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REFINEMENTS OF THE MAJORIZATION THEOREMS

VIA FINK IDENTITY AND RELATED RESULTS

SADIA KHALID, JOSIP PEČARIĆ AND ANA VUKELIĆ

Abstract. The well known majorization theorem ( see [5, p. 11] and [7, p. 320] ) plays an
important role in our paper. By using A. M. Fink’s identity in the majorization difference, we
obtain an interesting identity and with the help of this useful identity, we obtain many significant
results. We investigate the bounds for this identity, by using Grüss-type inequalities and we also
present some results relating to the Ostrowski-type inequality.

1. Introduction and preliminaries

The theory of convex functions has experienced a rapid development. This can
be attributed to several causes: firstly, so many areas in modern analysis directly or
indirectly involve the application of convex functions; secondly, convex functions are
closely related to the theory of inequalities and many important inequalities are conse-
quences of the applications of convex functions (see [7]).

DEFINITION 1. A function f : I → R is convex on I if

(x3− x2) f (x1)+ (x1 − x3) f (x2)+ (x2− x1) f (x3) � 0 (1)

holds for all x1,x2,x3 ∈ I such that x1 < x2 < x3 .

An important characterization of convex function is stated in [7, p. 2].

THEOREM 1.1. If f is a convex function defined on I and if x1 � y1, x2 � y2, x1 �=
x2, y1 �= y2 , then the following inequality is valid

f (x2)− f (x1)
x2− x1

� f (y2)− f (y1)
y2− y1

·

If the function f is concave, then the inequality reverses.

The following definition is given in [4].
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DEFINITION 2. A function f : I → (0,∞) is said to be log-convex in the Jensen
sense if for all x,y ∈ I , the inequality

f 2
(

x+ y
2

)
� f (x) f (y)

holds.

REMARK 1.2. It is easy to see that a function f : I → (0,∞) is log-convex in the
Jensen sense if and only if the relation

α2 f (x)+2αβ f

(
x+ y

2

)
+ β 2 f (y) � 0

holds for every α,β ∈ R and x,y ∈ I .

A log-convex function is defined as follows (see [7, p. 7]):

DEFINITION 3. A function f : I → (0,∞) is said to be log-convex or multiplica-
tively convex if log f is convex. Equivalently, f is log-convex if for all x,y ∈ I and for
all λ ∈ [0,1] , the inequality

f (λx+(1−λ )y) � f λ (x) f (1−λ ) (y)

holds. If the inequality reverses, then f is said to be log-concave.

REMARK 1.3. If f is continuous, then a log-convex function in the Jensen sense
is log-convex.

Divided difference of a function is defined as follows (see [7, p. 14]):

DEFINITION 4. The n th-order divided difference of a function f : [a,b] → R at
mutually distinct points x0, ...,xn ∈ [a,b] is defined recursively by

[xi; f ] = f (xi) , i = 0, . . . ,n,

[x0, . . . ,xn; f ] =
[x1, . . . ,xn; f ]− [x0, . . . ,xn−1; f ]

xn− x0
· (2)

It is easy to see that (2) is equivalent to

[x0, . . . ,xn; f ] =
n

∑
i=0

f (xi)
q′ (xi)

, where q(x) =
n

∏
j=0

(x− x j) .

The definition of a real-valued convex function is characterized by the n th-order
divided difference (see [7, p. 15]).
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DEFINITION 5. A function f : [a,b] → R is said to be n -convex (n � 0) if and
only if for all choices of (n+1) distinct points x0, . . . ,xn ∈ [a,b] , [x0, . . . ,xn; f ] � 0
holds.

If this inequality is reversed, then f is said to be n -concave. If the inequality is
strict, then f is said to be a strictly n -convex ( n -concave) function.

REMARK 1.4. Note that 0-convex functions are non-negative functions, 1-convex
functions are increasing functions and 2-convex functions are simply the convex func-
tions.

The following theorem gives an important criteria to examine the n -convexity of
a function f (see [7, p. 16]).

THEOREM 1.5. If f (n) exists, then f is n-convex if and only if f (n) � 0 .

The notion of majorization arose as a measure of the diversity of the components of
an m-dimensional vector (an m-tuple) and is closely related to convexity. It is treated
most comprehensively by A. W. Marshall, I. Olkin and B. C. Arnold in [5] (see also
[7]).

Let x = (x1, . . . ,xm) and y = (y1, . . . ,ym) be two real m-tuples for fixed m � 2
and let

x[1] � x[2] � . . . � x[m], y[1] � y[2] � . . . � y[m],

x(1) � x(2) . . . � x(m), y(1) � y(2) . . . � y(m),

be their ordered components.
x is said to majorize y or y is said to be majorized by x (mathematically x � y )

if {
∑k

i=1 x[i] � ∑k
i=1 y[i], k = 1, . . . ,m−1,

∑m
i=1 xi = ∑m

i=1 yi,
(3)

holds. The inequality in (3) is equivalent to

m

∑
i=m−k+1

x(i) �
m

∑
i=m−k+1

y(i), k = 1, . . . ,m−1.

The well known majorization theorem is given in [5, p. 14] (see also [7, p. 320]).

THEOREM 1.6. Let x = (x1, . . . ,xm) and y = (y1, . . . ,ym) be two real m-tuples
such that xi,yi ∈ [a,b] , where i = 1, . . . ,m. Then for every continuous convex function
ϑ : [a,b]→ R , the inequality

m

∑
i=1

ϑ (xi) �
m

∑
i=1

ϑ (yi) (4)

holds if and only if x � y .
If the function ϑ is concave, then the inequality reverses.
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A weighted version, which is in fact the generalization of Theorem 1.6, was proved
by L. Fuchs in [3] (see also [7, p. 323]).

THEOREM 1.7. Let p = (p1, . . . , pm) be a real m-tuple and x = (x1, . . . ,xm) , y =
(y1, . . . ,ym) be two decreasing real m-tuples such that

k

∑
i=1

pixi �
k

∑
i=1

piyi, k = 1, . . . ,m−1, (5)

and
m

∑
i=1

pixi =
m

∑
i=1

piyi (6)

hold. Then for every continuous convex function ϑ : I → R , we have
m

∑
i=1

piϑ (xi) �
m

∑
i=1

piϑ (yi) . (7)

If ϑ is concave, then opposite inequality holds in (7) .

The following proposition represents an integral majorization result which is in
fact a consequence of Theorem 1 given in [6].

PROPOSITION 1.8. Let p : [c,d]→R be a continuous function and ϕ ,ψ : [c,d]→
[a,b] be two decreasing continuous functions such that∫ u

c
p(z)ϕ (z)dz �

∫ u

c
p(z)ψ (z)dz, ∀ u ∈ [a,b] , (8)

and ∫ d

c
p(z)ϕ (z)dz =

∫ d

c
p(z)ψ (z)dz (9)

hold. Then for every continuous convex function ϑ : [a,b] → R , we have∫ d

c
p(z)ϑ (ϕ (z))dz �

∫ d

c
p(z)ϑ (ψ (z))dz. (10)

If ϑ is concave, then opposite inequality holds in (10) .

In our paper, we use A. M. Fink’s identity and prove many interesting results. The
following theorem is proved by A. M. Fink in [2].

THEOREM 1.9. Let a,b ∈ R , f : [a,b]→ R , n � 1 and f (n−1) is absolutely con-
tinuous on [a,b] . Then

f (x) =
n

b−a

∫ b

a
f (t)dt

−
n−1

∑
k=1

(
n− k
k!

)(
f (k−1) (a)(x−a)k − f (k−1) (b)(x−b)k

b−a

)

+
1

(n−1)!(b−a)

∫ b

a
(x− t)n−1 k[a,b] (t,x) f (n) (t)dt, (11)
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where

k[a,b] (t,x) =
{

t−a, a � t � x � b,
t−b, a � x < t � b.

(12)

The organization of the paper is the following: in Section 2, we present some in-
teresting results by using A. M. Fink’s identity combined together with the n -convexity
of the function f . We present a refinement of the weighted majorization-type in-
equality for the two decreasing m-tuples x and y as well as a refinement of the in-
tegral majorization-type inequality for the two decreasing functions ϕ and ψ . We also
present a refinement of the majorization-type inequality for the two majorized m-tuples
x and y . We study the functionals defined as the difference between the right-hand and
the left-hand side of the generalized inequalities. In Section 3, we present some inter-
esting results by using Čebyšev functional and Grüss-type inequalities along with some
results relating to the Ostrowski-type inequality. In Section 4, our objective is to study
the properties of functionals, such as n -exponential and logarithmic convexity. Fur-
thermore, we prove monotonicity property of the generalized Cauchy means obtained
via these functionals. Finally, in Section 5 we give several examples of the families of
functions for which the obtained results can be applied.

2. Refinements of the Majorization Theorems Via A. M. Fink’s Identity

Our first main result of this section states that:

THEOREM 2.1. Let f : [a,b] → R be such that for n � 1 , f (n−1) is absolutely
continuous. Let xi,yi ∈ [a,b] , pi ∈ R (i = 1, . . . ,m) and let k[a,b] (t,x) be the same as
defined in (12) . Then we have

m

∑
i=1

pi f (xi)−
m

∑
i=1

pi f (yi) =

n−1

∑
k=1

(
n− k

k!(b−a)

)[
f (k−1) (a)

(
m

∑
i=1

pi (yi −a)k −
m

∑
i=1

pi (xi −a)k
)

− f (k−1) (b)

(
m

∑
i=1

pi (yi−b)k −
m

∑
i=1

pi (xi −b)k
)]

+
1

(n−1)!(b−a)
×

∫ b

a
f (n) (t)

(
m

∑
i=1

pi (xi − t)n−1 k[a,b] (t,xi)−
m

∑
i=1

pi (yi − t)n−1 k[a,b] (t,yi)

)
dt.

(13)
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Proof. By using (11) for x = xi and y = yi in the majorization difference, we
have

m

∑
i=1

pi f (xi)−
m

∑
i=1

pi f (yi) =
m

∑
i=1

pi

n−1

∑
k=1

(
n− k

k!

)
×

⎛
⎝ f (k−1) (a)

(
(yi −a)k − (xi−a)k

)
− f (k−1) (b)

(
(yi −b)k − (xi−b)k

)
b−a

⎞
⎠

−
m

∑
i=1

pi

⎛
⎝
∫ b
a f (n) (t)

(
(yi− t)n−1 k[a,b] (t,yi)− (xi − t)n−1 k[a,b] (t,xi)

)
dt

(n−1)!(b−a)

⎞
⎠ .

Now apply Fubini’s theorem, we have (13) . �

The following theorem is the integral version of Theorem 2.1.

THEOREM 2.2. Let f : [a,b] → R be such that for n � 1 , f (n−1) is absolutely
continuous on [a,b] and let k[a,b] (t,x) be the same as defined in (12) . Let p : [c,d]→R

and ϕ ,ψ : [c,d] → [a,b] be continuous functions. Then we have

∫ d

c
p(z) f (ϕ (z))dz−

∫ d

c
p(z) f (ψ (z))dz =

n−1

∑
k=1

(
n− k

k!(b−a)

)
× (14)

[
f (k−1) (a)

(∫ d

c
p(z) (ψ (z)−a)k dz−

∫ d

c
p(z)(ϕ (z)−a)k dz

)

− f (k−1) (b)
(∫ d

c
p(z) (ψ (z)−b)k dz−

∫ d

c
p(z) (ϕ (z)−b)k dz

)]

+
1

(n−1)!(b−a)

∫ b

a
f (n) (t)

[∫ d

c
p(z) (ϕ (z)− t)n−1 k[a,b] (t,ϕ (z))dz

−
∫ d

c
p(z) (ψ (z)− t)n−1 k[a,b] (t,ψ (z))dz

]
dt.

Proof. By using (11) for x = ϕ (z) and y = ψ (z) in the integral majorization
difference

∫ d
c p(z) f (ϕ (z))dz− ∫ d

c p(z) f (ψ (z))dz , and after simplification we have
(14) . �

The following theorem is our second main result of this section:

THEOREM 2.3. Let all the assumptions of Theorem 2.1 be satisfied and let for
n � 1

m

∑
i=1

pi (xi − t)n−1 k[a,b] (t,xi) �
m

∑
i=1

pi (yi − t)n−1 k[a,b] (t,yi) (15)
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holds. If f is n-convex, then we have

m

∑
i=1

pi f (xi)−
m

∑
i=1

pi f (yi) � (16)

n−1

∑
k=1

(
n− k

k!(b−a)

)[
f (k−1) (a)

(
m

∑
i=1

pi (yi−a)k −
m

∑
i=1

pi (xi −a)k
)

− f (k−1) (b)

(
m

∑
i=1

pi (yi −b)k −
m

∑
i=1

pi (xi−b)k
)]

.

If opposite inequality holds in (15) , then (16) holds in the reverse direction.

Proof. Since f (n−1) is absolutely continuous on [a,b] , f (n) exists almost every-
where. As f is n -convex, applying Theorem 1.5, we have, f (n) (x) � 0 for all x∈ [a,b] .
Now by using f (n) � 0 and (15) in (13) , we have (16) . �

An integral version of our second main result states that:

THEOREM 2.4. Let all the assumptions of Theorem 2.2 be satisfied and let for
n � 1

∫ d

c
p(z) (ϕ (z)− t)n−1 k[a,b] (t,ϕ (z))dz

�
∫ d

c
p(z) (ψ (z)− t)n−1 k[a,b] (t,ψ (z))dz (17)

holds. If f is n-convex, then we have

∫ d

c
p(z) f (ϕ (z))dz−

∫ d

c
p(z) f (ψ (z))dz �

n−1

∑
k=1

(
n− k

k!(b−a)

)
× (18)

[
f (k−1) (a)

(∫ d

c
p(z) (ψ (z)−a)k dz−

∫ d

c
p(z)(ϕ (z)−a)k

)
dz

− f (k−1) (b)
(∫ d

c
p(z) (ψ (z)−b)k dz−

∫ d

c
p(z) (ϕ (z)−b)k

)
dz

]
.

If opposite inequality holds in (17) , then (18) holds in the reverse direction.

Proof. The idea of the proof is the same as that of the proof of Theorem 2.3. �
The following corollary presents a refinement of the weighted majorization-type

inequality for the two decreasing m-tuples x and y .

COROLLARY 2.5. Let all the assumptions of Theorem 2.1 be satisfied and let x =
(x1, . . . ,xm) and y = (y1, . . . ,ym) be two decreasing real m-tuples such that (5) and
(6) hold.
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(i) Let n be even and n � 2 . If the function f : [a,b] → R is n-convex, then (16)
holds.

(ii) Let the inequality (16) be satisfied and let F : [a,b] → R be a function defined
by

F (x) =
n−1

∑
k=1

(
n− k

k!(b−a)

)(
(x−b)k f (k−1) (b)− (x−a)k f (k−1) (a)

)
. (19)

If F is a convex function, then the right hand side of (16) is non-negative and
we have

m

∑
i=1

pi f (xi) �
m

∑
i=1

pi f (yi) . (20)

Proof.
(i) For

η (x) := (x− t)n−1k[a,b] (t,x) =
{

(x− t)n−1 (t −a) , a � t � x � b,

(x− t)n−1 (t −b) , a � x < t � b,

we have,

η ′′ (x) :=
{

(n−1)(n−2)(x− t)n−3 (t−a) , a � t � x � b,

(n−1)(n−2)(x− t)n−3 (t−b) , a � x < t � b,

showing that η is convex for even n , where n � 2. As x and y are decreasing
real m-tuples such that (5) and (6) hold, by using the convex function η (x) :=
(x− t)n−1k[a,b] (t,x) in (7) , we obtain (15) for even n , where n � 2. Now as f is
n -convex for even n , by applying Theorem 2.3, we have (16) .

(ii) It is easy to see that (16) is equivalent to

m

∑
i=1

pi f (xi)−
m

∑
i=1

pi f (yi) �
m

∑
i=1

piF (xi)−
m

∑
i=1

piF (yi) .

As (5) and (6) hold, by replacing the convex function F by the convex function ϑ in
Theorem 1.7 (7) , the non-negativity of the right hand side of (16) is immediate and
we have (20). �

An integral version of Corollary 2.5, provides a refinement of the integral majorization-
type inequality for the two decreasing functions ϕ and ψ as follows:

COROLLARY 2.6. Let all the assumptions of Theorem 2.2 be satisfied and let
ϕ ,ψ : [c,d] → [a,b] be two decreasing functions such that (8) and (9) hold.

(i) Let n be even and n � 2 . If the function f : [a,b] → R is n-convex, then (18)
holds.
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(ii) Let the inequality (18) be satisfied and let F be the same as defined in (19) . If
F is a convex function, then the right hand side of (18) is non-negative and we
have ∫ d

c
p(z) f (ϕ (z))dz �

∫ d

c
p(z) f (ψ (z))dz.

Proof. It is easy to see that (18) is equivalent to

∫ d

c
p(z) f (ϕ (z))dz−

∫ d

c
p(z) f (ψ (z))dz

�
∫ d

c
p(z)F (ϕ (z))dz−

∫ d

c
p(z)F (ψ (z))dz.

The proof is analogous to the proof of Corollary 2.5 but we apply Proposition 1.8 and
Theorem 2.4 instead of Theorem 1.7 and Theorem 2.3. �

For the two m-tuples x and y such that x � y , the following corollary presents a
refinement of the majorization-type inequality.

COROLLARY 2.7. Let all the assumptions of Theorem 2.1 be satisfied and let x =
(x1, . . . ,xm) and y = (y1, . . . ,ym) be two real m-tuples such that x � y .

(i) Let n be even and n � 2 . If the function f : [a,b]→R is n-convex, then we have

m

∑
i=1

f (xi)−
m

∑
i=1

f (yi) � (21)

n−1

∑
k=1

(
n− k

k!(b−a)

)[
f (k−1)(a)

(
m

∑
i=1

(yi −a)k −
m

∑
i=1

(xi −a)k
)

− f (k−1) (b)

(
m

∑
i=1

(yi−b)k −
m

∑
i=1

(xi −b)k
)]

.

(ii) Let the inequality (21) be satisfied and let F be the same as defined in (19) . If
F is a convex function, then the right hand side of (21) is non-negative and we
have the following inequality

m

∑
i=1

f (xi) �
m

∑
i=1

f (yi) . (22)

Proof. (i) As x = (x1, . . . ,xm) and y = (y1, . . . ,ym) be two real m-tuples such
that x � y and as η (x) is convex for even n , where n � 2, by applying Theorem 1.6
(4) for the convex function η (x) , we have

m

∑
i=1

(xi − t)n−1 k[a,b] (t,xi) �
m

∑
i=1

(yi − t)n−1 k[a,b] (t,yi) ,
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which is equivalent to (15) for each pi = 1 (i = 1, . . . ,m) . Now as f is n -convex for
even n , where n � 2, we apply Theorem 2.3 for each pi = 1 (i = 1, . . . ,m) and (21)
is immediate.

(ii) It is easy to see that (21) is equivalent to

m

∑
i=1

f (xi)−
m

∑
i=1

f (yi) �
m

∑
i=1

F (xi)−
m

∑
i=1

F (yi) .

As x � y , by replacing the convex function F by the convex function ϑ in (4) , the
non-negativity of the right hand side of (21) is immediate and we have (22). �

Consider the inequalities (16) and (18) and define linear functionals

Φ1 ( f ) =
m

∑
i=1

pi f (xi)−
m

∑
i=1

pi f (yi) (23)

−
n−1

∑
k=1

(
n− k

k!(b−a)

)[
f (k−1) (a)

(
m

∑
i=1

pi (yi −a)k −
m

∑
i=1

pi (xi −a)k
)

− f (k−1) (b)

(
m

∑
i=1

pi (yi −b)k −
m

∑
i=1

pi (xi−b)k
)]

,

and

Φ2 ( f ) =
∫ d

c
p(z) f (ϕ (z))dz−

∫ d

c
p(z) f (ψ (z))dz−

n−1

∑
k=1

(
n− k

k!(b−a)

)

×
[

f (k−1) (a)
(∫ d

c
p(z) (ψ (z)−a)k dz−

∫ d

c
p(z) (ϕ (z)−a)k

)
dz

− f (k−1) (b)
(∫ d

c
p(z) (ψ (z)−b)k dz−

∫ d

c
p(z) (ϕ (z)−b)k

)
dz

]
,

(24)

where f : [a,b] → R is such that for n � 1, f (n−1) is absolutely continuous, xi,yi ∈
[a,b] , pi ∈R (i = 1, . . . ,m) ; and ϕ ,ψ : [c,d]→ [a,b] and p : [c,d]→R are continuous
functions. If the function f is n -convex defined on [a,b] , then by the assumptions of
Theorems 2.3 and 2.4, we have Φi ( f ) � 0, where i = 1,2.

Now, we give mean value theorems for the functionals Φi , where i = 1,2. These
theorems enable us to define various classes of means that can be expressed in terms of
linear functionals.
First, we state the Lagrange-type mean value theorem related to the functionals Φi ,
where i = 1,2.

THEOREM 2.8. Let f : [a,b] → R be such that for n � 1 , f (n−1) is absolutely
continuous. Let xi,yi ∈ [a,b] , pi ∈ R (i = 1, . . . ,m) and let ϕ ,ψ : [c,d] → [a,b] and
p : [c,d] → R be continuous functions. Suppose that for n � 1 , (15) and (17) hold,
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where k[a,b] (t,x) is the same as defined in (12) . If f ∈ Cn ([a,b]) and if Φ1 and
Φ2 are linear functionals as defined in (23) and (24) respectively, then there exists
ξ1,ξ2 ∈ [a,b] such that

Φi ( f ) = f (n) (ξi)Φi ( f0) , i = 1,2,

holds, where f0 (x) = xn

n! .

Proof. Analogous to the proof of Theorem 2.2 in [8]. �

The following theorem is a new analogue of the classical Cauchy mean value the-
orem, related to the functionals Φi (i = 1,2) and it can be proven by following the
proof of Theorem 2.4 in [8].

THEOREM 2.9. Let all the assumptions of Theorem 2.8 be satisfied and let f ,k ∈
Cn ([a,b]) . Then there exist ξi ∈ [a,b] such that

Φi ( f )
Φi (k)

=
f (n) (ξi)
k(n) (ξi)

, i = 1,2, (25)

holds, provided that the denominators are non-zero.

REMARK 2.10. (i) By taking f (x) = xs and k (x) = xq in (25) , where s,q ∈
R\ {0,1, . . . ,n−1} are such that s �= q , we have

ξ s−q
i =

q(q−1). . . (q− (n−1))Φi (xs)
s(s−1). . . (s− (n−1))Φi (xq)

, i = 1,2.

(ii) If the inverse of the function f (n)/k(n) exists, then (25) gives

ξi =

(
f (n)

k(n)

)−1(
Φi ( f )
Φi (k)

)
, i = 1,2.

3. Čebyšev-Grüss Type Inequalities Via A. M. Fink’s Identity and
Ostrowski-Type Inequalities

In this section we present some interesting results by using Čebyšev functional
and Grüss-type inequalities.
Consider the Čebyšev functional for the two Lebesgue integrable functions g,h : [a,b]→
R ,

F (g,h) :=
1

b−a

∫ b

a
g(t)h(t)dt− 1

b−a

∫ b

a
g(t)dt · 1

b−a

∫ b

a
h(t)dt. (26)

The following Grüss-type inequalities are given in [1].
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THEOREM 3.1. Let g,h : [a,b] → R be two absolutely continuous functions with
(·−a)(b−·)(h′)2 ∈ L [a,b] . Then we have

|F (g,h)| � 1√
2

[F (g,g)]
1
2

1√
b−a

(∫ b

a
(t−a)(b− t)

(
h′ (t)

)2
dt

) 1
2

. (27)

The constant 1√
2

is the best possible in (27) .

THEOREM 3.2. Let g : [a,b]→ R be an absolutely continuous function with g′ ∈
L∞ [a,b] and let h : [a,b] → R be a monotonic non-decreasing function. Then we have

|F (g,h)| � 1
2(b−a)

‖g′‖∞

∫ b

a
(t−a)(b− t)dh(t) . (28)

The constant 1
2 is the best possible in (28) .

Before presenting our first main result of this section, let us denote

ζ (t) =
m

∑
i=1

pi (xi − t)n−1 k[a,b] (t,xi)−
m

∑
i=1

pi (yi − t)n−1 k[a,b] (t,yi) , (29)

and

ζ̂ (t) =
∫ d

c
p(z) (ϕ (z)− t)n−1 k[a,b] (t,ϕ (z))dz

−
∫ d

c
p(z) (ψ (z)− t)n−1 k[a,b] (t,ψ (z))dz, (30)

where xi,yi, t ∈ [a,b] , pi ∈ R (i = 1, . . . ,m) , ϕ ,ψ : [c,d] → [a,b] and p : [c,d] → R

are continuous functions and k[a,b] (t, .) is the same as defined in (12) .

THEOREM 3.3. Let f : [a,b] → R be such that for n � 1 , f (n) is absolutely con-

tinuous with (·−a)(b−·)
(

f (n+1)
)2 ∈L [a,b] . Let xi,yi ∈ [a,b] and pi ∈R (i = 1, . . . ,m) .

If F and ζ are the same as defined in (26) and (29) respectively, then we have

m

∑
i=1

pi f (xi)−
m

∑
i=1

pi f (yi) =

n−1

∑
k=1

(
n− k

k!(b−a)

)[
f (k−1) (a)

(
m

∑
i=1

pi (yi−a)k −
m

∑
i=1

pi (xi −a)k
)

− f (k−1) (b)

(
m

∑
i=1

pi (yi −b)k −
m

∑
i=1

pi (xi−b)k
)]

+
1

(n−1)!(b−a)

[
f (n−1);a,b

]∫ b

a
ζ (t)dt +Gn ( f ;a,b) , (31)
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where [
f (n−1);a,b

]
=

f (n−1)(b)− f (n−1) (a)
b−a

, (32)

is the divided difference and the remainder Gn ( f ;a,b) satisfies the estimation

|Gn ( f ;a,b)| � [F (ζ (t) ,ζ (t))]
1
2

(n−1)!
√

2
· 1√

b−a

(∫ b

a
(t−a)(b− t)

(
f (n+1) (t)

)2
dt

) 1
2

.

(33)

Proof. By applying Theorem 3.1 for g → ζ and h → f (n) , we have

∣∣∣∣ 1
b−a

∫ b

a
ζ (t) f (n) (t)dt− 1

b−a

∫ b

a
ζ (t)dt · 1

b−a

∫ b

a
f (n) (t)dt

∣∣∣∣ (34)

� 1√
2

[F (ζ (t) ,ζ (t))]
1
2 · 1√

b−a

(∫ b

a
(t−a)(b− t)

(
f (n+1) (t)

)2
dt

) 1
2

.

Divide both sides of (34) by (n−1)! , we have

∣∣∣∣ 1
(n−1)!(b−a)

∫ b

a
ζ (t) f (n) (t)dt− 1

(n−1)!(b−a)

∫ b

a
ζ (t)dt ·

[
f (n−1);a,b

]∣∣∣∣
� 1

(n−1)!
√

2
· [F (ζ (t) ,ζ (t))]

1
2 · 1√

b−a

(∫ b

a
(t −a)(b− t)

(
f (n+1) (t)

)2
dt

) 1
2

.

(35)

By denoting

Gn ( f ;a,b) =
1

(n−1)!(b−a)

∫ b

a
ζ (t) f (n) (t)dt

− 1
(n−1)!(b−a)

∫ b

a
ζ (t)dt ·

[
f (n−1);a,b

]
(36)

in (35) , we have (33) . Now take the value of 1
(n−1)!(b−a)

∫ b
a ζ (t) f (n)(t)dt from (36)

and substitute in (13) , we have (31) . �

The following theorem is the integral version of Theorem 3.3.

THEOREM 3.4. Let f : [a,b] → R be such that for n � 1 , f (n) is absolutely con-

tinuous with (·−a)(b−·)
(

f (n+1)
)2 ∈ L [a,b] . Let p : [c,d] → R and ϕ ,ψ : [c,d] →

[a,b] be continuous functions. If F and ζ̂ are the same as defined in (26) and (30)
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respectively, then we have

∫ d

c
p(z) f (ϕ (z))dz−

∫ d

c
p(z) f (ψ (z))dz =

n−1

∑
k=1

(
n− k

k!(b−a)

)
×

[
f (k−1) (a)

(∫ d

c
p(z) (ψ (z)−a)k dz−

∫ d

c
p(z)(ϕ (z)−a)k dz

)

− f (k−1) (b)
(∫ d

c
p(z) (ψ (z)−b)k dz−

∫ d

c
p(z) (ϕ (z)−b)k dz

)]

+
1

(n−1)!(b−a)

[
f (n−1);a,b

]∫ b

a
ζ̂ (t)dt + Ĝn ( f ;a,b) , (37)

where
[
f (n−1);a,b

]
is the same as defined in (32) and the remainder Ĝn ( f ;a,b) sat-

isfies the estimation

∣∣Ĝn ( f ;a,b)
∣∣�

[
F
(

ζ̂ (t) , ζ̂ (t)
)] 1

2

(n−1)!
√

2
· 1√

b−a

(∫ b

a
(t−a)(b− t)

(
f (n+1) (t)

)2
dt

) 1
2

.

Proof. The proof is analogous to the proof of Theorem 3.3. We apply Theorem
3.1 for g → ζ̂ and h → f (n) and get the desired results. �

The second main result of this section states that:

THEOREM 3.5. Let f : [a,b] → R be such that for n � 1 , f (n) is absolutely con-
tinuous and let f (n+1) � 0 on [a,b] . Let F and ζ be the same as defined in (26) and
(29) respectively. Then we have the representation (31) and the remainder Gn ( f ;a,b)
satisfies the estimation

|Gn ( f ;a,b)| � ‖ζ ′ (t)‖∞

(n−1)!

(
f (n−1) (a)+ f (n−1) (b)

2
−
[
f (n−2);a,b

])
. (38)

Proof. By applying Theorem 3.2 for g → ζ and h → f (n) , we have∣∣∣∣ 1
b−a

∫ b

a
ζ (t) f (n) (t)dt− 1

b−a

∫ b

a
ζ (t)dt · 1

b−a

∫ b

a
f (n) (t)dt

∣∣∣∣
� 1

2(b−a)
‖ζ ′ (t)‖∞

(∫ b

a
(t−a)(b− t) f (n+1) (t)dt

)
. (39)

Now dividing both sides of (39) by (n−1)! and using the fact that

∫ b

a
(t −a)(b− t) f (n+1) (t)dt =

∫ b

a
(2t− (a+b)) f (n) (t)dt

= (b−a)
(

f (n−1) (a)+ f (n−1) (b)
)
−2
(

f (n−2) (b)− f (n−2) (a)
)

,
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we have∣∣∣∣ 1
(n−1)!(b−a)

∫ b

a
ζ (t) f (n) (t)dt− 1

(n−1)!(b−a)

∫ b

a
ζ (t)dt ·

[
f (n−1);a,b

]∣∣∣∣
� 1

2(b−a)
· ‖ζ ′ (t)‖∞

(n−1)!
×(

(b−a)
(

f (n−1) (a)+ f (n−1) (b)
)
−2
(

f (n−2) (b)− f (n−2) (a)
))

. (40)

By substituting the value of 1
(n−1)!(b−a)

∫ b
a ζ (t) f (n) (t)dt from

Gn ( f ;a,b) :=
1

(n−1)!(b−a)

∫ b

a
ζ (t) f (n) (t)dt

− 1
(n−1)!(b−a)

∫ b

a
ζ (t)dt ·

[
f (n−1);a,b

]

into (13) , we have (31) . After simplification, (40) reduces to

|Gn ( f ;a,b)| � ‖ζ ′ (t)‖∞

(n−1)!

(
f (n−1) (a)+ f (n−1) (b)

2
− f (n−2) (b)− f (n−2) (a)

b−a

)
,

which is equivalent to (38) . �

An integral version of Theorem 3.5 states that:

THEOREM 3.6. Let f : [a,b] → R be such that for n � 1 , f (n) is absolutely con-
tinuous and let f (n+1) � 0 on [a,b] . Let F and ζ̂ be the same as defined in (26) and
(30) respectively. Then we have the representation (37) and the remainder Ĝn ( f ;a,b)
satisfies the estimation

∣∣Ĝn ( f ;a,b)
∣∣� ‖ζ̂ ′ (t)‖∞

(n−1)!

(
f (n−1) (a)+ f (n−1) (b)

2
−
[
f (n−2);a,b

])
.

Proof. The idea of the proof is the same as that of the proof of Theorem 3.5. We
apply Theorem 3.2 for g → ζ̂ and h → f (n) and get the desired results. �

An Ostrowski-type inequality related to the generalization of the majorization in-
equality states that:

THEOREM 3.7. Let all the assumptions of Theorem 2.1 be satisfied. Let (p,q) be
a pair of conjugate exponents, that is, p,q ∈ [1,∞] such that 1

p + 1
q = 1. Let | f (n)|p :
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[a,b]→ R be an R-integrable function for some n � 2. Then we have

∣∣∣∣ m

∑
i=1

pi f (xi)−
m

∑
i=1

pi f (yi)−
n−1

∑
k=1

(
n− k

k!(b−a)

)
×

[
f (k−1) (a)

(
m

∑
i=1

pi (yi −a)k −
m

∑
i=1

pi (xi −a)k
)

− f (k−1) (b)

(
m

∑
i=1

pi (yi −b)k −
m

∑
i=1

pi (xi −b)k
)]∣∣∣∣

�
(∫ b

a

∣∣∣ f (n) (t)
∣∣∣p dt

) 1
p
(∫ b

a

∣∣∣ζ (t)
∣∣∣q dt

) 1
q

, (41)

where,

ζ (t) := ∑m
i=1 pi (xi − t)n−1 k[a,b] (t,xi)−∑m

i=1 pi (yi− t)n−1 k[a,b] (t,yi)
(n−1)!(b−a)

.

The constant
(∫ b

a

∣∣∣ζ (t)
∣∣∣q dt

) 1
q

is sharp for 1 < p � ∞ and best possible for p = 1.

Proof. From identity (13) , we have

∣∣∣∣ m

∑
i=1

pi f (xi)−
m

∑
i=1

pi f (yi)−
n−1

∑
k=1

(
n− k

k!(b−a)

)
×

[
f (k−1) (a)

(
m

∑
i=1

pi (yi −a)k −
m

∑
i=1

pi (xi −a)k
)

− f (k−1) (b)

(
m

∑
i=1

pi (yi −b)k −
m

∑
i=1

pi (xi −b)k
)]∣∣∣∣

=
∣∣∣∣
∫ b

a
f (n) (t)ζ (t)dt

∣∣∣∣ . (42)

Apply Hölder’s inequality for integrals on the right hand side of (42) , we have

∣∣∣∣
∫ b

a
f (n) (t)ζ (t)dt

∣∣∣∣�
(∫ b

a

∣∣∣ f (n) (t)
∣∣∣p dt

) 1
p
(∫ b

a

∣∣∣ζ (t)
∣∣∣q dt

) 1
q

, (43)

which combined together with (42) gives (41) .

In order to prove the sharpness of the constant
(∫ b

a

∣∣∣ζ (t)
∣∣∣q dt

) 1
q
, we define a func-

tion

f (n) (t) =

⎧⎨
⎩ sgnζ (t)

∣∣∣ζ (t)
∣∣∣ 1

p−1
, 1 < p < ∞,

sgnζ (t) , p = ∞,
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such that the equality in (43) holds.
For p = 1, we will prove that

∣∣∣∣
∫ b

a
f (n) (t)ζ (t)dt

∣∣∣∣� max
t∈[a,b]

∣∣∣ζ (t)
∣∣∣(∫ b

a

∣∣∣ f (n) (t)
∣∣∣dt

)
(44)

is the best possible inequality. Suppose that
∣∣∣ζ (t)

∣∣∣ attains its maximum at t0 ∈ [a,b] .

First assume that ζ (t0) > 0. For ε (small enough), if we define

fε (t) =

⎧⎨
⎩

0, a � t � t0,
1

εn! (t− t0)
n , t0 � t � t0 + ε,

1
(n−1)! (t− t0)

n−1 , t0 + ε � t � b,

then it is easy to see that

∣∣∣∣
∫ b

a
f (n)
ε (t)ζ (t)dt

∣∣∣∣=
∣∣∣∣
∫ t0+ε

t0

1
ε

ζ (t)dt

∣∣∣∣= 1
ε

∫ t0+ε

t0
ζ (t)dt,

and ∫ b

a

∣∣∣ f (n)
ε (t)

∣∣∣dt =
∫ t0+ε

t0

1
ε
dt = 1.

Now using the above two results in (44) and as
∣∣∣ζ (t)

∣∣∣ attains its maximum at t0 ∈
[a,b] , we have

1
ε

∫ t0+ε

t0
ζ (t)dt � ζ (t0) ·1 = ζ (t0) .

As

lim
ε→0

1
ε

∫ t0+ε

t0
ζ (t)dt = ζ (t0) ,

the statement follows. For the case ζ (t0) < 0, define

fε (t) =

⎧⎨
⎩

1
(n−1)! (t− t0− ε)n−1 , a � t � t0,

− 1
εn! (t− t0− ε)n , t0 � t � t0 + ε,

0, t0 + ε � t � b,

and the remaining part is the same as above. �

The following theorem is the integral version of Theorem 3.7.

THEOREM 3.8. Let all the assumptions of Theorem 2.2 be satisfied. Let (p,q) be
a pair of conjugate exponents, that is, p,q ∈ [1,∞] such that 1

p + 1
q = 1. Let | f (n)|p :
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[a,b]→ R be an R-integrable function for some n � 2. Then we have∣∣∣∣∣∣∣∣∣

∫ d
c p(z) f (ϕ (z))dz− ∫ d

c p(z) f (ψ (z))dz−∑n−1
k=1

(
n−k

k!(b−a)

)
×⎛

⎝ f (k−1) (a)
(∫ d

c p(z) (ψ (z)−a)k dz− ∫ d
c p(z) (ϕ (z)−a)k dz

)
− f (k−1) (b)

(∫ d
c p(z)(ψ (z)−b)k dz− ∫ d

c p(z) (ϕ (z)−b)k dz
)
⎞
⎠
∣∣∣∣∣∣∣∣∣

�
(∫ b

a

∣∣∣ f (n) (t)
∣∣∣p dt

) 1
p
(∫ b

a

∣∣∣ζ̈ (t)
∣∣∣q dt

) 1
q

,

where,

ζ̈ (t) :=∫ d
c p(z) (ϕ (z)− t)n−1 k[a,b] (t,ϕ (z))dz− ∫ d

c p(z) (ψ (z)− t)n−1 k[a,b] (t,ψ (z))dz
(n−1)!(b−a)

.

The constant
(∫ b

a

∣∣∣ζ̈ (t)
∣∣∣q dt

) 1
q

is sharp for 1 < p � ∞ and best possible for p = 1.

Proof. The proof is analogous to the proof of Theorem 3.7 but we use identity
(14) instead of using (13) . �

4. n -Exponential Convexity and Log-Convexity

We begin this section by recollecting definitions and properties which are going to
be explored here and we also study some useful characterizations of these properties.
In the sequel, let I be an open interval in R .
The following definitions are given in [8].

DEFINITION 6. A function f : I → R is n -exponentially convex in the Jensen
sense if

n

∑
i, j=1

ςiς j f

(
xi + x j

2

)
� 0

holds for every ςi ∈ R and xi ∈ I (i = 1, . . . ,n) .

DEFINITION 7. A function f : I →R is n -exponentially convex if it is n -exponentially
convex in the Jensen sense and continuous on I .

REMARK 4.1. From the above definition it is clear that 1-exponentially convex
functions in the Jensen sense are non-negative functions. Also, n -exponentially convex
functions in the Jensen sense are k-exponentially convex functions in the Jensen sense
for all k ∈ N , k � n .

By definition of positive semi-definite matrices and some basic linear algebra, we
have the following proposition:
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PROPOSITION 4.2. If f is n-exponentially convex in the Jensen sense on I , then

the matrix
[
f
(

xi+x j
2

)]k
i, j=1

is positive semi-definite for all k ∈ N, k � n. Particularly,

det

[
f

(
xi + x j

2

)]k

i, j=1
� 0 for every k ∈ N, k � n, xi ∈ I, i = 1, . . . ,n.

DEFINITION 8. A function f : I → R is exponentially convex in the Jensen sense
if it is n -exponentially convex in the Jensen sense for all n ∈ N .

DEFINITION 9. A function f : I →R is exponentially convex if it is exponentially
convex in the Jensen sense and continuous.

REMARK 4.3. It follows that a positive function is log-convex in the Jensen sense
if and only if it is 2-exponentially convex in the Jensen sense. Also, by using basic
convexity theory, a positive function is log-convex if and only if it is 2-exponentially
convex.

Next, we study the n -exponential convexity and log-convexity of the functions associ-
ated with the linear functionals Φi (i = 1,2) as defined in (23) and (24) .

THEOREM 4.4. Let Ω = { fs : s ∈ I ⊆ R} be a family of functions defined on [a,b]
such that the function s �→ [z0, . . . ,zn; fs] is n-exponentially convex in the Jensen sense
on I for every (n+1) mutually distinct points z0, . . . ,zn ∈ [a,b] . Let Φi (i = 1,2) be
linear functionals as defined in (23) and (24) . Then the following statements hold:

( i) The function s �→ Φi ( fs) is n-exponentially convex in the Jensen sense on I and

the matrix

[
Φi

(
f s j+sk

2

)]m

j,k=1
is positive semi-definite for all m∈N , m � n and

s1, . . . ,sm ∈ I . Particularly,

det

[
Φi

(
f s j+sk

2

)]m

j,k=1
� 0, ∀ m ∈ N, m � n.

( ii) If the function s �→ Φi ( fs) is continuous on I , then it is n-exponentially convex
on I .

Proof. The idea of the proof is the same as that of the proof of Theorem 3.1 in
[8].

(i) Let ς j ∈ R ( j = 1, . . . ,n) and consider the function

Δ(z) =
n

∑
j,k=1

ς jςk f s j+sk
2

(z) ,
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where s j ∈ I and f s j+sk
2

∈ Ω. Then

[z0, . . . ,zn;Δ] =
n

∑
j,k=1

ς jςk

[
z0, . . . ,zn; f s j+sk

2

]

and since

[
z0, . . . ,zn; f s j+sk

2

]
is n -exponentially convex in the Jensen sense on I by

assumption, it follows that

[z0, . . . ,zn;Δ] =
n

∑
j,k=1

ς jςk

[
z0, . . . ,zn; f s j+sk

2

]
� 0

=

[
z0, . . . ,zn;

n

∑
j,k=1

ς jςk f s j+sk
2

]
� 0

and so by using Definition 5, we conclude that Δ is n -convex. Hence

Φi (Δ) � 0, i = 1,2,

which is equivalent to

n

∑
j,k=1

ς jςkΦi

(
f s j+sk

2

)
� 0, i = 1,2,

and so we conclude that the function s �→ Φi ( fs) is n -exponentially convex in the
Jensen sense on I .

The remaining part follows from Proposition 4.2.
(ii) If the function s �→ Φi ( fs) is continuous on I , then from (i) and by Definition

7 it follows that it is n -exponentially convex on I . �
The following corollary is an immediate consequence of the Theorem 4.4.

COROLLARY 4.5. Let Ω = { fs : s ∈ I ⊆ R} be a family of functions defined on
[a,b] such that the function s �→ [z0, . . . ,zn; fs] is exponentially convex in the Jensen
sense on I for every (n+1) mutually distinct points z0, . . . ,zn ∈ [a,b] . Let Φi (i = 1,2)
be linear functionals as defined in (23) and (24) . Then the following statements hold:

( i) The function s �→ Φi ( fs) is exponentially convex in the Jensen sense on I and

the matrix

[
Φi

(
f s j+sk

2

)]m

j,k=1
is positive semi-definite for all m∈N , m � n and

s1, . . . ,sm ∈ I . Particularly,

det

[
Φi

(
f s j+sk

2

)]m

j,k=1
� 0, ∀ m ∈ N, m � n.

( ii) If the function s �→ Φi ( fs) is continuous on I , then it is exponentially convex on
I .
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COROLLARY 4.6. Let Ω = { fs : s ∈ I ⊆ R} be a family of functions defined on
[a,b] such that the function s �→ [z0, . . . ,zn; fs] is 2-exponentially convex in the Jensen
sense on I for every (n+1) mutually distinct points z0, . . . ,zn ∈ [a,b] . Let Φi (i = 1,2)
be linear functionals as defined in (23) and (24) . Further, assume that Φi ( fs) (i = 1,2)
is strictly positive for fs ∈ Ω . Then the following statements hold:

( i) If the function s �→ Φi ( fs) is continuous on I , then it is 2-exponentially convex
on I and so it is log-convex on I and for r,s,t ∈ I such that r < t < s, we have

[Φi ( ft )]s−r � [Φi ( fr)]s−t [Φi ( fs)]
t−r

, i = 1,2, (45)

known as Lyapunov’s inequality. If r < s < t or t < r < s, then opposite inequal-
ities hold in (45) .

( ii) If the function s �→ Φi ( fs) is differentiable on I , then for every s,q,u,v ∈ I such
that s � u and q � v, we have

μs,q (Φi,Ω) � μu,v (Φi,Ω) , i = 1,2, (46)

where

μs,q (Φi,Ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Φi ( fs)
Φi ( fq)

) 1
s−q

, s �= q,

exp

(
d
dsΦi ( fs)
Φi ( fs)

)
, s = q,

(47)

for fs, fq ∈ Ω .

Proof. The idea of the proof is the same as that of the proof of Corollary 3.2 given
in [8].

(i) The claim that the function s �→ Φi ( fs) is log-convex on I is an immediate
consequence of Theorem 4.4 and Remark 4.3, and (45) can be obtained by replacing
the convex function f with the convex function f (z) = logΦi ( fz) for z = r,s,t in (1) ,
where r,s, t ∈ I such that r < t < s .

(ii) Since by (i) the function s �→ Φi ( fs) is log-convex on I , that is, the function
s �→ logΦi ( fs) is convex on I . Applying Theorem 1.1 with setting f (z) = logΦi ( fz) ,
we have

logΦi ( fs)− logΦi ( fq)
s−q

� logΦi ( fu)− logΦi ( fv)
u− v

, (48)

for s � u, q � v, s �= q,u �= v ; and therefore, we conclude that

μs,q (Φi,Ω) � μu,v (Φi,Ω) , i = 1,2.

If s = q , we consider the limit when q → s in (48) and conclude that

μs,s (Φi,Ω) � μu,v (Φi,Ω) , i = 1,2.

The case u = v can be treated similarly. �
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REMARK 4.7. Note that the results from Theorem 4.4, Corollary 4.5 and Corol-
lary 4.6 still hold when two of the points z0, . . . ,zn ∈ [a,b] coincide, say z1 = z0 , for
a family of differentiable functions fs such that the function s �→ [z0, . . . ,zn; fs] is n -
exponentially convex in the Jensen sense (exponentially convex in the Jensen sense,
log-convex in the Jensen sense on I ) ; and furthermore, they still hold when all (n+1)
points coincide for a family of n -differentiable functions with the same property.

5. Examples

In this section, we present several families of functions which fulfil the conditions
of Theorem 4.4, Corollaries 4.5 and 4.6, and Remark 4.7 and so the results of these
theorem and corollaries can be applied for them.

EXAMPLE 5.1. Consider the family of functions

Ω1 = { fs : (0,∞) → R : s ∈ R}
defined by

fs (x) =

{ xs

s(s−1)...(s−(n−1)) , s /∈ {0,1, . . . ,n−1},
x j lnx

(−1)n−1− j j!(n−1− j)!
, s = j ∈ {0,1, . . . ,n−1}.

Here, dn

dxn fs (x) = xs−n = e(s−n) lnx > 0, which shows that fs is n -convex for x > 0
and s �→ dn

dxn fs (x) is exponentially convex by definition.
In order to prove that the function s �→ [z0, . . . ,zn; fs] is exponentially convex, it is

enough to show that

∑n
j,k=1 ς jςk

[
z0, . . . ,zn; f s j+sk

2

]
=
[
z0, . . . ,zn;∑n

j,k=1 ς jςk f s j+sk
2

]
� 0, (49)

∀ n ∈ N , ς j,s j ∈ R , j = 1, . . . ,n . By Definition 5, (49) will hold if

Λ(x) :=
n

∑
j,k=1

ς jςk f s j+sk
2

(x)

is n -convex. Since s �→ dn

dxn fs (x) is exponentially convex, that is

n

∑
j,k=1

ς jςk f (n)
s j+sk

2

� 0, ∀ n ∈ N, ς j,s j ∈ R, j = 1, . . . ,n,

showing the n -convexity of Λ and so (49) holds. Now as the function s �→ [z0, . . . ,zn; fs]
is exponentially convex, s �→ [z0, . . . ,zn; fs] is exponentially convex in the Jensen sense
and by using Corollary 4.5, we have s �→ Φi ( fs) (i = 1,2) is exponentially convex in
the Jensen sense. Since these mappings are continuous, so s �→ Φi ( fs) (i = 1,2) is
exponentially convex.
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In this case, μs,q (Φi,Ω) (i = 1,2) defined in (47) becomes

μs,q (Φi,Ω1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
Φi( fs)
Φi( fq)

) 1
s−q

, s �= q,

exp
(

(−1)n−1(n−1)!Φi( f0 fs)
Φi( fs)

+∑n−1
k=0

1
k−s

)
, s = q /∈ {0,1, . . . ,n−1},

exp

(
(−1)n−1(n−1)!Φi( f0 fs)

2Φi( fs)
+∑n−1

k=0
k �=s

1
k−s

)
, s = q ∈ {0,1, . . . ,n−1}.

In particular for i = 1, we have

Φ1 ( fs) =
m

∑
i=1

pi fs (xi)−
m

∑
i=1

pi fs (yi)

−
n−1

∑
k=1

(
n− k

k!(b−a)

)[
f (k−1)
s (a)

(
m

∑
i=1

pi (yi −a)k −
m

∑
i=1

pi (xi −a)k
)

− f (k−1)
s (b)

(
m

∑
i=1

pi (yi −b)k −
m

∑
i=1

pi (xi−b)k
)]

and

Φ1 ( f0 fs)As =
m

∑
i=1

pix
s
i lnxi −

m

∑
i=1

piy
s
i lnyi

−
n−1

∑
k=1

(
n− k

k!(b−a)

)[
Bk,s (a)

(
m

∑
i=1

pi (yi−a)k −
m

∑
i=1

pi (xi −a)k
)

−Bk,s (b)

(
m

∑
i=1

pi (yi −b)k −
m

∑
i=1

pi (xi−b)k
)]

,

where As = (−1)n−1 (n−1)! ∏n−1
i=0 (s− i) such that s �= 0,1, . . . ,n−1 and

Bk,s (x) = xs−(k−1)

⎛
⎜⎝k−1

∏
i=0

(s− i) lnx+
k−1

∑
i=0

k−1

∏
j=0
j �=i

(s− j)

⎞
⎟⎠ .

If Φi (i = 1,2) is positive, then Theorem 2.9 applied for f = fs ∈ Ω1 and k =
fq ∈ Ω1 yields that there exists ξi ∈ [a,b] such that

ξ s−q
i =

Φi ( fs)
Φi ( fq)

, i = 1,2.

Since the function ξi �→ ξ s−q
i is invertible for s �= q , we have

a �
(

Φi ( fs)
Φi ( fq)

) 1
s−q

� b, i = 1,2,
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which together with the fact that μs,q (Φi,Ω1) is continuous, symmetric and monotonous
(by (46)) , shows that μs,q (Φi,Ω1) is a mean.

EXAMPLE 5.2. Consider the family of functions

Ω2 = {gs : R → [0, ∞) : s ∈ R}

defined by

gs(x) =
{

esx

sn , s �= 0,
xn

n! , s = 0.

We have dn

dxn gs (x) = esx > 0, which shows that gs is n -convex on R for every s ∈ R

and s �→ dn

dxn gs (x) is exponentially convex by definition. It is easy to prove that the
function s �→ [z0, . . . ,zn;gs] is exponentially convex. Arguing as in Example 5.1, we
have s �→ Φi (gs) (i = 1,2) is exponentially convex.

For this family of functions, μs,q (Φi,Ω) (i = 1,2) from (47) becomes

μs,q (Φi,Ω2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Φi(gs)
Φi(gq)

) 1
s−q

, s �= q,

exp
(

Φi(id·gs)
Φi(gs)

− n
s

)
, s = q �= 0,

exp
(

Φi(id·g0)
(n+1)Φi(g0)

)
, s = q = 0,

where id is the identity function.
By using Theorem 2.9, it can be seen that

Ms,q (Φi,Ω2) = logμs,q (Φi,Ω2) , i = 1,2,

satisfy a � Ms,q (Φi,Ω2) � b , which shows that Ms,q (Φi,Ω2) is a mean.

EXAMPLE 5.3. Consider the family of functions

Ω3 = {hs : (0,∞) → (0,∞) : s ∈ (0,∞)}

defined by

hs (x) =

{
s−x

(− lns)n , s �= 1,
xn

n! , s = 1.

We have dn

dxn hs (x) = s−x > 0, which shows that hs is n -convex for all s > 0. Since
s �→ dn

dxn hs (x) = s−x is the Laplace transform of a non-negative function (see [9]) , it
is exponentially convex. It is easy to prove that the function s �→ [z0, . . . ,zn;hs] is ex-
ponentially convex. Arguing as in Example 5.1, we have s �→ Φi (hs) (i = 1,2) is
exponentially convex.
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For this family of functions, μs,q (Φi,Ω) (i = 1,2) from (47) becomes

μs,q (Φi,Ω3) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Φi(hs)
Φi(hq)

) 1
s−q

, s �= q,

exp
(
−Φi(id·hs)

sΦi(hs)
− n

s lns

)
, s = q �= 1,

exp
(
− Φi(id·h1)

(n+1)Φi(h1)

)
, s = q = 1.

By using Theorem 2.9, it follows that

Ms,q (Φi,Ω3) = −L(s,q) logμs,q (Φi,Ω3) , i = 1,2,

satisfy a � Ms,q (Φi,Ω3) � b and so Ms,q (Φi,Ω3) is a mean, where L(s,q) is a loga-
rithmic mean defined by

L(s,q) =
{ s−q

log s−logq , s �= q,

s, s = q.

EXAMPLE 5.4. Consider the family of functions

Ω4 = {ks : (0,∞) → (0,∞) : s ∈ (0,∞)}
defined by

ks (x) =
e−x

√
s

(−√
s)n .

Here, dn

dxn ks (x) = e−x
√

s > 0, which shows that ks is n -convex for all s > 0. Since

s �→ dn

dxn ks (x) = e−x
√

s is the Laplace transform of a non-negative function (see [9]) ,
it is exponentially convex. It is easy to prove that the function s �→ [z0, . . . ,zn;ks] is
exponentially convex. Arguing as in Example 5.1, we have s �→ Φi (ks) (i = 1,2) is
exponentially convex.

In this case, μs,q (Φi,Ω) (i = 1,2) defined in (47) , is of the form

μs,q (Φi,Ω4) =

⎧⎪⎨
⎪⎩
(

Φi(ks)
Φi(kq)

) 1
s−q

, s �= q,

exp
(
− Φi(id·ks)

2
√

sΦi(ks)
− n

2s

)
, s = q.

By using Theorem 2.9, it is easy to see that

Ms,q (Φi,Ω4) = −(√s+
√

q
)
logμs,q (Φi,Ω4) , i = 1,2,

satisfy a � Ms,q (Φi,Ω4) � b , showing that Ms,q (Φi,Ω4) is a mean.

REMARK 5.5. (i) From (46) , it is clear that μs,q (Φi,Ω) (i = 1,2) for Ω =
Ω2,Ω3 and Ω4 are monotonous functions in parameters s and q.

(ii) In Examples 5.2, 5.3 and 5.4, we can also give particular cases for Φi (i = 1,2)
as given in Example 5.1.
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