a “compound asymptotic
expansion” in the sense discussed in [38] and [16]. (Familiar examples of compound
asymptotic expansions are those of the Airy functions Ai(z) and Bi(z) as z →−∞ [2]
and the large-z asymptotic expansions of the Sine and Cosine Integrals Si(z) and Ci(z)
[33, §6.12(ii)], [16].)

6. Large-n expansions of related trigonometric sums; large-n expansion of rn(θ )

If a trigonometric sum has a sufficiently simple expression in terms of cn(θ ) and
sn(θ ) , its asymptotic expansion can be determined using our previous results. Six such
sums are provided in Table 1 (this list is, of course, not exhaustive).

Table 1: Trigonometric sums easily expressible in terms of cn(θ ) and sn(θ ) .

Row Finite sum Expression in terms of Corresponding infinite series
No. cn(θ ) and sn(θ )

1
n−1
∑

k=1
(−1)k+1 coskθ

k −cn(π −θ )
∞
∑

k=1
(−1)k+1 coskθ

k = ln
(
2cos θ

2

)
, |θ | < π

2 s′n(θ ) ≡
n−1
∑

k=1
(−1)k+1 sinkθ

k sn(π −θ ) s′∞(θ ) ≡
∞
∑

k=1
(−1)k+1 sinkθ

k = θ
2 , |θ | < π

3
n−1
∑

k=0

cos(2k+1)θ
2k+1

1
2 [c2n(θ )− c2n(π −θ )]

∞
∑

k=0

cos(2k+1)θ
2k+1 = 1

2 lncot θ
2 , 0 < θ < π

4
n−1
∑

k=0

sin(2k+1)θ
2k+1

1
2 [s2n(θ )+ s2n(π −θ )]

∞
∑

k=0

sin(2k+1)θ
2k+1 = π

4 , 0 < θ < π

5 rn(θ ) ≡
n−1
∑

k=0
(−1)k cos(2k+1)θ

2k+1
1
2

[
s2n

(π
2 −θ

)
+ s2n

(π
2 + θ

)]
r∞(θ ) ≡

∞
∑

k=0
(−1)k cos(2k+1)θ

2k+1 = π
4 , |θ | < π

2

6
n−1
∑

k=0
(−1)k sin(2k+1)θ

2k+1
1
2

[
c2n

(π
2 −θ

)− c2n

(π
2 + θ

)] ∞
∑

k=0
(−1)k sin(2k+1)θ

2k+1 = 1
2 ln(secθ + tanθ ) , |θ | < π

2

The middle column in Table 1 is a trivial consequence of the first column and the
definitions of cn(θ ) and sn(θ ) , eqs. (6) and (7). The last column is easily obtained
by finding the limit of the middle column using (8) and (9). All infinite series in the
last column can also be found in [24]. Interestingly, the infinite series in Rows 2 and
5 appear in [3, pp. 96–97], as examples corresponding to two general, nonrigorous
formulas due to Ramanujan (the book [3] further provides rigorous versions of both
those formulas). Let us also note that the summable series ∑∞

k=1 (−1)k+1 coskθ/k in
the last column of Row 1 is referred to as the lowest non-Bernoulli Lanczos-Krylov
function, or Clausen function [8].

We illustrate the use of Table 1 for the sum rn(θ ) (see fifth row of Table 1 and
(10)): To obtain the large-n asymptotic expansion of rn(θ ) , express rn(θ )− r∞(θ ) in
terms of λn(θ ) and μn(θ ) using the middle column of Table 1 together with (29) and
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(30). The result is

rn(θ )− r∞(θ ) =
(−1)n

2

⎧⎪⎨
⎪⎩

[
−λ2n

(π
2
−θ

)
+ λ2n

(π
2

+ θ
)]

sin2nθ

+
[
μ2n

(π
2
−θ

)
+ μ2n

(π
2

+ θ
)]

cos2nθ

⎫⎪⎬
⎪⎭ ,

|θ | < π/2, (50)

where r∞(θ ) is found from the last column of Table 1. Equation (50) together with
(44)–(47) provide the desired compound asymptotic expansion of rn(θ ) . Equation
(50) can be extended to all real, fixed θ except θ = ±π/2,±3π/2,±5π/2, . . . using
rn(θ ) = rn(−θ ) = −rn(π −θ ) and the 2π -periodicity of rn(θ ) .

7. Summary and future work

This paper dealt with large-n expansions of the sums fn(z) , cn(θ ) , sn(θ ) , and
rn(θ ) defined in (1), (6), (7), and (10). The main results of this paper are the following.

For the case of fn(z) , the expansions are provided in (26), (27), and (21), where
Ak(z) are the Eulerian polynomials of (15). Equation (B.9), which is a special case of
(26), serves as a correction to certain asymptotic formulas in the literature.

The trigonometric sums cn(θ ) , sn(θ ) , and rn(θ ) are exactly given in terms of
auxiliary functions λn(θ ) and μn(θ ) in (29), (30), and (50), where the large-n limits
c∞(θ ) , s∞(θ ) , and r∞(θ ) are given by (8), (9), and (11); λn(θ ) and μn(θ ) possess
asymptotic power series, the first few terms of which are given in (48) and (49). Their

full asymptotic expansions are provided in (44)-(47), where

〈
k
m

〉
stand for the Eulerian

numbers of (16).
The aforementioned equations constitute the compound asymptotic expansions of

the three trigonometric sums. Formulas (35)-(38), which are intermediate steps in the
relevant derivations, may be of independent interest within the context of Eulerian poly-
nomials and Apostol-Bernoulli numbers.

Table 1 enables one to obtain similar compound asymptotic expansions for some
further trigonometric sums.

For reasons obvious from (9), (11), and the second row of Table 1, the 2π -periodic
extensions of the infinite series s∞(θ ) , r∞(θ ) , and s′∞(θ ) , which are discontinuous, are
often called the “sawtooth-like,” “square wave,” and “sawtooth” functions, respectively.
The corresponding finite sums sn(θ ) , rn(θ ) , and s′n(θ ) are ubiquitous in the literature
[33, §6.16(i)], [21, 27, 39, 20, 22, 23, 17] dealing with the Gibbs phenomenon (also
called the Gibbs-Wilbraham phenomenon). Specifically, numerically-obtained graphs
of these sums are frequently used to introduce and illustrate the Gibbs phenomenon in
the context of Fourier series. Furthermore, the above three sums are the most usual
test cases for methods – such as the method of Fejér averaging – aiming to overcome
the Gibbs phenomenon; in other words, the effectiveness of such methods is judged by
application to the three sums. We are currently working on the study and development
of such methods with the aid of the compound asymptotic expansions developed herein.
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Particularly useful for this purpose are the expansions’ first few terms, which constitute
simple asymptotic approximations.

A P P E N D I CE S

A. Derivation of (19); correction to an equation in [11]

The first equality in (19) is essentially eq. [5k] of p. 244 of [11], which, however,
is in error. For this reason, we correct that equation starting from eq. [5i] of p. 244 of
[11], which is

1−u

1−uet(1−u) =
∞

∑
n=0

An(u)
tn

n!
.

Following [11], we replace t by t/(u−1) to obtain

1−u
1−ue−t =

∞

∑
n=0

An(u)
(u−1)n

tn

n!
. (A.1)

Equation (A.1) is a corrected version of eq. [5k] of p. 244 of [11] and immediately
yields the first equality in (19); the second one follows from (18).

B. On certain formulas in the literature connected to fn(−1)

In this appendix, we further discuss (26) for the special case z = −1: The value of
the Eulerian polynomial for z = −1 can be written as

Ak(−1) = −2k+1(2k+1−1)
k+1

Bk+1, k = 0,1,2, . . . , (B.1)

where Bk is the Bernoulli number [33, §24.2]. Equation (B.1) can be readily deduced
from [33, §26.14.11] with the aid of (15), (16), and the values B1 = −1/2 and 0 =
B3 = B5 = B7 = . . . of the Bernoulli numbers. Note that a particular case of (B.1) is
0 = A2(−1) = A4(−1) = A6(−1) = . . . .

Equations (26) and (B.1) give

fn(−1) ∼− ln2− (−1)n

2n
− (−1)n

∞

∑
k=1

22k −1
2k

B2k
1

n2k , as n → ∞.

Adding the term (−1)n/n and using the definition (1) of fn(−1) we obtain the slightly
different form

n

∑
k=1

(−1)k+1

k
∼ ln2− (−1)n

2n
+(−1)n

∞

∑
k=1

22k −1
2k

B2k
1

n2k , as n → ∞. (B.2)

Equation (B.2) can, alternatively, easily be obtained from a formula [3, p. 145, Example
1] of Ramanujan. (That formula is derived in [3] by using Boole’s summation formula.)
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For the special case n = even, a formula similar to (B.2) appears in Mangulis’s
handbook as [30, Part III, Sect. 1D, eq. (17)], but that formula is incorrect. The related
formula [30, Part III, Sect. 1D, eq. (20)] is also incorrect. We thus proceed to correct
both formulas, demonstrate their consistency with our (26), and discuss connections to
a relevant formula in Bromwich’s book [9]. Before doing this, let us stress that our
symbol Bk (which is the same as the Bk of [3]) differs from the corresponding symbols
in [30] and [9]: The Bk in [30] and [9] equals our (−1)k+1B2k .

We first find the asymptotic expansion of the sum

αn ≡
n

∑
m=1

1
2m−1

. (B.3)

From [33, §5.4.15], we have the exact expression

αn =
γ
2

+ ln2+
1
2

ψ
(

n+
1
2

)
, (B.4)

where ψ is the psi function and γ is Euler’s constant. With the duplication formula for
the psi function [33, §5.5.8], eq. (B.4) yields

αn =
γ
2

+ ψ(2n)− 1
2

ψ(n). (B.5)

The asymptotic expansion of the Psi function is [33, §5.11.2]

ψ (z) ∼ lnz− 1
2z

−
∞

∑
k=1

B2k

2k
1
z2k , as z → ∞ (|ph z| < π). (B.6)

Equations (B.5) and (B.6) give

αn ∼ γ
2

+ ln2+
1
2

lnn+
∞

∑
k=1

B2k

2k

(
22k−1−1

) 1
(2n)2k , as n → ∞. (B.7)

Equation (B.7) is a corrected version of [30, Part III, Sect. 1D, eq. (20)].
To obtain a corrected version of [30, Part III, Sect. 1D, eq. (17)], we start from the

well-known asymptotic formula

δn ≡
n

∑
m=1

1
m

∼ γ + lnn+
1
2n

−
∞

∑
k=1

B2k

2kn2k , (B.8)

which, as mentioned in our Introduction, is due to Euler and stated by Ramanujan in
his notebooks. Equation (B.8) correctly appears in Mangulis’s book (allowing for the
differences in notation in the Bernoulli numbers) as [30, Part III, Sect. 1D, eq. (16)].
By (B.3) and the definition of δn in (B.8), we have

2n

∑
m=1

(−1)m+1

m
= 2αn − δ2n.
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Equation (B.7) and the asymptotic expansion in (B.8) therefore yield

2n

∑
m=1

(−1)m+1

m
∼ ln2− 1

4n
+

∞

∑
k=1

22k −1
2k

B2k
1

(2n)2k , as n → ∞. (B.9)

Equation (B.9), which is a special case of (26), is a corrected version of [30, Part III,
Sect. 1D, eq. (17)].

Let us finally note that [30], which has no derivations, cites Bromwich’s book [9]
as the source of both equations corrected in the present appendix. Ref. [9] does include
a formula corresponding to (B.7). While correct, that formula only contains the first
few terms of the full asymptotic expansion given in (B.7).
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