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SOME APPROXIMATION PROPERTIES

OF HEXAGONAL FOURIER SERIES

ALI GUVEN

Abstract. L. Leindler, A. Meir and V. Totik considered the ϕ -norm on C2π (the space 2π -
periodic continuous functions) and estimated the deviation ‖An ( f )− f‖ϕ in terms of the modu-
lus of continuity of f ∈C2π , where (An) is a sequence of convolution operators from C2π into
itself and ϕ is an increasing function on (0,∞) (Acta Math. Hung. 45 (1985), 441-443) . In
the present paper, an analogue of the theorem of Leindler, Meir and Totik is proved for functions
periodic with respect to the hexagon lattice. Also, this theorem is applied to obtain estimates
for approximation by partial sums of hexagonal Fourier series in Hölder and generalized Hölder
norms.
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