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ON SUM AND PRODUCT THEOREMS RELATED TO RELATIVE

L∗ –TYPE AND RELATIVE L∗ –WEAK TYPE OF ENTIRE FUNCTIONS

SANJIB KUMAR DATTA, TANMAY BISWAS AND AHSANUL HOQUE

Abstract. In this paper we would like to investigate some basic properties of relative L∗ -type
and relative L∗ -weak type of entire functions.

1. Introduction

In the value distribution theory as introduced by Rolf Nevanlinna in 1926, the
role of the growth indicators like order and lower order is very much significant in
the study of comparative growth analysis of entire functions. The rate of growth of an
entire function generally depends upon order (lower order) of it. The entire function
with higher order is of faster growth than that of lesser order. But if orders of two entire
functions are same, then it is impossible to detect the function with faster growth. In that
case, it is necessary to compute another class of growth indicators of entire functions
called their types. For further study on it, one may see [6]. However, if one is interested
to compare the growth rates of any entire function with respect to another, the concepts
of relative growth indicators will come. The most mordern treatment upon this area of
research is the study of the same in terms of a slowly changing function L(r) which

means that L(ar) ∼ L(r) as r → ∞ for every positive constant a i.e., lim
r→∞

L(ar)
L(r) = 1

where L ≡ L(r) is a positive continuous function.
In fact, in this paper we wish to prove some results related to the sum and prod-

uct theorems of relative L∗ -type and relative L∗ -weak type of entire functions under
somewhat different conditions.where L∗ is nothing but a weaker assumption of L.

2. Definitions and Notations

The standard notations and definitions of the theory of entire functions frequently
used in this paper are available in [9] and therefore we do not explain those in details.

Let C be the set of all finite complex numbers and f be an entire function de-
fined on it. The Nevanlinna’s characteristic function Tf (r) and the maximum modu-

lus function Mf (r) of f are defined as Tf (r) = 1
2π

2π∫
0

log+ ∣∣ f (reiθ )
∣∣dθ and Mf (r) =

max{| f (z)| : |z| = r} respectively where log+ x = max(0, logx) for x > 0. If f is
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non-constant then Mf (r) is strictly increasing and continuous and its inverse M−1
f (r) :

(| f (0)| ,∞)→ (0,∞) exists and is such that lim
s→∞

M−1
f (s) = ∞ and given two entire func-

tions f and g the ratio
Mf (r)
Mg(r) as r → ∞ is called the growth of f with respect to g in

terms of their maximum moduli.
Somasundaram and Thamizharasi [8] introduced the notions of L-order for entire

function f . The more generalised concept for L-order for entire function f is L∗ -order
which is as follows:

DEFINITION 1. [8] The L∗ -order ρL∗
f and the L∗ -lower order λ L∗

f of an entire
function f are defined as

ρL∗
f = limsup

r→∞

log[2] Mf (r)
log

[
reL(r)

] and λ L∗
f = liminf

r→∞

log[2] Mf (r)
log

[
reL(r)

] ,

where log[k] x = log
(
log[k−1] x

)
for k = 1,2,3, .... and log[0] x = x.

An entire function for which L∗ -order and L∗ -lower order are the same is said to
be of regular L∗ -growth. Functions which are not of regular L∗ -growth are said to be
of irregular L∗ -growth.

DEFINITION 2. [8] The L∗ -type σL∗
f of an entire function f is defined as

σL∗
f = limsup

r→∞

logMf (r)[
reL(r)

]ρL∗
f

, 0 < ρL∗
f < ∞.

Similarly one can define the L∗ -lower type of an entire function f denoted by σL∗
f

as follows:

σL∗
f = liminf

r→∞

logMf (r)[
reL(r)

]ρL∗
f

, 0 < ρL∗
f < ∞.

In order to determine the relative growth of two entire functions of same non zero
finite L∗ -lower order one may define the L∗ -weak type in the following way:

DEFINITION 3. The L∗ -weak type τL∗
f of an entire function f is defined as fol-

lows:

τL∗
f = liminf

r→∞

logMf (r)[
reL(r)

]λ L∗
f

, 0 < λ L∗
f < ∞.

Likewise one may also define the growth indicator τL∗
f of an entire function f in

the following way:

τL∗
f = liminf

r→∞

logMf (r)[
reL(r)

]λ L∗
f

, 0 < λ L∗
f < ∞.
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From Definition 1, we see that the L∗ -order of an entire function f which is
generally used in computational purpose is defined in terms of the growth of f with
respect to the exponential function as:

ρL∗
f = limsup

r→∞

log[2] Mf (r)

log[2] Mexp z
[
reL(r)

] = limsup
r→∞

log[2] Mf (r)
log

[
reL(r)

] .

In the line of Somasundaram and Thamizharasi [7], Datta and Biswas [2] intro-
duced the definition of relative L∗ -order of entire functions in order to avoid comparing
growth of the same just with expz in the following way:

DEFINITION 4. [2] The relative L∗ -order of an entire function f with respect to
another entire function g , denoted by ρL∗

g ( f ) is defined in the following way

ρL∗
g ( f ) = limsup

r→∞

logM−1
g Mf (r)

log
[
reL(r)

] .

Similarly, one can define the relative L∗ -lower order of f with respect to g denoted by
λ L∗

g ( f ) as follows:

λ L∗
g ( f ) = liminf

r→∞

logM−1
g Mf (r)

log
[
reL(r)

] .

The definitions coincide with the classical one if g(z) = expz.

It is to be mentioned that an entire function f is said to be of regular relative
L∗ -growth with respect to g if its relative L∗ -order with respect to g coincides with its
relative L∗ -lower order with respect to g .

To compare the relative L∗ -growth of two entire functions having same non zero
finite relative L∗ -order with respect to another entire function, Datta, Biswas and Bhat-
tacharyya [3] recently introduced the notion of relative L∗ -type of two entire functions
in the following manner:

DEFINITION 5. [3] Let f and g be any two entire functions such that 0 <
ρL∗

g ( f ) < ∞ . Then the relative L∗ -type σL∗
g ( f ) of f with respect to g is defined

as:

σL∗
g ( f )

= inf

⎧⎪⎨
⎪⎩

k > 0 : Mf (r) < Mg

(
k
[
reL(r)

]ρL∗
g ( f )

)

for all sufficiently large values of r

⎫⎪⎬
⎪⎭

= limsup
r→∞

M−1
g Mf (r)[

reL(r)
]ρL∗

g ( f )
.
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Likewise one can define the relative L∗ -lower type of an entire function f with
respect to an entire function g denoted by σL∗

g ( f ) as follows:

σL∗
g ( f ) = liminf

r→∞

M−1
g Mf (r)[

reL(r)
]ρL∗

g ( f )
, 0 < ρL∗

g ( f ) < ∞.

Analogously to determine the relative growth of two entire functions having same
non zero finite relative L∗ -lower order with respect to another entire function, one may
introduced the definition of relative L∗ -weak type of an entire function f with respect
to another entire function g of finite positive relative L∗ -lower order λ L∗

g ( f ) in the
following way:

DEFINITION 6. [3] The relative L∗ -weak type τL∗
g ( f ) of an entire function f

with respect to another entire function g having finite positive relative L∗ -lower order
λ L∗

g ( f ) is defined as:

τL∗
g ( f ) = liminf

r→∞

M−1
g Mf (r)[

reL(r)
]λ L∗

g ( f )
.

Also one may define the growth indicator τL∗
g ( f ) of an entire function f with respect

to an entire function g in the following way:

τL∗
g ( f ) = limsup

r→∞

M−1
g Mf (r)[

reL(r)
]λ L∗

g ( f )
, 0 < λ L∗

g ( f ) < ∞.

Considering g = expz, one may easily verify that Definition 5 and Definition 6
coincide with the classical L∗ -type (L∗ -lower type) and L∗ -weak type respectively.

In this connection the following definition is relevant:

DEFINITION 7. [1] A non-constant entire function f is said have the Property
(A) if for any σ > 1 and for all large r,

[
Mf (r)

]2 � Mf (rσ ) holds. For examples of
functions with or without the Property (A), one may see [1].

Throughout the paper we consider σL∗
fi

(gk) , σL∗
fi (gk) , τL∗

fi
(gk) and τL∗

fi (gk) for
entire functions fi | i = 1,2 and gk | k = 1,2 are all non-zero finite.

3. Theorems

First of all, we recall some related properties of relative L∗ -order and relative L∗ -
lower order of entire functions as proved by Datta et al. [4] which will be needed in
order to prove our main results, as we see in the following four theorems:

THEOREM A. [4] Let f1, f2 , g1 and g2 be any four entire functions. Then
(i)

ρL∗
f1 (g1±g2) � ρL∗

f1 (gi)
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where ρL∗
f1

(gi)= max
{

ρL∗
f1

(gk) | k = i = 1,2
}

. The sign of equality holds when ρL∗
f1

(g1)

�= ρL∗
f1

(g2);
(ii)

ρL∗
f1± f2 (g1) � ρL∗

fi (g1)

where ρL∗
fi

(g1) = min
{

ρL∗
fk

(g1) | k = i = 1,2
}

and g1 is of regular relative L∗ -growth

with respect to at least any one of f1 or f2. The sign of equality holds when ρL∗
f1

(g1) �=
ρL∗

f2
(g1) and
(iii)

ρL∗
f1± f2 (g1±g2) � max

[
min

{
ρL∗

f1 (g1) ,ρL∗
f2 (g1)

}
,min

{
ρL∗

f1 (g2) ,ρL∗
f2 (g2)

}]
when ρL∗

f1
(g1) �= ρL∗

f2
(g1) , ρL∗

f1
(g2) �= ρL∗

f2
(g2) and g1 and g1 are both of regular

relative L∗ -growth with respect to at least any one of f1 or f2. The sign of equality

holds when min
{

ρL∗
f1

(g1) ,ρL∗
f2

(g1)
}
�= min

{
ρL∗

f1
(g2) ,ρL∗

f2
(g2)

}
.

THEOREM B. [4] Let f1, f2 , g1 and g2 are any four entire functions. Then
(i)

λ L∗
f1± f2 (g1) � λ L∗

fi (g1)

where λ L∗
fi

(g1)= min
{

λ L∗
fk

(g1) | k = i = 1,2
}

. The sign of equality holds when λ L∗
f1

(g1)

�= λ L∗
f2

(g1)
(ii)

λ L∗
f1 (g1±g2) � λ L∗

f1 (gi)

where λ L∗
f1

(gi) = max
{

λ L∗
f1

(gk) | k = i = 1,2
}

and at least g1 or g2 is of regular rela-

tive L∗ -growth with respect to f1. The sign of equality holds when λ L∗
f1

(g1) �= λ L∗
f1

(g2)
and

(iii)

λ L∗
f1± f2 (g1±g2) � min

[
max

{
λ L∗

f1 (g1) ,λ L∗
f2 (g1)

}
,max

{
λ L∗

f1 (g2) ,λ L∗
f2 (g2)

}]
when λ L∗

f1
(g1) �= λ L∗

f2
(g1) , λ L∗

f1
(g2) �= λ L∗

f2
(g2) and at least g1 or g2 is of regular

relative L∗ -growth with respect to f1 and f2 respectively . The sign of equality holds

when max
{

λ L∗
f1

(g1) ,λ L∗
f2

(g1)
}
�= max

{
λ L∗

f1
(g2) ,λ L∗

f2
(g2)

}
.

THEOREM C. [4] Let f1, f2,g1 and g2 are any four entire functions. Then
(i)

ρL∗
f1 (g1 ·g2) � ρL∗

f1 (gi)

where ρL∗
f1

(gi) = max
{

ρL∗
f1

(gk) | k = i = 1,2
}

and f1 has the Property (A). The sign

of equality holds when ρL∗
f1

(g1) �= ρL∗
f1

(g2) . Similar results hold for the quotient g1
g2

provided g1
g2

is entire;
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(ii)
ρL∗

f1· f2 (g1) � ρL∗
fi (g1)

where ρL∗
fi

(g1) = min
{

ρL∗
fk

(g1) | k = i = 1,2
}

, f1 · f2 has the Property (A) and g1 is

of regular relative L∗ -growth with respect to at least any one of f1 or f2. The sign
of equality holds when ρL∗

f1
(g1) �= ρL∗

f2
(g1) . Similar results hold for the quotient f1

f2

provided f1
f2

is entire having the Property (A) and
(iii)

(a) ρL∗
f1· f2 (g1 ·g2) � max

[
min

{
ρL∗

f1 (g1) ,ρL∗
f2 (g1)

}
,min

{
ρL∗

f1 (g2) ,ρL∗
f2 (g2)

}]
,

(b) ρL∗
f1
f2

(
g1

g2

)
� max

[
min

{
ρL∗

f1 (g1) ,ρL∗
f2 (g1)

}
,min

{
ρL∗

f1 (g2) ,ρL∗
f2 (g2)

}]
when (i) ρL∗

f1
(g1) �= ρL∗

f2
(g1) , (ii) ρL∗

f1
(g2) �= ρL∗

f2
(g2) (iii) f1 · f2 , g1 and g2 has the

Property (A) and (iv) g1 and g2 are both of regular relative L∗ -growth with respect to

at least any one of f1 or f2. The sign of equality holds when min
{

ρL∗
f1

(g1) ,ρL∗
f2

(g1)
}
�=

min
{

ρL∗
f1

(g2) ,ρL∗
f2

(g2)
}

.

THEOREM D. [4] Let f1, f2,g1 and g2 be any four entire functions. Then
(i)

λ L∗
f1· f2 (g1) � λ L∗

fi (g1)

where λ L∗
fi

(g1)= min
{

λ L∗
fk

(g1) | k = i = 1,2
}

. The sign of equality holds when λ L∗
f1

(g1)

�= λ L∗
f2

(g1) . Similar results hold for the quotient f1
f2

provided f1
f2

is entire;
(ii)

λ L∗
f1 (g1 ·g2) � λ L∗

f1 (gi)

where λ L∗
f1

(gi) = max
{

λ L∗
f1

(gk) | k = i = 1,2
}

, f1 has the Property (A) and at least

g1 or g2 is of regular relative L∗ -growth with respect to f1. The sign of equality holds
when λ L∗

f1
(g1) �= λ L∗

f1
(g2) . Similar results hold for the quotient g1

g2
provided g1

g2
is entire

and
(iii)

(a) λ L∗
f1· f2 (g1 ·g2) � min

[
max

{
λ L∗

f1 (g1) ,λ L∗
f2 (g1)

}
,max

{
λ L∗

f1 (g2) ,λ L∗
f2 (g2)

}]
,

(b) λ L∗
f1
f2

(
g1

g2

)
� min

[
max

{
λ L∗

f1 (g1) ,λ L∗
f2 (g1)

}
,max

{
λ L∗

f1 (g2) ,λ L∗
f2 (g2)

}]
when (i) λ L∗

f1
(g1) �= λ L∗

f2
(g1) , (ii) λ L∗

f1
(g2) �= λ L∗

f2
(g2) , (iii) g ·g2 , f1 and f2 have the

Property (A) and (iv) at least g1 or g2 is of regular relative L∗ -growth with respect to

f1 and f2 respectively . The sign of equality holds when max
{

λ L∗
f1

(g1) ,λ L∗
f2

(g1)
}
�=

max
{

λ L∗
f1

(g2) ,λ L∗
f2

(g2)
}

.:

Now in the case of relative L∗ -type and relative L∗ -weak type, it therefore seems
reasonable to study a parallel investigations of its basic properties, which is the prime
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concern of the paper. In fact, in this paper, under somewhat different conditions we
obtain the following theorem related to relative L∗ -type (relative L∗ -lower type) and
relative weak L∗ -type:

THEOREM 1. Let f1, f2,g1 and g2 are any four entire functions such that ρL∗
fk

(gk) |
k = 1,2 are non-zero finite.

(I) If (A) ρL∗
f1

(gi) = max
{

ρL∗
f1

(gk) | k = i = 1,2
}

and (B) ρL∗
f1

(g1) �= ρL∗
f1

(g2) ,
then

(i) σL∗
f1 (g1±g2) = σL∗

f1 (gi) | i = 1,2 and (ii) σL∗
f1 (g1±g2) = σL∗

f1 (gi) | i = 1,2.

(II) If (A) ρL∗
fi

(g1) = min
{

ρL∗
fk

(g1) | k = 1,2
}

, (B) ρL∗
f1

(g1) �= ρL∗
f2

(g1) and (C)
g1 is of regular relative L∗ -growth with respect to at least any one of f1 or f2, then

(i) σL∗
f1± f2 (g1) = σL∗

fi (g1) | i = 1,2 and (ii) σL∗
f1± f2 (g1) = σL∗

fi (g1) | i = 1,2.

(III) If (A) ρL∗
fi

(gk)= max [min {ρL∗
f1

(g1) , ρL∗
f2

(g1)}, min {ρL∗
f1

(g2) , ρL∗
f2

(g2)}],
(B) ρL∗

f1
(g1) �= ρL∗

f2
(g1) , (C) ρL∗

f1
(g2) �= ρL∗

f2
(g2) , (D) min {ρL∗

f1
(g1) , ρL∗

f2
(g1)} �=

min {ρL∗
f1

(g2) , ρL∗
f2

(g2)} and (E) g1 and g2 are both of regular relative L∗ -growth
with respect to at least any one of f1 or f2, then

(i) σL∗
f1± f2 (g1±g2) = σL∗

fi (gk) | i = k = 1,2 and

(ii) σL∗
f1± f2 (g1±g2) = σL∗

fi (gk) | i = k = 1,2.

THEOREM 2. Let f1, f2,g1 and g2 are any four entire functions such that λ L∗
fk

(gk) |
k = 1,2 are non-zero finite.

(I) If (A) λ L∗
f1

(gi) = max
{

λ L∗
f1

(gk) | k = 1,2
}

, (B) λ L∗
f1

(g1) �= λ L∗
f1

(g2) and (C)
at least g1 or g2 is of regular relative L∗ -growth with respect to f1, then

(i) τL∗
f1 (g1±g2) = τL∗

f1 (gi) | i = 1,2 and (ii) τL∗
f1 (g1±g2) = τL∗

f1 (gi) | i = 1,2.

(II) If (A) λ L∗
fi

(g1) = min
{

λ L∗
fk

(g1) | k = 1,2
}

and (B) λ L∗
f1

(g1) �= λ L∗
f2

(g1) , then

(i) τL∗
f1± f2 (g1) = τL∗

fi (g1) | i = 1,2 and (ii) τL∗
f1± f2 (g1) = τL∗

fi (g1) | i = 1,2.

(III) If (A) λ L∗
fi

(gk)= min [max {λ L∗
f1

(g1) , λ L∗
f2

(g1)}, max {λ L∗
f1

(g2) , λ L∗
f2

(g2)}],
(B) λ L∗

f1
(g1) �= λ L∗

f2
(g1) , (C) λ L∗

f1
(g2) �= λ L∗

f2
(g2) , (D) max {λ L∗

f1
(g1) , λ L∗

f2
(g1)} �=

max {λ L∗
f1

(g2) , λ L∗
f2

(g2)} and (E) at least g1 or g2 is of regular relative L∗ -growth
with respect to f1 and f2 respectively, then

(i) τL∗
f1± f2 (g1±g2) = τL∗

fi (gk) | i = k = 1,2 and

(ii) τL∗
f1± f2 (g1±g2) = τL∗

fi (gk) | i = k = 1,2.
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THEOREM 3. Let f1, f2,g1 and g2 are any four entire functions such that ρL∗
fk

(gk) |
k = 1,2 are non-zero finite.

(I) If (A) ρL∗
f1

(gi) = max
{

ρL∗
f1

(gk) | k = i = 1,2
}

, (B) ρL∗
f1

(g1) �= ρL∗
f1

(g2) and

(C) f1 has the Property (A), then

(i) σL∗
f1 (g1 ·g2) � σL∗

f1 (gi) | i = 1,2 and (ii) σL∗
f1 (g1 ·g2) � σL∗

f1 (gi) | i = 1,2,

For both the cases the equality holds only when 2ρL∗
f1

(gi) < 1.

(II) If (A) ρL∗
fi

(g1) = min
{

ρL∗
fk

(g1) | k = 1,2
}

, (B) ρL∗
f1

(g1) �= ρL∗
f2

(g1) and (C)
g1 has the Property (A) and also g1 is of regular relative L∗ -growth with respect to at
least any one of f1 or f2, then

(i) σL∗
f1· f2 (g1) � σL∗

fi (g1) | i = 1,2 and (ii) σL∗
f1· f2 (g1) � σL∗

fi (g1) | i = 1,2,

For both the cases the equality holds only when 2ρL∗
fi

(g1) > 1.
(III) If (A) ρL∗

fi
(gk)= max [min {ρL∗

f1
(g1) , ρL∗

f2
(g1)}, min {ρL∗

f1
(g2) , ρL∗

f2
(g2)}],

(B) ρL∗
f1

(g1) �= ρL∗
f2

(g1) , (C) ρL∗
f1

(g2) �= ρL∗
f2

(g2) , (D) min {ρL∗
f1

(g1) , ρL∗
f2

(g1)}
�= min {ρL∗

f1
(g2) , ρL∗

f2
(g2)}, (E) f1 · f2 , g1 and g2 have the Property (A), (F)

2ρL∗
f1· f2 (gk) < 1 , (G) 2

ρL∗
fk

(gk) > 1 and (H) g1 and g2 are both of regular relative L∗ -
growth with respect to at least any one of f1 or f2, then

(i) σL∗
f1· f2 (g1 ·g2) = σL∗

fi (gk) | i = k = 1,2 and

(ii) σL∗
f1· f2 (g1 ·g2) = σL∗

fi (gk) | i = k = 1,2.

Similar results for equality of the above three cases are hold for the quotient f1
f2

pro-

vided f1
f2

is entire.

THEOREM 4. Let f1, f2,g1 and g2 are any four entire functions such that ρL∗
fk

(gk) |
k = 1,2 are non-zero finite.

(I) If (A) λ L∗
f1

(gi) = max
{

λ L∗
f1

(gk) | k = i = 1,2
}

, (B) λ L∗
f1

(g1) �= λ L∗
f1

(g2) and

(C) f1 has the Property (A) and and at least g1 or g2 is of regular relative L∗ -growth
with respect to f1, then

(i) τL∗
f1 (g1 ·g2) � τL∗

f1 (gi) | i = 1,2 and (ii) τL∗
f1 (g1 ·g2) � τL∗

f1 (gi) | i = 1,2,

For both the cases the equality holds only when 2λ L∗
f1

(gi) < 1.

(II) If (A) λ L∗
fi

(g1) = min
{

λ L∗
fk

(g1) | k = 1,2
}

, (B) λ L∗
f1

(g1) �= λ L∗
f2

(g1) and (C)
g1 has the Property (A), then

(i) τL∗
f1· f2 (g1) � τL∗

fi (g1) | i = 1,2 and (ii) τL∗
f1· f2 (g1) � τL∗

fi (g1) | i = 1,2,

For both the cases the equality holds only when 2λ L∗
fi

(g1) > 1.
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(III) If (A) λ L∗
fi

(gk)= min [max {λ L∗
f1

(g1) , λ L∗
f2

(g1)}, max {λ L∗
f1

(g2) , λ L∗
f2

(g2)}],
(B) λ L∗

f1
(g1) �= λ L∗

f2
(g1) , (C) λ L∗

f1
(g2) �= λ L∗

f2
(g2) , (D) max {λ L∗

f1
(g1) , λ L∗

f2
(g1)}

�= max {λ L∗
f1

(g2) , λ L∗
f2

(g2)}, (E) g1 · g2 , f1 and f2 have the Property (A), (F)

2λ L∗
f1· f2 (gk) < 1 , (G) 2

λ L∗
fk

(gk) > 1 and (H) at least g1 or g2 is of regular relative L∗ -
growth with respect to f1 and f2 respectively, then

(i) τL∗
f1· f2 (g1 ·g2) = τL∗

fi (gk) | i = k = 1,2 and

(ii) τL∗
f1· f2 (g1 ·g2) = τL∗

fi (gk) | i = k = 1,2.

Similar results for equality of the above three cases are hold for the quotient f1
f2

pro-

vided f1
f2

is entire.

The other aim of this paper is to revisit ideas of equality as mentioned in the first
and second part of Theorem A, Theorem B, Theorem C and Theorem D under some
different conditions and we prove the following four theorems:

THEOREM 5. Let f1, f2,g1 and g2 are any four entire functions.
(I) If either σL∗

f1
(g1) �= σL∗

f1
(g2) or σL∗

f1 (g1) �= σL∗
f1 (g2) hold, then

ρL∗
f1 (g1±g2) = ρL∗

f1 (g1) = ρL∗
f1 (g2) .

(II) If (A) either σL∗
f1

(g1) �= σL∗
f2

(g1) or σL∗
f1 (g1) �= σL∗

f2 (g1) hold and (B) g1 is
of regular relative L∗ -growth with respect to at least any one of f1 or f2, then

ρL∗
f1± f2 (g1) = ρL∗

f1 (g1) = ρL∗
f2 (g1) .

THEOREM 6. Let f1, f2,g1 and g2 are any four entire functions.
(I) If (A) either τL∗

f1
(g1) �= τL∗

f1
(g2) or τL∗

f1 (g1) �= τL∗
f1 (g2) hold and (B) at least

g1 or g2 is of regular relative L∗ -growth with respect to f1, then

λ L∗
f1 (g1±g2) = λ L∗

f1 (g1) = λ L∗
f1 (g2) .

(II) If either τL∗
f1

(g1) �= τL∗
f2

(g1) or τL∗
f1 (g1) �= τL∗

f2 (g1) hold, then

λ L∗
f1± f2 (g1) = λ L∗

f1 (g1) = λ L∗
f2 (g1) .

THEOREM 7. Let f1, f2,g1 and g2 are any four entire functions.

(I) If (A) either σL∗
f1

(g1) �= σL∗
f1

(g2) or σL∗
f1 (g1) �= σL∗

f1 (g2) hold (B) 2ρL∗
f1

(gi) < 1
and (C) f1 has the Property (A), then

ρL∗
f1 (g1 ·g2) = ρL∗

f1 (g1) = ρL∗
f1 (g2) .

(II) If (A) either σL∗
f1

(g1) �= σL∗
f2

(g1) or σL∗
f1 (g1) �= σL∗

f2 (g1) hold (B) 2ρL∗
fi

(g1) > 1
and (C) g1 has the Property (A) and also g1 is of regular relative L∗ -growth with
respect to at least any one of f1 or f2, then

ρL∗
f1· f2 (g1) = ρL∗

f1 (g1) = ρL∗
f2 (g1) .
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Similar results of above two cases are hold for the quotient f1
f2

provided f1
f2

is entire.

THEOREM 8. Let f1, f2,g1 and g2 are any four entire functions.

(I) If (A) either τL∗
f1

(g1) �= τL∗
f1

(g2) or τL∗
f1 (g1) �= τL∗

f1 (g2) hold (B) 2λ L∗
f1

(gi) < 1
and (C) f1 has the Property (A) and at least g1 or g2 is of regular relative L∗ -growth
with respect to f1, then

λ L∗
f1 (g1 ·g2) = λ L∗

f1 (g1) = λ L∗
f1 (g2) .

(II) If (A) either τL∗
f1

(g1) �= τL∗
f1

(g2) or τL∗
f1 (g1) �= τL∗

f1 (g2) hold (B) 2λ L∗
fi

(g1) > 1
and (C) g1 has the Property (A), then

λ L∗
f1· f2 (g1) = λ L∗

f1 (g1) = λ L∗
f2 (g1) .

Similar results of above three cases are hold for the quotient f1
f2

provided f1
f2

is entire.

4. Lemmas

In this section we present some lemmas which will be needed in the sequel.

LEMMA 1. [1] Suppose f be an entire function and α,β be such that α > 1 and
0 < β < α . Then

Mf (αr) > βMf (r).

LEMMA 2. [1] Let f be an entire function satisfying the Property (A). Then for
all sufficiently large r , [

Mf (r)
]2 � Mf

(
rδ
)

holds for δ > 1 .

LEMMA 3. [7] Every entire function f satisfying the Property (A) is transcen-
dental.

LEMMA 4. Let f be an entire function. Then for all sufficiently large values of r,

Tf (r) � logMf (r) � 3Tf (2r) {cf. [5],p. 18} .

5. Proofs of the Theorems

In this section we present the proofs of the main results.

Proof of Theorem 1. From the definition of relative L∗ -type and relative L∗ -lower
type of entire function, we have for all sufficiently large values of r that

Mgk(r) � Mfk

[(
σL∗

fk
(gk)+ ε

)[
reL(r)

]ρL∗
fk

(gk)
]

, (1)
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Mgk(r) � Mfk

[(
σL∗

fk (gk)− ε
)[

reL(r)
]ρL∗

fk
(gk)
]

, (2)

and also for a sequence values of r tending to infinity we get that

Mgk(r) � Mfk

[(
σL∗

fk
(gk)− ε

)[
reL(r)

]ρL∗
fk

(gk)
]

, (3)

Mgk(r) � Mfk

[(
σL∗

fk
(gk)+ ε

)[
reL(r)

]ρL∗
fk

(gk)
]

(4)

where ε (> 0) is any arbitrary positive number and k = 1,2.
Case I. Let ρL∗

f1
(gk) < ρL∗

f1
(gi) where k = i = 1,2 with gk �= gi .

Now from (1) we get for all sufficiently large values of r that

Mg1±g2(r) < Mg1(r)+Mg2 (r) (5)

i.e.,

Mg1±g2(r) < Mf1

[(
σL∗

f1 (gk)+ε
)[

reL(r)
]ρL∗

f1
(gk)
]

+Mf1

[(
σL∗

f1 (gi)+ε
)[

reL(r)
]ρL∗

f1
(gi)
]

i.e.,

Mg1±g2(r) < Mf1

[(
σL∗

f1 (gi)+ε
)[

reL(r)
]ρL∗

f1
(gi)
]

×

⎡
⎢⎢⎢⎢⎣1+

Mf1

[(
σL∗

f1
(gk)+ε

)[
reL(r)

]ρL∗
f1

(gk)
]

Mf1

[(
σL∗

f1
(gi)+ε

)[
reL(r)

]ρL∗
f1

(gi)
]
⎤
⎥⎥⎥⎥⎦ .

Since ρL∗
f1

(gk) < ρL∗
f1

(gi) , one can make the term
Mf1

[(
σL∗

f1
(gk)+ε

)
[reL(r)]

ρL∗
f1

(gk)
]

Mf1

[(
σL∗

f1
(gi)+ε

)
[reL(r)]

ρL∗
f1

(gi)
] suffi-

ciently small by taking r sufficiently large. Therefore in view of Lemma 1 and the
above inequality we get for all sufficiently large values of r that

Mg1±g2(r) < Mf1

[(
σL∗

f1 (gi)+ ε
)[

reL(r)
]ρL∗

f1
(gi)
]

(1+ ε1)

i.e.,

Mg1±g2(r) < Mf1

[
α
(

σL∗
f1 (gi)+ ε

)[
reL(r)

]ρL∗
f1

(gi)
]
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where α > (1+ ε1) .
Now making α → 1+ we obtain from above and Theorem A (i) for all sufficiently

large values of r that

M−1
f1

Mg1±g2(r) <
(

σL∗
f1 (gi)+ ε

)[
reL(r)

]ρL∗
f1

(gi)

i.e.,

M−1
f1

Mg1±g2 (rn)[
reL(r)

]ρL∗
f1

(g1±g2)
<
(

σL∗
f1 (gi)+ ε

)
.

Since ε > 0 is arbitrary, we get from above that

σL∗
f1 (g1±g2) � σL∗

f1 (gi) .

Further without loss of generality, let ρL∗
f1

(g1) < ρL∗
f1

(g2) and g = g1 ±g2. Then

σL∗
f1

(g) � σL∗
f1

(g2) . Further let g2 = ±(g−g1) and in this case we obtain from Theo-

rem A(i) that ρL∗
f1

(g1) < ρL∗
f1

(g) . So σL∗
f1

(g2) � σL∗
f1 (g) . Hence σL∗

f1
(g) = σL∗

f1
(g2) ⇒

σL∗
f1

(g1±g2) = σL∗
f1

(g2) . Thus, σL∗
f1

(g1±g2) = σL∗
f1

(gi) | i = 1,2 where ρL∗
f1

(gi) =

max
{

ρL∗
f1

(gk) | k = i = 1,2
}

and ρL∗
f1

(g1) �= ρL∗
f1

(g2) .

Case II. Further let ρL∗
f1

(gk) < ρL∗
f1

(gi) where k = i = 1,2 with gk �= gi .
Now from (1) and (4) and in view of (5) we get for a sequence of values of r

tending to infinity that

Mg1±g2 (rn) < Mg1 (rn)+Mg2 (rn) (6)

Mg1±g2 (rn) < Mf1

[(
σL∗

f1 (gk)+ ε
)[

rne
L(rn)

]ρL∗
f1

(gk)
]

+Mf1

[(
σL∗

f1 (gi)+ ε
)[

rne
L(rn)

]ρL∗
f1

(gi)
]

i.e.,

Mg1±g2 (rn) < Mf1

[(
σL∗

f1 (gi)+ ε
)[

rne
L(rn)

]ρL∗
f1

(gi)
]

×

⎡
⎢⎢⎢⎢⎣1+

Mf1

[(
σL∗

f1
(gk)+ ε

)[
rneL(rn)

]ρL∗
f1

(gk)
]

Mf1

[(
σL∗

f1 (gi)+ ε
)[

rneL(rn)
]ρL∗

f1
(gi)
]
⎤
⎥⎥⎥⎥⎦ . (7)
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Since ρL∗
f1

(gk) < ρL∗
f1

(gi) , one can make the term
Mf1

[(
σL∗

f1
(gk)+ε

)
[rneL(rn)]

ρL∗
f1

(gk)
]

Mf1

[(
σL∗

f1
(gi)+ε

)
[rneL(rn)]

ρL∗
f1

(gi)
] suffi-

ciently small by taking n sufficiently large. Therefore in view of Lemma 1 and Theorem
A (i) and using the similar technique of case I we obtain from (7) that

σL∗
f1 (g1±g2) � σL∗

f1 (gi) .

Further without loss of generality, let ρL∗
f1

(g1) < ρL∗
f1

(g2) and g = g1 ±g2. Then

σL∗
f1 (g) � σL∗

f1 (g2) . Further let g2 = ±(g−g1) and in this case we obtain from The-

orem C that ρL∗
f1

(g1) < ρL∗
f1

(g) . So σL∗
f1 (g2) � σL∗

f1 (g) . Hence σL∗
f1 (g) = σL∗

f1 (g2) ⇒
σL∗

f1 (g1±g2) = σL∗
f1 (g2) . Thus, σL∗

f1 (g1±g2) = σL∗
f1 (gi) | i = 1,2 where ρL∗

f1
(gi) =

max
{

ρL∗
f1

(gk) | k = i = 1,2
}

and ρL∗
f1

(g1) �= ρL∗
f1

(g2) .
Thus the first part of the theorem follows from Case I and Case II.
Case III. Now suppose that ρL∗

fi
(g1) < ρL∗

fk
(g1) where k = i = 1,2 with fi �= fk

and g1 is of regular relative L∗ -growth with respect to at least any one of f1 or f2.

We can make the term
Mfk

((
σL∗

fi
(g1)−ε

)
[rneL(rn)]

ρL∗
fi

(g1)
)

Mfk

((
σL∗

fk
(g1)−ε

)
[rneL(rn)]

ρL∗
fk

(g1)
) sufficiently small by taking

n sufficiently large since ρL∗
fi

(g1) < ρL∗
fk

(g1) . Therefore

Mfk

((
σL∗

fi
(g1)− ε

)[
rneL(rn)

]ρL∗
fi

(g1)
)

Mfk

((
σL∗

fk (g1)− ε
)[

rneL(rn)
]ρL∗

fk
(g1)

) < ε1 (8)

for sufficiently large n.
Now in view of (2) , (3) and (8) we obtain for a sequence of values of r tending

to infinity that

Mf1± f2

[(
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
]

< Mf1

((
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
)

+Mf2

((
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
)

i.e.,

Mf1± f2

[(
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
]

< Mfi

((
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
)

+Mfk

((
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
)
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i.e.,

Mf1± f2

[(
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
]

< Mfi

((
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
)

+ ε1Mfk

((
σL∗

fk
(g1)− ε

)[
rne

L(rn)
]ρL∗

fk
(g1)

)

i.e.,

Mf1± f2

[(
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
]

< Mg1 (rn) (1+ ε1)

i.e.,

Mf1± f2

[(
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
]

< Mg1 (αrn)

where α > (1+ ε1) .
Hence making α → 1+ we obtain from above and Theorem A(ii) for a sequence

of values of r tending to infinity that

(
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
< M−1

f1± f2
Mg1 (rn)

i.e.,

(
σL∗

fi (g1)− ε
)

<
M−1

f1± f2
Mg1 (rn)[

rneL(rn)
]ρL∗

f1± f2
(g1)

.

Since ε > 0 is arbitrary, it follows from above that

σL∗
f1± f2 (g1) � σL∗

fi (g1) .

Now without loss of generality, we may consider that ρL∗
f1

(g1) < ρL∗
f2

(g1) and

f = f1 ± f2. Then σL∗
f (g1) � σL∗

f1
(g1) . Further let f1 = ( f ± f2) . Therefore in view

of Theorem A (ii), ρL∗
f (g1) < ρL∗

f2
(g1) and accordingly σL∗

f1
(g1) � σL∗

f (g1) . Hence

σL∗
f (g1) = σL∗

f1
(g1) ⇒ σL∗

f1± f2
(g1) = σL∗

f1
(g1) . So, σL∗

f1± f2
(g1) = σL∗

fi
(g1) | i = 1,2

where ρL∗
fi

(g1) = min{ρL∗
fk

(g1) | k = i = 1,2} provided ρL∗
f1

(g1) �= ρL∗
f2

(g1) and g1

is of regular relative L∗ -growth with respect to at least any one of f1 or f2.
Case IV. In this case also one can clearly assume that ρL∗

fi
(g1) < ρL∗

fk
(g1) where

k = i = 1,2 with fi �= fk and g1 is of regular relative L∗ -growth with respect to at least
any one of f1 or f2.

We can also make the term
Mfk

((
σL∗

fi
(g1)−ε

)
[reL(r)]

ρL∗
fi

(g1)
)

Mfk

((
σL∗

fk
(g1)−ε

)
[reL(r)]

ρL∗
fk

(g1)
) sufficiently small by
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taking r sufficiently large as ρL∗
fi

(g1) < ρL∗
fk

(g1) . So

Mfk

((
σL∗

fi (g1)− ε
)[

reL(r)
]ρL∗

fi
(g1)

)

Mfk

((
σL∗

fk (g1)− ε
)[

reL(r)
]ρL∗

fk
(g1)

) < ε1 (9)

for sufficiently large r.
Then in view of (2) and (9) we obtain for all sufficiently large values of r that

Mf1± f2

[(
σL∗

fi (g1)− ε
)[

reL(r)
]ρL∗

fi
(g1)

]
< Mf1

((
σL∗

fi (g1)− ε
)[

reL(r)
]ρL∗

fi
(g1)

)

+Mf2

((
σL∗

fi (g1)− ε
)[

reL(r)
]ρL∗

fi
(g1)

)

i.e.,

Mf1± f2

[(
σL∗

fi (g1)− ε
)[

reL(r)
]ρL∗

fi
(g1)

]
< Mfi

((
σL∗

fi (g1)− ε
)[

reL(r)
]ρL∗

fi
(g1)

)

+ε1Mfk

((
σL∗

fk
(g1)− ε

)[
reL(r)

]ρL∗
fk

(g1)
)

.

(10)

Therefore using the similar technique for all sufficiently large values of r as ex-
ecuted in the proof of case III we get from (10) that σL∗

f1± f2 (g1) = σL∗
fi (g1) | i = 1,2

where ρL∗
fi

(g1) = min{ρL∗
fk

(g1) | k = i = 1,2} provided ρL∗
f1

(g1) �= ρL∗
f2

(g1) and g1

is of regular relative L∗ -growth with respect to at least any one of f1 or f2.
Thus combining Case III and Case IV we obtain the second part of the theorem.
The third part of the theorem is a natural consequence of Theorem A (iii) and the

first part and second part of the theorem. Hence its proof is omitted. �

Proof of Theorem 2. For any arbitrary positive number ε (> 0) , we have from
definition 6 for all sufficiently large values of r that

Mgk(r) � Mfk

[(
τL∗

fk
(gk)+ ε

)[
reL(r)

]λ L∗
fk

(gk)
]

, (11)

Mgk(r) � Mfk

[(
τL∗

fk
(gk)− ε

)[
reL(r)

]λ L∗
fk

(gk)
]

, (12)

and for a sequence {rn}→ ∞ , we have

Mgk (r) � Mfk

[(
τL∗

fk
(gk)− ε

)[
rne

L(rn)
]λ L∗

fk
(gk)
]

, (13)
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Mgk(r) � Mfk

[(
τL∗

fk (gk)+ ε
)[

rne
L(rn)

]λ L∗
fk

(gk)
]

(14)

where k = 1,2.
Case I. Let us consider λ L∗

f1
(gk) < λ L∗

f1
(gi) where k = i = 1,2 with gk �= gi and at

least g1 or g2 is of regular relative L∗ -growth with respect to f1.
Therefore from (6) , (11) and (14) we get for a sequence {rn}→ ∞ that

Mg1±g2 (rn) < Mf1

[(
τL∗

f1 (gk)+ ε
)[

rne
L(rn)

]λ L∗
f1

(gk)
]

+Mf1

[(
τL∗

f1 (gi)+ ε
)[

rne
L(rn)

]λ L∗
f1

(gi)
]

i.e.,

Mg1±g2 (rn) < Mf1

[(
τL∗

f1 (gi)+ ε
)[

rne
L(rn)

]λ L∗
f1

(gi)
]

×

⎡
⎢⎢⎢⎢⎣1+

Mf1

[(
τL∗

f1 (gk)+ ε
)[

rneL(rn)
]λ L∗

f1
(gk)
]

Mf1

[(
τL∗

f1
(gi)+ ε

)[
rneL(rn)

]λ L∗
f1

(gi)
]
⎤
⎥⎥⎥⎥⎦ . (15)

Since λ L∗
f1

(gk) < λ L∗
f1

(gi) , we can make the term
Mf1

[(
τL∗

f1
(gk)+ε

)
[rneL(rn)]

λL∗
f1

(gk)
]

Mf1

[(
τL∗

f1
(gi)+ε

)
[rneL(rn)]

λL∗
f1

(gi)
] suf-

ficiently small by taking n sufficiently large. So with the help of Lemma 1 and the
second part of Theorem B and using the similar technique of case I of Theorem 1, we
get from (15) that

τL∗
f1 (g1±g2) � τL∗

f1 (gi) .

Now without loss of generality, suppose that λ L∗
f1

(g1) < λ L∗
f1

(g2) and g = g1±g2.

So τL∗
f1

(g) � τL∗ (g2) . Also let g2 = ±(g−g1) and in this case we have from the

first part of Theorem B that λ L∗
f1

(g1) < λ L∗
f1

(g) . Therefore τL∗
f1

(g2) � τL∗
f1 (g) . Hence

τL∗
f1

(g) = τL∗
f1

(g2) ⇒ τL∗
f1

(g1±g2) = τL∗
f1

(g2) . Thus, τL∗
f1

(g1±g2) = τL∗
f1

(gi) | i = 1,2

where λ L∗
f1

(gi) = max
{

λ L∗
f1

(gk) | k = i = 1,2
}

and λ L∗
f1

(g1) �= λ L∗
f1

(g2) .

Case II. Let us consider that λ L∗
f1

(gk) < λ L∗
f1

(gi) where k = i = 1,2 with gk �= gi .
Now in view of (11) we get for all sufficiently large values of r that

Mg1±g2(r) < Mg1(r)+Mg2 (r)

i.e.,

Mg1±g2(r) < Mf1

[(
τL∗

f1 (gk)+ ε
)[

reL(r)
]λ L∗

f1
(gk)
]

+Mf1

[(
τL∗

f1 (gi)+ ε
)[

reL(r)
]λ L∗

f1
(gi)
]
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i.e.,

Mg1±g2(r) < Mf1

[(
τL∗

f1 (gi)+ ε
)[

reL(r)
]λ L∗

f1
(gi)
]

×

⎡
⎢⎢⎢⎢⎣1+

Mf1

[(
τL∗

f1 (gk)+ ε
)[

reL(r)
]λ L∗

f1
(gk)
]

Mf1

[(
τL∗

f1 (gi)+ ε
)[

reL(r)
]λ L∗

f1
(gi)
]
⎤
⎥⎥⎥⎥⎦ .

As λ L∗
f1

(gk) < λ L∗
f1

(gi) , by taking r sufficiently large one can make the term

Mf1

[(
τL∗

f1
(gk)+ε

)
[reL(r)]

λL∗
f1

(gk)
]

Mf1

[(
τL∗

f1
(gi)+ε

)
[reL(r)]

λL∗
f1

(gi)
] sufficiently small and therefore for similar reasoning of

Case-I we get from above that τL∗
f1 (g1±g2) = τL∗

f1 (gi) | i = 1,2 where λ L∗
f1

(gi) =

max
{

λ L∗
f1

(gk) | k = i = 1,2
}

and λ L∗
f1

(g1) �= λ L∗
f1

(g2) and hence its detail proof is

omitted.

Thus the first part of the theorem follows from Case I and Case II.

Case III. Now suppose that λ L∗
fi

(g1) < λ L∗
fk

(g1) where k = i = 1,2 with fi �= fk .

Therefore we can make the term
Mfk

((
τL∗

fi
(g1)−ε

)
[reL(r)]

λL∗
fi

(g1)
)

Mfk

((
τL∗

fk
(g1)−ε

)
[reL(r)]

λL∗
fk

(g1)
) sufficiently small

by taking r sufficiently large since ρL∗
fi

(g1) < ρL∗
fk

(g1) . So

Mfk

((
τL∗

fi
(g1)− ε

)[
reL(r)

]λ L∗
fi

(g1)
)

Mfk

((
τL∗

fk
(g1)− ε

)[
reL(r)

]λ L∗
fk

(g1)
) < ε1 (16)

for sufficiently large r.

Then in view of (2) and (16) we obtain for all sufficiently large values of r that

Mf1± f2

[(
τL∗

fi (g1)− ε
)[

reL(r)
]λ L∗

fi
(g1)

]
< Mf1

((
τL∗

fi (g1)− ε
)[

reL(r)
]λ L∗

fi
(g1)

)

+Mf2

((
τL∗

fi (g1)− ε
)[

reL(r)
]λ L∗

fi
(g1)

)
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i.e.,

Mf1± f2

[(
τL∗

fi (g1)− ε
)[

reL(r)
]λ L∗

fi
(g1)

]
< Mfi

((
τL∗

fi (g1)− ε
)[

reL(r)
]λ L∗

fi
(g1)

)

+ε1Mfk

((
τL∗

fk (g1)− ε
)[

reL(r)
]λ L∗

fk
(g1)

)
.

Therefore using the similar technique as executed in the proof of case IV of The-
orem 1, it follows from above and the first part of Theorem B that

τL∗
f1± f2 (g1) � τL∗

fi (g1) .

At this time without loss of generality, we may consider that λ L∗
f1

(g1) < λ L∗
f2

(g1)
and f = f1 ± f2. Then τL∗

f (g1) � τL∗
f1

(g1) . Further let f1 = ( f ± f2) . Therefore in

view of Theorem B (i), λ L∗
f (g1) < λ L∗

f2
(g1) and accordingly τL∗

f1
(g1) � τL∗

f (g1) . Hence

τL∗
f (g1) = τL∗

f1
(g1)⇒ τL∗

f1± f2
(g1) = τL∗

f1
(g1) . So, τL∗

f1± f2
(g1) = τL∗

fi
(g1) | i = 1,2 where

λ L∗
fi

(g1) = min
{

λ L∗
fk

(g1) | k = i = 1,2
}

provided λ L∗
f1

(g1) �= λ L∗
f2

(g1) .

Case IV. Now let us consider λ L∗
fi

(g1) < λ L∗
fk

(g1) where k = i = 1,2 with fi �= fk.

Further we can make the term
Mfk

((
τL∗

fi
(g1)−ε

)
[rneL(rn)]λL∗

fi
(g1)

)

Mfk

((
τL∗

fk
(g1)−ε

)
[rneL(rn)]

λL∗
fk

(g1)
) sufficiently small

by taking n sufficiently large since ρL∗
fi

(g1) < ρL∗
fk

(g1) . Therefore

Mfk

((
τL∗

fi (g1)− ε
)[

rneL(rn)
]λ L∗

fi
(g1)

)

Mfk

((
τL∗

fk
(g1)− ε

)[
rneL(rn)

]λ L∗
fk

(g1)
) < ε1 (17)

for sufficiently large n.
Now in view of (2) , (3) and (16) we obtain for a sequence of values of r tending

to infinity that

Mf1± f2

[(
τL∗

fi (g1)− ε
)[

rne
L(rn)

]λ L∗
fi

(g1)
]

< Mf1

((
τL∗

fi (g1)− ε
)[

rne
L(rn)

]λ L∗
fi

(g1)
)

+Mf2

((
τL∗

fi (g1)− ε
)[

rne
L(rn)

]λ L∗
fi

(g1)
)

i.e.,

Mf1± f2

[(
τL∗

fi (g1)− ε
)[

rne
L(rn)

]λ L∗
fi

(g1)
]

< Mfi

((
τL∗

fi (g1)− ε
)[

rne
L(rn)

]λ L∗
fi

(g1)
)

+ε1Mfk

((
τL∗

fk
(g1)− ε

)[
rne

L(rn)
]λ L∗

fk
(g1)

)
.
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Hence using the similar technique of case III of Theorem 1, we obtain conclusion
from above that τL∗

f1± f2 (g1) = τL∗
fi (g1) | i = 1,2 where λ L∗

fi
(g1) = min

{
λ L∗

fk
(g1) | k = i

= 1,2
}

provided λ L∗
f1

(g1) �= λ L∗
f2

(g1) .
So the second part of the theorem follows from Case III and Case IV.
The proof of the third part of the Theorem is omitted as it can be carried in view

of the third part of Theorem B and the above cases. �

Proof of Theorem 3. Case I. By Lemma 3, f1 is transcendental. Suppose that
ρL∗

f1
(gk) < ρL∗

f1
(gi) where k = i = 1,2 with gk �= gi. Now for any arbitrary ε > 0, we

have from (1) for all sufficiently large values of r that

Mg1·g2
(r) � Mg1(r) ·Mg2(r). (18)

Mg1·g2
(r) � Mf1

[(
σL∗

f1 (gk)+
ε
2

)[
reL(r)

]ρL∗
f1

(gk)
]

Mf1

[(
σL∗

f1 (gi)+
ε
2

)[
reL(r)

]ρL∗
f1

(gi)
]

.

Since ρL∗
f1

(gk)< ρL∗
f1

(gi) , we get for all sufficiently large values of r that (σL∗
f1

(gi)

+ ε)
[
reL(r)

]ρL∗
f1

(gi)
> (σL∗

f1
(gk) + ε)

[
reL(r)

]ρL∗
f1

(gk)
.

Therefore Mf1

[
(σL∗

f1
(gi)+ε)

[
reL(r)

]ρL∗
f1

(gi)
]

> Mf1

[
(σL∗

f1
(gk)+ε)

[
reL(r)

]ρL∗
f1

(gk)
]

and from the above arguments it follows for all sufficiently large values of r that

Mg1 ·g2
(r) < Mf1

[(
σL∗

f1 (gi)+
ε
2

)[
reL(r)

]ρL∗
f1

(gi)
]2

. (19)

Let us observe that

δ1 :=
σL∗

f1
(gi)+ ε

σL∗
f1

(gi)+ ε
2

> 1

⇒ log
(

σL∗
f1 (gi)+ ε

)[
reL(r)

]ρL∗
f1

(gi)
> log

(
σL∗

f1 (gi)+
ε
2

)[
reL(r)

]ρL∗
f1

(gi)

⇒
log

(
σL∗

f1
(gi)+ ε

)[
reL(r)

]ρL∗
f1

(gi)

log
(

σL∗
f1

(gi)+ ε
2

)[
reL(r)

]ρL∗
f1

(gi)
= δ (say) > 1

⇒ log
(

σL∗
f1 (gi)+ ε

)[
reL(r)

]ρL∗
f1

(gi)
= δ log

(
σL∗

f1 (gi)+
ε
2

)[
reL(r)

]ρL∗
f1

(gi)
. (20)

Since f1 has the Property (A), in view of Lemma 2, Theorem C (i) and (20) we
obtain from (19) for all sufficiently large values of r that

Mg1·g2(r) < Mf1

⎡
⎣((σL∗

f1 (gi)+
ε
2

)[
reL(r)

]ρL∗
f1

(gi)
)δ
⎤
⎦
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i.e.,

Mg1·g2(r) < Mf1

[(
σL∗

f1 (gi)+ ε
)[

reL(r)
]ρL∗

f1
(gi)
]

.

That is, we have

M−1
f1

Mg1·g2(r)[
reL(r)

]ρL∗
f1

(gi)
<
(

σL∗
f1 (gi)+ ε

)

i.e.,

M−1
f1

Mg1·g2(r)[
reL(r)

]ρL∗
f1

(g1·g2)
<
(

σL∗
f1 (gi)+ ε

)
.

i.e.,
σL∗

f1 (g1 ·g2) � σL∗
f1 (gi) . (21)

In order to establish the equality of (21) , let us restrict ourselves on the functions

f1 and gi with the property 2ρL∗
f1

(gi) | i = 1,2 < 1. Now let h, h1 , h2 and k be any
four entire functions such that h = h2

h1
and ρL∗

k (h1) < ρL∗
k (h2) . So Th(r) = Th2

h1

(r) �

Th2
(r)+Th1(r)+O(1). Now in view of Lemma 4 and in the line of the construction of

the proof as above it follows for all sufficiently large values of r that

M−1
k Mh

( r
2

)
<
(

σL∗
k (h2)+ ε

)[
reL(r)

]ρL∗
k (h2)

+O(1).

Since L(ar) ∼ L(r) as r → ∞ for every positive constant a , we get from above
for all sufficiently large values of r that

M−1
k Mh2

h1

(r)

[(
r
2

)
eL( r

2 )
]ρL∗

k

(
h2
h1

) < 2ρL∗
k (h2)×

(
σL∗

k (h2)+ ε
)

+
O(1)[

reL(r)
]ρL∗

k (h2)
.

Now if we consider 2ρL∗
k (h2) < 1 then it follows from above for all sufficiently

large values of r that

M−1
k Mh2

h1

(r)

[(
r
2

)
eL( r

2)
]ρL∗

k

(
h2
h1

) <
(

σL∗
k (h2)+ ε

)
+

O(1)[
reL(r)

]ρL∗
k (h2)

i.e.,

σk (h) = σk

(
h2

h1

)
� σk (h2) .
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Further without loss of any generality, let g = g1 · g2 and ρL∗
f1

(g1) < ρL∗
f1

(g2) =

ρL∗
f1

(g) . Then σL∗
f1

(g) � σL∗
f1

(g2) . Also let g2 = g
g1

and 2
ρL∗

f1
(g2) < 1. So in this case

we obtain from above arguments that σL∗
f1

(g2) � σL∗
f1 (g) . Hence σL∗

f1
(g) = σL∗

f1
(g2)⇒

σL∗
f1

(g1 ·g2) = σL∗
f1

(g2) . Thus, σL∗
f1

(g1 ·g2) = σL∗
f1

(gi) | i = 1,2 where ρL∗
f1

(gi) =

max
{

ρL∗
f1

(gk) | k = i = 1,2
}

, ρL∗
f1

(g1) �= ρL∗
f1

(g2) and 2ρL∗
f1

(gi) | i = 1,2 < 1.

Next we may suppose that g = g1
g2

with g1, g2, g are all entire functions and also

suppose that ρL∗
f1

(g2) < ρL∗
f1

(g1) . We have g1 = g · g2. Therefore σL∗
f1

(g1) = σL∗
f1

(g)

as ρL∗
f1

(g) > ρL∗
f1

(g2) and 2ρL∗
f1

(g1) < 1.

Case II. In view of Lemma 3, f1 is transcendental. Now let ρL∗
f1

(gk) < ρL∗
f1

(gi)
where k = i = 1, 2 with gk �= gi. Therefore from (1) and (4) it follows for a sequence
{rn} of values of r tending to infinity that

Mg1·g2 (rn) � Mg1 (rn) ·Mg2 (rn) . (22)

That is, we have

Mg1·g2 (rn) � Mf1

[(
σL∗

f1 (gk)+
ε
2

)[
rne

L(rn)
]ρL∗

f1
(gk)
]

×Mf1

[(
σL∗

f1 (gi)+
ε
2

)[
rne

L(rn)
]ρL∗

f1
(gi)
]

. (23)

Since ρL∗
f1

(gk) < ρL∗
f1

(gi) , so for a sequence of values of r tending to infinity

Mf1

[(
σL∗

f1 (gi)+ ε
2

)[
rneL(rn)

]ρL∗
f1

(gi)
]

> Mf1

[(
σL∗

f1
(gk)+ ε

2

)[
rneL(rn)

]ρL∗
f1

(gk)
]

holds

and therefore from (23) we obtain for a sequence {rn} of values of r tending to infinity
that

Mg1·g2 (rn) < Mf1

[(
σL∗

f1 (gi)+
ε
2

)[
rne

L(rn)
]ρL∗

f1
(gi)
]2

. (24)

Now using the similar technique for a sequence of values of r tending to infinity
as explored in the proof of Case I, the second part of Theorem 3 I (ii) follows from
(24) .

Therefore the first part of theorem follows Case I and Case II.
Case III. By Lemma 3, g1 is transcendental. Suppose that ρL∗

fi
(g1) < ρL∗

fk
(g1)

where k = i = 1, 2 with fi �= fk and g1 is of regular relative L∗ -growth with respect to
at least any one of f1 or f2.

Now for all sufficiently large values of n and ρL∗
fi

(g1) < ρL∗
fk

(g1)

(
σL∗

fk
(g1)− ε

)[
rne

L(rn)
]ρL∗

fk
(g1)

>
(

σL∗
fi (g1)− ε

)[
rne

L(rn)
]ρL∗

fi
(g1)
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holds. Consequently

Mfk

((
σL∗

fk
(g1)− ε

)[
rne

L(rn)
]ρL∗

fk
(g1)

)
> Mfk

((
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
)

also holds.
Therefore in view of (2) , (3) and above we obtain for a sequence of values of r

tending to infinity that

Mf1· f2

((
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
)

< Mf1

((
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
)
×Mf2

((
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
)

i.e.,

Mf1· f2

((
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
)

< Mfi

((
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
)
×Mfk

((
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
)

i.e.,

Mf1· f2

((
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
)

< Mfi

((
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
)
×Mfk

((
σL∗

fk (g1)− ε
)[

rne
L(rn)

]ρL∗
fk

(g1)
)

i.e.,

Mf1· f2

((
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
)

< [Mg1 (rn)]2 .

Since g1 has the Property (A), in view of Lemma 2 we obtain from above for a
sequence of values of r tending to infinity that

i.e., Mf1· f2

((
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
)

< Mg1

(
rδ
n

)
. (25)

Now making δ → 1+ we obtain from (25) and the second part of Theorem C for
a sequence {rn} of values of r tending to infinity that

(
σL∗

fi (g1)− ε
)[

rne
L(rn)

]ρL∗
fi

(g1)
< M−1

f1· f2Mg1 (rn)
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i.e., (
σL∗

fi (g1)− ε
)

<
M−1

f1· f2Mg1 (rn)[
rneL(rn)

]ρL∗
f1 · f2 (g1)

.

Since ε > 0 is arbitrary, it follows from above arguments that

σL∗
f1· f2 (g1) � σL∗

fi (g1) . (26)

In order to establish the equality of (26) , let us restrict ourselves on the functions

fi and g1 with the property 2ρL∗
fi

(g1) | i = 1,2 > 1. Now let h, h1 , h2 and k be any
four entire functions such that h = h1

h2
and ρL∗

h1
(k) < ρL∗

h2
(k) . So Th(r) = Th1

h2

(r) �

Th1
(r)+Th2(r)+O(1). Now if we consider 2

ρL∗
h1

(k)
> 1 then in view of Lemma 4 and

in the line of the construction of the proof as above and case I of Theorem 3 it follows
that σL∗

h1
(k) � σL∗

h (k) = σL∗
h1
h2

(k) as L(ar)∼ L(r) as r → ∞ for every positive constant

a.

Further without loss of any generality, let f = f1 · f2 and ρL∗
f1

(g1) = ρL∗
f (g1) <

ρL∗
f2

(g1) . Then σL∗
f (g1) � σL∗

f1
(g1) . Also let f1 = f

f2
and in this case we obtain from

above that σL∗
f1

(g1) � σL∗
f (g1) if 2ρL∗

f1
(g1) > 1. Hence σL∗

f (g1) = σL∗
f1

(g1) implies

that σL∗
f1· f2 (g1) = σL∗

f1
(g1) . Thus, σL∗

f1· f2 (g1) = σL∗
fi

(g1) | i = 1,2 where ρL∗
fi

(g1) =

min
{

ρL∗
fk

(g1) | k = 1, 2
}

, ρL∗
f1

(g1) �= ρL∗
f2

(g1) and 2ρL∗
fi

(g1) | i = 1,2 > 1.

Next one may suppose that f = f2
f1

with f1, f2, f are all entire and ρL∗
f2

(g1) <

ρL∗
f1

(g1) . We have f2 = f · f1. Therefore σL∗
f2

(g1) = σL∗
f (g1) as ρL∗

f1
(g1) > ρL∗

f (g1)

and 2ρL∗
f1

(g1) | i = 1,2 > 1.

Case IV. By Lemma 3, g1 is transcendental. Suppose ρL∗
fi

(g1) < ρL∗
fk

(g1) where
k = i = 1, 2 with fi �= fk (i �= k) and g1 is of regular relative L∗ -growth with respect
to at least any one of f1 or f2.

Therefore for all sufficiently large values of r and ρL∗
fi

(g1) < ρL∗
fk

(g1)

(
σL∗

fk
(g1)− ε

)[
reL(r)

]ρL∗
fk

(g1)
>
(

σL∗
fi (g1)− ε

)[
reL(r)

]ρL∗
fi

(g1)

holds. As a result

Mfk

((
σL∗

fk
(g1)− ε

)[
reL(r)

]ρL∗
fk

(g1)
)

> Mfk

((
σL∗

fi (g1)− ε
)[

reL(r)
]ρL∗

fi
(g1)

)

also holds.
Therefore in view of (2) and from above arguments we obtain for all sufficiently
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large values of r that

Mf1· f2

((
σL∗

fi (g1)− ε
)[

reL(r)
]ρL∗

fi
(g1)

)

< Mf1

((
σL∗

fi (g1)− ε
)[

reL(r)
]ρL∗

fi
(g1)

)
×Mf2

((
σL∗

fi (g1)− ε
)[

reL(r)
]ρL∗

fi
(g1)

)

i.e.,

Mf1· f2

((
σL∗

fi (g1)− ε
)[

reL(r)
]ρL∗

fi
(g1)

)
< [Mg1(r)]

2 . (27)

Thus Theorem 3 II (ii) follows from (27) by using the similar technique for all
sufficiently large values of r of Case III.

Therefore the second part of the theorem follows from Case III and Case IV.
Proof of the third part of the Theorem is omitted as it can be carried out in view of

Theorem C (iii) and the above cases. �

Proof of Theorem 4. Case I. By Lemma 3, f1 is transcendental. Suppose that
λ L∗

f1
(gk) < λ L∗

f1
(gi) where k = i = 1,2 with gk �= gi and at least g1 or g2 is of regular

relative L∗ -growth with respect to f1 . Now for any arbitrary ε > 0, from (11) , (14)
and (22) , we obtain for a sequence {rn} of values of r tending to infinity that

Mg1·g2 (rn) � Mf1

[(
τL∗

f1 (gk)+
ε
2

)[
rne

L(rn)
]λ L∗

f1
(gk)
]

×Mf1

[(
τL∗

f1 (gi)+
ε
2

)[
rne

L(rn)
]λ L∗

f1
(gi)
]

.

As λ L∗
f1

(gk) < λ L∗
f1

(gi) , we get from above arguments for a sequence {rn} of
values of r tending to infinity that

Mg1·g2 (rn) < Mf1

[(
τL∗

f1 (gi)+
ε
2

)[
rne

L(rn)
]λ L∗

f1
(gi)
]2

. (28)

Now using the similar technique as explored in the proof of Case II of Theorem 3,
we have from (28) and the second part of Theorem D that

τL∗
f1 (g1 ·g2) � τL∗

f1 (gi) . (29)

In order to establish the equality of (29) , let us restrict ourselves on the functions

f1 and gi with the property 2λ L∗
f1

(gi) | i = 1,2 < 1. Now let h, h1 , h2 and k be any
four entire functions such that h = h2

h1
and λ L∗

k (h1) < λ L∗
k (h2) . So Th(r) = Th2

h1

(r) �

Th2
(r)+Th1(r)+O(1). Now if we take λ L∗

k (h2) < 1 then in view of Lemma 4 and in
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the line of the construction of the proof as above and case I of Theorem 3 it follows that

τL∗
k (h) = τL∗

k

(
h2
h1

)
� τL∗

k (h2) .

Further without loss of any generality, let g = g1 · g2 and λ L∗
f1

(g1) < λ L∗
f1

(g2) =
λ L∗

f1
(g) . Then τL∗

f1
(g) � τL∗

f1
(g2) . Also let g2 = g

g1
and in this case we obtain from

above arguments that τL∗
f1

(g2) � τL∗
f1 (g) when 2λ L∗

f1
(g2) < 1. Hence τL∗

f1
(g)= τL∗

f1
(g2)⇒

τL∗
f1

(g1 ·g2) = τL∗
f1

(g2) . Thus, τL∗
f1

(g1 ·g2) = τL∗
f1

(gi) | i = 1,2 where λ L∗
f1

(gi) =

max
{

λ L∗
f1

(gk) | k = i = 1,2
}

, λ L∗
f1

(g1) �= λ L∗
f1

(g2) and 2λ L∗
f1

(gi) | i = 1,2 < 1.

Next we may suppose that g = g1
g2

with g1, g2, g are all entire functions and also

suppose that λ L∗
f1

(g2) < λ L∗
f1

(g1) . We have g1 = g · g2. Therefore λ L∗
f1

(g1) = λ L∗
f1

(g)

as λ L∗
f1

(g) > λ L∗
f1

(g2) and 2λ L∗
f1

(g1) < 1.

Case II. In view of Lemma 3, f1 is transcendental. Now let λ L∗
f1

(gk) < λ L∗
f1

(gi)
where k = i = 1,2 with gk �= gi and at least g1 or g2 is of regular relative L∗ -growth
with respect to f1. Therefore from (18) and (11) it follows for all sufficiently large
values of r that

Mg1·g2(r) � Mf1

[(
τL∗

f1 (gk)+
ε
2

)[
reL(r)

]λ L∗
f1

(gk)
]

×Mf1

[(
τL∗

f1 (gi)+
ε
2

)[
reL(r)

]λ L∗
f1

(gi)
]

. (30)

Since λ L∗
f1

(gk) < λ L∗
f1

(gi) , so for all sufficiently large values of r,

Mf1

[(
τL∗

f1 (gi)+
ε
2

)[
reL(r)

]λ L∗
f1

(gi)
]

> Mf1

[(
τL∗

f1 (gk)+
ε
2

)[
reL(r)

]λ L∗
f1

(gk)
]

holds and therefore from (30) we get for all sufficiently large values of r that

Mg1·g2(r) < Mf1

[(
τL∗

f1 (gi)+
ε
2

)[
reL(r)

]λ L∗
f1

(gi)
]2

. (31)

Now using the similar technique of Case I of Theorem 3, Theorem 4 I (i) follows
from (31) .

Therefore combining Case I and Case II, the first part of the theorem follows.
Case III. By Lemma 3, g1 is transcendental. Suppose that λ L∗

fi
(g1) < λ L∗

fk
(g1)

where k = i = 1, 2 with fi �= fk.
Since λ L∗

fi
(g1) < λ L∗

fk
(g1) , then for all sufficiently large values of r

(
τL∗

fk
(g1)− ε

)[
reL(r)

]λ L∗
fk

(g1)
>
(

τL∗
fi (g1)− ε

)[
reL(r)

]λ L∗
fi

(g1)
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holds. Therefore

Mfk

((
τL∗

fk (g1)− ε
)[

reL(r)
]λ L∗

fk
(g1)

)
> Mfk

((
τL∗

fi (g1)− ε
)[

reL(r)
]λ L∗

fi
(g1)

)

also holds.
Now in view of (12) and from above arguments we obtain for all sufficiently large

values of r that

Mf1· f2

((
τL∗

fi (g1)− ε
)[

reL(r)
]λ L∗

fi
(g1)

)

< Mf1

((
τL∗

fi (g1)− ε
)[

reL(r)
]λ L∗

fi
(g1)

)
×Mf2

((
τL∗

fi (g1)− ε
)[

reL(r)
]λ L∗

fi
(g1)

)

i.e.,

Mf1· f2

((
τL∗

fi (g1)− ε
)[

reL(r)
]λ L∗

fi
(g1)

)
< [Mg1(r)]

2 . (32)

Further using the similar technique as explored in the proof of Case II of Theorem
3, we have from (32) and the first part of Theorem D that

τL∗
f1· f2 (g1) � τL∗

fi (g1) . (33)

In order to establish the equality of (33) , let us restrict ourselves on the functions

fi and g1 with the property 2λ L∗
fi

(g1) | i = 1,2 > 1. Now let h, h1 , h2 and k be any
four entire functions such that h = h1

h2
and λ L∗

h1
(k) < λ L∗

h2
(k) . So Th(r) = Th1

h2

(r) �

Th1
(r)+Th2(r)+O(1). Now if we consider 2

λ L∗
h1

(k)
> 1 then in view of Lemma 4 and

in the line of the construction of the proof as above and case I of Theorem 3 it follows
that τL∗

h1
(k) � τL∗

h (k)= τL∗
h1
h2

(k) since L(ar)∼L(r) as r→∞ for every positive constant

a.
Further without loss of any generality, let f = f1 · f2 and λ L∗

f1
(g1) = λ L∗

f (g1) <

λ L∗
f2

(g1) . Then τL∗
f (g1) � τL∗

f1
(g1) . Also let f1 = f

f2
and 2λ L∗

f1
(g1) > 1. Therefore in

this case we obtain from above that τL∗
f1

(g1) � τL∗
f (g1) . Hence τL∗

f (g1) = τL∗
f1

(g1) im-

plies that τL∗
f1· f2 (g1) = τL∗

f1
(g1) . Thus, τL∗

f1· f2 (g1) = τL∗
fi

(g1) | i = 1,2 where λ L∗
fi

(g1) =

min
{

λ L∗
fk

(g1) | k = 1, 2
}

, λ L∗
f1

(g1) �= λ L∗
f2

(g1) and 2λ L∗
fi

(g1) | i = 1,2 > 1.

Next one may suppose that f = f2
f1

with f1, f2, f are all entire and λ L∗
f2

(g1) <

λ L∗
f1

(g1) . We have f2 = f · f1. Therefore τL∗
f2

(g1) = τL∗
f (g1) as λ L∗

f1
(g1) > λ L∗

f (g1)

and 2λ L∗
f1

(g1) | i = 1,2 > 1.
Case IV. By Lemma 3, g1 is transcendental. Suppose λ L∗

fi
(g1) < λ L∗

fk
(g1) where

k = i = 1, 2 with fi �= fk. Therefore for all sufficiently large values of r we obtain that(
τL∗

fk
(g1)− ε

)[
reL(r)

]λ L∗
fk

(g1)
>
(

τL∗
fi (g1)− ε

)[
reL(r)

]λ L∗
fi

(g1)
.
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Naturally,

Mfk

((
τL∗

fk (g1)− ε
)[

reL(r)
]λ L∗

fk
(g1)

)
> Mfk

((
τL∗

fi (g1)− ε
)[

reL(r)
]λ L∗

fi
(g1)

)

holds.
Therefore in view of (12) , (13) and from above arguments we obtain for a se-

quence {rn} of values of r tending to infinity that

Mf1· f2

((
τL∗

fi (g1)− ε
)[

reL(r)
]λ L∗

fi
(g1)

)

< Mf1

((
τL∗

fi (g1)− ε
)[

reL(r)
]λ L∗

fi
(g1)

)
×Mf2

((
τL∗

fi (g1)− ε
)[

reL(r)
]λ L∗

fi
(g1)

)

i.e.,

Mf1· f2

((
τL∗

fi (g1)− ε
)[

reL(r)
]λ L∗

fi
(g1)

)
< [Mg1(r)]

2 . (34)

Therefore using the similar technique for a sequence of values of r tending to
infinity of Case III , the second part of Theorem 4 II (ii) follows from (34) .

Thus the second part of the theorem follows from Case III and Case IV.
Proof of the third part of the theorem is omitted as it can be carried out in view of

Theorem D (iii) and the above cases. �

Proof of Theorem 5. Case I. Suppose that ρL∗
f1

(g1) = ρL∗
f1

(g2) (0 < ρL∗
f1

(g1) ,
ρL∗

f1
(g2) < ∞) . Now in view of Theorem A (i) it is easy to see that ρL∗

f1
(g1±g2) �

ρL∗
f1

(g1) = ρL∗
f1

(g2) . If possible let

ρL∗
f1 (g1±g2) < ρL∗

f1 (g1) = ρL∗
f1 (g2) . (35)

Let σL∗
f1

(g1) �= σ f1 (g2) . Then in view of Theorem 1 I (i) and (35) we obtain that

σL∗
f1

(g1) = σL∗
f1

(g1±g2∓g2) = σL∗
f1

(g2) which is a contradiction. Hence ρL∗
f1

(g1±g2)
= ρL∗

f1
(g1) = ρL∗

f1
(g2) . Similarly with the help of Theorem 1 I (ii), one can obtain the

same conclusion under the hypothesis σL∗
f1 (g1) �= σL∗

f1 (g2) . This proves the first part of
the theorem.

Case II. Let us consider that ρL∗
f1

(g1) = ρL∗
f2

(g1) (0 < ρL∗
f1

(g1) ,ρL∗
f2

(g1) < ∞) and
g1 is of regular relative L∗ -growth with respect to at least any one of f1 or f2 . There-
fore in view of the second part of Theorem A, it follows that ρL∗

f1± f2
(g1) � ρL∗

f1
(g1) =

ρL∗
f2

(g1) and if possible let

ρL∗
f1± f2 (g1) > ρL∗

f1 (g1) = ρL∗
f2 (g1) . (36)

Let us consider that σL∗
f1

(g1) �= σL∗
f2

(g1) . Then. in view of the Theorem 1 II (i)

and (36) we obtain that σL∗
f1

(g1) = σL∗
f1± f2∓ f2

(g1) = σL∗
f2

(g1) which is a contradiction.
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Hence ρL∗
f1± f2

(g1) = ρL∗
f1

(g1) = ρL∗
f2

(g1) . Also in view of Theorem 1 II (ii) one can

derive the same conclusion for the condition σL∗
f1 (g1) �= σL∗

f2 (g1) and therefore the
second part of the theorem is established. �

Proof of Theorem 6. Case I. Let λ L∗
f1

(g1) = λ L∗
f1

(g2) (0 < λ L∗
f1

(g1) ,λ L∗
f1

(g2) < ∞)
and at least g1 or g2 is of regular relative L∗ -growth with respect to f1 . Now, in view
of Theorem B (ii), it is easy to see that λ L∗

f1
(g1±g2) � λ L∗

f1
(g1) = λ L∗

f1
(g2) . If possible

let
λ L∗

f1 (g1±g2) < λ L∗
f1 (g1) = λ L∗

f1 (g2) . (37)

Let τL∗
f1

(g1) �= τL∗
f1

(g2) . Then in view of Theorem 2 I (i) and (37) we obtain that

τL∗
f1

(g1) = τL∗
f1

(g1±g2∓g2) = τL∗
f1

(g2) which is a contradiction. Hence λ L∗
f1

(g1±g2) =
λ L∗

f1
(g1) = λ L∗

f1
(g2) . Similarly with the help of Theorem 2 I (ii) , one can establish the

same conclusion under the hypothesis τL∗
f1 (g1) �= τL∗

f1 (g2) . This prove the first part of
the theorem.

Case II. Let us consider that λ L∗
f1

(g1) = λ L∗
f2

(g1) (0 < λ L∗
f1

(g1) ,λ L∗
f2

(g1) < ∞.

Therefore in view of Theorem B (i) it follows that λ L∗
f1± f2

(g1) � λ L∗
f1

(g1) = λ L∗
f2

(g1)
and if if possible let

λ L∗
f1± f2 (g1) > λ L∗

f1 (g1) = λ L∗
f2 (g1) . (38)

Suppose τL∗
f1

(g1) �= τL∗
f2

(g1) . Then in view of Theorem 2 II (i) and (38) we obtain

that τL∗
f1

(g1) = τL∗
f1± f2∓ f2

(g1) = τL∗
f2

(g1) which is a contradiction. Hence λ L∗
f1± f2

(g1) =
λ L∗

f1
(g1) = λ L∗

f2
(g1) . Analogously with the help of Theorem 2 II (ii), the same con-

clusion can also be derived under the condition τL∗
f1 (g1) �= τL∗

f2 (g1) and therefore the
second part of the theorem is established. �

Proof of Theorem 7. Case I. Suppose that ρL∗
f1

(g1) = ρL∗
f1

(g2) (0 < ρL∗
f1

(g1) ,
ρL∗

f1
(g2) < ∞) . Now in view of Theorem C (i) it is easy to see that ρL∗

f1
(g1 ·g2) �

ρL∗
f1

(g1) = ρL∗
f1

(g2) . If possible let

ρL∗
f1 (g1 ·g2) < ρL∗

f1 (g1) = ρL∗
f1 (g2) . (39)

Let σL∗
f1

(g1) �= σL∗
f1

(g2) . Now in view of Theorem 3 I (i) and (39) we obtain

that σL∗
f1

(g1) = σL∗
f1

(
g1·g2
g2

)
= σL∗

f1
(g2) which is a contradiction. Hence ρL∗

f1
(g1 ·g2) =

ρL∗
f1

(g1) = ρL∗
f1

(g2) . Similarly with the help of Theorem 3 I (ii), one can obtain the

same conclusion under the hypothesis σL∗
f1 (g1) �= σL∗

f1 (g2) . This prove the first part of
the theorem.

Case II. Let us consider that ρL∗
f1

(g1) = ρL∗
f2

(g1) (0 < ρL∗
f1

(g1) ,ρL∗
f2

(g1) < ∞) and
g1 is of regular relative L∗ -growth with respect to at least any one of f1 or f2 . There-
fore in view of the second part of Theorem C, it follows that ρL∗

f1· f2 (g1) � ρL∗
f1

(g1) =
ρ f2

(g1) and if possible let

ρL∗
f1· f2 (g1) > ρL∗

f1 (g1) = ρL∗
f2 (g1) . (40)
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Further suppose that σL∗
f1

(g1) �= σL∗
f2

(g1) . Therefore in view of the first part of

Theorem 3 II (i) and (40) , we obtain that σL∗
f1

(g1) = σL∗
f1· f2
f2

(g1) = σL∗
f2

(g1) which is

a contradiction. Hence ρL∗
f1· f2 (g1) = ρL∗

f1
(g1) = ρL∗

f2
(g1) . Likewise with the help of

Theorem 3 II (ii), one can obtain the same conclusion under the hypothesis σL∗
f1 (g1) �=

σL∗
f2 (g1) . This prove the second part of the theorem.

We omit the proof for quotient as it is an easy consequence of the above two
cases. �

Proof of Theorem 8. Case I. Let λ L∗
f1

(g1) = λ L∗
f1

(g2) (0 < λ L∗
f1

(g1) ,λ L∗
f1

(g2) < ∞)
and at least g1 or g2 is of regular relative L∗ -growth with respect to f1 . Now in view
of Theorem B (ii) it is easy to see that λ L∗

f1
(g1 ·g2) � λ L∗

f1
(g1) = λ L∗

f1
(g2) . If possible

let
λ L∗

f1 (g1 ·g2) < λ L∗
f1 (g1) = λ L∗

f1 (g2) . (41)

Also let τL∗
f1

(g1) �= τL∗
f1

(g2) . Then in view of Theorem 4 I (i) and (41) , we obtain

that τL∗
f1

(g1) = τL∗
f1

(
g1·g2
g2

)
= τL∗

f1
(g2) which is a contradiction. Hence λ L∗

f1
(g1 ·g2) =

λ L∗
f1

(g1)= λ L∗
f1

(g2) . Analogouslywith the help of Theorem 4 I (ii), the same conclusion

can also be derived under the condition τL∗
f1 (g1) �= τL∗

f1 (g2) . Hence the first part of the
theorem is established.

Case II. Let us consider that λ L∗
f1

(g1) = λ L∗
f2

(g1) (0 < λ L∗
f1

(g1) ,λ L∗
f2

(g1) < ∞.

Therefore in view of Theorem B (i) it follows that λ L∗
f1· f2 (g1) � λ L∗

f1
(g1) = λ L∗

f2
(g1)

and if possible let
λ L∗

f1· f2 (g1) > λ L∗
f1 (g1) = λ L∗

f2 (g1) . (42)

Further let τL∗
f1

(g1) �= τL∗
f2

(g1) . Then in view of the second part of Theorem 4 II

(i) and (42) we obtain that τL∗
f1

(g1) = τL∗
f1 · f2

f2

(g1) = τL∗
f2

(g1) which is a contradiction.

Hence λ L∗
f1· f2 (g1) = λ L∗

f1
(g1) = λ L∗

f2
(g1) . Similarly by Theorem 4 II (ii), we get the

same conclusion when τL∗
f1 (g1) �= τL∗

f2 (g1) and therefore the second part of the theorem
follows.

We omit the proof for quotient as it is an easy consequence of the above two
cases. �

6. Concluding Remarks

In this paper, we have investigated some properties of relative L∗ -type (relative
L∗ -lower type) and relative L∗ -weak type of entire functions. Here we actually prove
Theorem 1 to Theorem 4 under some different conditions stated in Theorem A to The-
orem D, respectively. Further some natural questions may arise about the sum and
product properties for relative L∗ -type (relative L∗ -lower type) and relative L∗ -weak
type of entire functions when the conditions of Theorem 5 to Theorem 8 are respec-
tively provided. Answers of these last questions are left to the interested researchers in
this area.
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