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Abstract. L. Leindler, A. Meir and V. Totik considered the ϕ -norm on C2π (the space 2π -
periodic continuous functions) and estimated the deviation ‖An ( f )− f‖ϕ in terms of the modu-
lus of continuity of f ∈C2π , where (An) is a sequence of convolution operators from C2π into
itself and ϕ is an increasing function on (0,∞) (Acta Math. Hung. 45 (1985), 441-443) . In
the present paper, an analogue of the theorem of Leindler, Meir and Totik is proved for functions
periodic with respect to the hexagon lattice. Also, this theorem is applied to obtain estimates
for approximation by partial sums of hexagonal Fourier series in Hölder and generalized Hölder
norms.

1. Introduction

Approximation properties of Fourier series of 2π -periodic of functions are studied
by several mathematicians. In particular, the degree of approximation by partial sums
and some linear means of Fourier series was investigated in different metrics. Results
of these investigations and more information on approximation properties of Fourier
series can be found in the excellent monographs [2], [15] and [17]. Also, there are
many theorems about approximation of functions of several real variables by multiple
Fourier series. Approximation properties of functions on cubes of the d -dimensional
Euclidean space R

d are studied by assuming that the functions are periodic in each
of their variables (see, for example [15, Sections 5.3 and 6.3] and [17, Vol. II, Chapter
XVII]). But, in the non-tensor product domains another periodicity is needed. The most
notable periodicity is the periodicity defined by lattices. The discrete Fourier analysis
on lattices was developed in [11].

A lattice is the discrete subgroup AZ
d =

{
Ak : k ∈ Z

d
}

of the Euclidean space
R

d , where A is a non-singular d×d matrix – the generator matrix of the lattice. The
lattice A−tr

Z
d , where A−tr is the transpose of the inverse matrix A−1, is called the dual

lattice of AZ
d . A bounded open set Ω ⊂ R

d is said to tile R
d with the lattice AZ

d if

∑
α∈AZd

χΩ (x+ α) = 1
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for almost all x ∈ R
d . In this case the set Ω is called a spectral set for the lattice

AZ
d and write Ω +AZ

d = R
d . The spectral set Ω is not unique. It is specified that it

contains 0 as an interior point and tiles R
d with the lattice AZ

d without overlapping
and without gap, i. e.

∑
k∈Zd

χΩ (x+Ak) = 1

for all x ∈ R
d and Ω +Ak and Ω +A j are disjoint if k �= j. For example we can take

Ω =
[− 1

2 , 1
2

)d
for the standard lattice Z

d (the lattice generated by the identity matrix) .
Let Ω be the spectral set of the lattice AZ

d . L2 (Ω) becomes a Hilbert space with
respect to the inner product

〈 f ,g〉Ω :=
1
|Ω|

∫
Ω

f (x)g(x)dx,

where |Ω| is the d -dimensional Lebesgue measure of Ω. A theorem of Fuglede states
that the set

{
e2π i〈α ,x〉 : α ∈ A−tr

Z
d
}

is an orthonormal basis of the Hilbert space L2 (Ω) ,
where 〈α,x〉 is the usual Euclidean inner product of α and x ([3]). This theorem sug-
gests that, by using the exponentials e2π i〈α ,x〉 (

α ∈ A−tr
Z

d
)

one can study Fourier
series and approximation on the spectral set of the lattice AZ

d .

A function f is said to be periodic with respect to the lattice AZ
d if

f (x+Ak) = f (x)

for all k ∈ Z
d .

If we consider the standard lattice Z
d and its spectral set

[− 1
2 , 1

2

)d
, Fourier series

with respect to this lattice coincide with usual multiple Fourier series of functions of
d -variables.

2. Hexagon lattice and hexagonal Fourier series

In the Euclidean plane R
2, besides the standard lattice Z

2 and the rectangular

domain
[− 1

2 , 1
2

)2
, the simplest lattice is the hexagon lattice and the simplest spectral

set is the regular hexagon. Also, it is well known that the hexagon lattice offers the
densest packing of R

2 with unit balls. Thus, the hexagon lattice and hexagonal Fourier
series have great importance in Fourier analysis.

The generator matrix and the spectral set of the hexagonal lattice HZ
2 are given

by

H =
[√

3 0
−1 2

]
and

ΩH =

{
(x1,x2) ∈ R

2 : −1 � x2,

√
3

2
x1± 1

2
x2 < 1

}
.
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It is more convenient to use the homogeneous coordinates (t1,t2,t3) that satisfies t1 +
t2 + t3 = 0. If we define

t1 := −x2

2
+

√
3x1

2
, t2 := x2, t3 := −x2

2
−

√
3x1

2
, (1)

the hexagon ΩH becomes

Ω =
{
(t1,t2,t3) ∈ R

3 : −1 � t1,t2,−t3 < 1, t1 + t2 + t3 = 0
}

,

which is the intersection of the plane t1 + t2 + t3 = 0 with the cube [−1,1]3 .
We use bold letters t for homogeneous coordinates and we denote by R

3
H the

plane t1 + t2 + t3 = 0, that is

R
3
H =

{
t = (t1,t2,t3) ∈ R

3 : t1 + t2 + t3 = 0
}

.

Also we use the notation Z
3
H for the set of points in R

3
H with integer components, that

is Z
3
H = Z

3 ∩R
3
H .

In the homogeneous coordinates, the inner product on L2 (Ω) becomes

〈 f ,g〉H =
1
|Ω|

∫
Ω

f (t)g(t)dt,

where |Ω| denotes the area of Ω, and the orthonormal basis of L2 (Ω) becomes{
φj (t) = e

2πi
3 〈j,t〉 : j ∈ Z

3
H , t ∈ R

3
H

}
.

Also, a function f is periodic with respect to the hexagonal lattice (or H -periodic) if
and only if f (t) = f (t+ s) whenever s ≡ 0 (mod3) , where t ≡ s (mod3) defined as

t1− s1 ≡ t2 − s2 ≡ t3 − s3 (mod3) .

It is clear that the functions φj (t) are H -periodic and if the function f is H -periodic
then ∫

Ω

f (t+ s)dt =
∫
Ω

f (t)dt,
(
s ∈ R

3
H

)
.

For every natural number n, we define a subset of Z
3
H by

Hn :=
{
j = ( j1, j2, j3) ∈ Z

3
H : −n � j1, j2, j3 � n

}
.

Note that, Hn consists of all points with integer components inside the hexagon nΩ.
Members of the set

Hn := span
{

φj : j ∈ Hn
}

, (n ∈ N)

are called hexagonal trigonometric polynomials. It is clear that the dimension of Hn is
#Hn = 3n2 +3n+1.
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The hexagonal Fourier series of an H -periodic function f ∈ L1 (Ω) is

f (t) ∼ ∑
j∈Z

3
H

f̂jφj (t) , (2)

where

f̂j =
1
|Ω|

∫
Ω

f (t)e−
2πi
3 〈j,t〉dt,

(
j ∈ Z

3
H

)
.

The n th partial sum of the series (2) is defined by

Sn ( f ) (t) := ∑
j∈Hn

f̂jφj (t) , (n ∈ N) .

We refer to [11] and [16] for more detailed information about Fourier analysis on
lattices and hexagonal Fourier series.

Approximation properties of some linear means of hexagonal Fourier series in
uniform, Hölder and generalized Hölder norms were investigated in [4]-[8]. But, up to
now, there are no results on the degree of approximation of partial sums of hexagonal
Fourier series in these norms.

3. Approximation on hexagonal domains

Hereafter, we shall write A � B for the quantities A and B, if there exists a
constant K > 0 such that A � KB holds.

We denote by C2π the space of 2π -periodic continuous functions on the real line,
which is a Banach space with respect to the norm

‖ f‖C2π
= sup

0�x�2π
| f (x)| .

The modulus of continuity of the function f ∈C2π is defined by

ω ( f ,δ ) := sup
0<|h|�δ

‖ f −Th ( f )‖C2π
,

where Th ( f ) (x) := f (x+h) .
A function f ∈C2π belongs to the Hölder class Hα

2π (0 < α � 1) if

sup
δ>0

‖ f −Tδ ( f )‖C2π

δ α < ∞,

or equivalently ω ( f ,δ ) � δ α for every δ > 0. The Hölder norm on Hα
2π is defined by

‖ f‖α := ‖ f‖C2π
+ sup

δ>0

‖ f −Tδ ( f )‖C2π

δ α .

We set ‖ f‖0 := ‖ f‖C2π
for convenience .
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In [10], the authors considered a more general norm, the ϕ -norm, defined by

‖ f‖ϕ := ‖ f‖C2π
+ sup

δ>0

‖ f −Tδ ( f )‖C2π

ϕ (δ )
, (3)

where ϕ is a positive increasing function on (0,∞) , and proved the following theorem.

THEOREM A. Let (An) be a sequence of linear convolution operators from C2π
into C2π with operator norms ‖An‖ and let ϕ be a positive increasing function on
(0,∞) . Then

‖An ( f )− f‖ϕ �
(

1+
2

ϕ (1/n)

)
‖An ( f )− f‖C2π

(4)

+(1+‖An‖) sup
0<δ�1/n

2ω ( f ,δ )
ϕ (δ )

for each f ∈C2π .

This theorem is useful for obtaining approximation estimates in Hölder norms. For
example, if we consider the sequence (Sn ( f )) of partial sums of the Fourier series of
f ∈ Hα

2π (0 < α � 1) , and if we take ϕ (δ ) = δ β , where 0 � β < α, (4) yields the
estimate

‖ f −Sn ( f )‖β � logn

nα−β , (5)

which was obtained by Prössdorf in [13].
We denote CH

(
Ω

)
the Banach space of H -periodic continuous functions on R

3
H ,

equipped with the uniform norm

‖ f‖CH(Ω) = sup
t∈Ω

| f (t)| .

The modulus of continuity of the function f ∈CH
(
Ω

)
is defined by

ωH ( f ,δ ) := sup
0<‖h‖�δ

‖ f −Th ( f )‖CH(Ω) ,

where
‖h‖ := max{|h1| , |h2| , |h3|}

for h = (h1,h2,h3) ∈ R
3
H and Th ( f ) (t) = f (t+h) . For 0 < α � 1 the Hölder class

Hα (
Ω

)
consists of functions f ∈CH

(
Ω

)
such that

sup
‖h‖>0

‖ f −Th ( f )‖CH(Ω)
‖h‖α < ∞,

or equivalently ωH ( f ,δ ) � δ α for δ > 0. The Hölder norm on Hα (
Ω

)
is defined by

‖ f‖Hα(Ω) := ‖ f‖CH(Ω) + sup
‖h‖>0

‖ f −Th ( f )‖CH(Ω)
‖h‖α .
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As in the case of 2π -periodic functions we assume that ‖ f‖H0(Ω) = ‖ f‖CH(Ω) . To

obtain an analogue of estimate (4) for hexagonal Fourier series we define the ϕ -norm
on CH

(
Ω

)
as

‖ f‖ϕ := ‖ f‖CH(Ω) + sup
‖h‖>0

‖ f −Th ( f )‖CH(Ω)
ϕ (‖h‖) .

Our main result is the following.

THEOREM 1. Let (An) be a sequence linear convolution operators from CH
(
Ω

)
into itself and ϕ be an increasing positive function on (0,∞) . Then, for every f ∈
CH

(
Ω

)
we have

‖An ( f )− f‖ϕ �
(

1+
2

ϕ (1/n)

)
‖An ( f )− f‖CH(Ω) (6)

+(1+‖An‖) sup
0<‖h‖�1/n

ωH ( f ,‖h‖)
ϕ (‖h‖) .

Proof. We use the method of [10] in proof of this theorem.
Set Rn := An ( f )− f for f ∈CH

(
Ω

)
. Hence,

‖An ( f )− f‖ϕ = ‖Rn‖ϕ = ‖Rn‖CH(Ω) + sup
‖h‖>0

‖Rn−Th (Rn)‖CH(Ω)
ϕ (‖h‖) .

For ‖h‖ � 1/n, we have

‖Rn −Th (Rn)‖CH(Ω)
ϕ (‖h‖) =

‖An ( f )− f −Th (An ( f )− f )‖CH(Ω)
ϕ (‖h‖)

�
‖An ( f )− f‖CH(Ω) +‖(An ( f )− f )(·+h)‖CH(Ω)

ϕ (‖h‖)

= 2
‖An ( f )− f‖CH(Ω)

ϕ (‖h‖) � 2
‖An ( f )− f‖CH(Ω)

ϕ (1/n)
.

For 0 < ‖h‖ � 1/n,

|Rn (t)−Th (Rn (t))|
ϕ (‖h‖) =

|Rn (t)−Rn (t+h)|
ϕ (‖h‖)

=
|An ( f ) (t)− f (t)− (An ( f ) (t+h)− f (t+h))|

ϕ (‖h‖)
� |An ( f ) (t)−An ( f ) (t+h)|

ϕ (‖h‖) +
| f (t)− f (t+h)|

ϕ (‖h‖)
=

|An ( f ) (t)−Th (An ( f ))(t)|
ϕ (‖h‖) +

| f (t)−Th ( f ) (t)|
ϕ (‖h‖)



SOME APPROXIMATION PROPERTIES OF HEXAGONAL FOURIER SERIES 37

=
|An ( f ) (t)−An (Th ( f ))(t)|

ϕ (‖h‖) +
| f (t)−Th ( f ) (t)|

ϕ (‖h‖)

�
‖An ( f −Th ( f ))‖CH(Ω)

ϕ (‖h‖) +
‖ f −Th ( f )‖CH(Ω)

ϕ (‖h‖)

� (1+‖An‖)
‖ f −Th ( f )‖CH(Ω)

ϕ (‖h‖)
� (1+‖An‖) ωH ( f ,‖h‖)

ϕ (‖h‖) .

Thus, we get

‖Rn−Th (Rn)‖CH(Ω)
ϕ (‖h‖) � 2

‖An ( f )− f‖CH(Ω)
ϕ (1/n)

+ (1+‖An‖) ωH ( f ,‖h‖)
ϕ (‖h‖)

for every h ∈ R
3
H with ‖h‖ > 0. This inequality and definition of the norm ‖·‖ϕ yield

(6) . �
Let An = Sn, where (Sn) is the sequence of partial sums of hexagonal Fourier

series. It is known that for the norm of

Sn : CH
(
Ω

) →CH
(
Ω

)
the estimate ‖Sn‖� (logn)2 holds ([12], [14]).

Let En ( f ) be the best approximation of f ∈CH
(
Ω

)
by elements of Hn, and let

L∗
n ∈Hn be the hexagonal trigonometric polynomial of best approximation of f in Hn.

Hence we have

En ( f ) = inf
S∈Hn

‖ f −S‖CH(Ω) = ‖ f −L∗
n‖CH(Ω) ,

and

‖ f −Sn ( f )‖CH(Ω) = ‖ f −L∗
n +Sn (L∗

n − f )‖CH(Ω)

� (1+‖S‖n)En ( f ) � (logn)2 En ( f ) .

Jackson type theorem ([16, Theorem 4.4]) states that

En ( f ) � ωH

(
f ,

1
n

)
, (n = 1,2, ...) .

Thus, we obtain for each f ∈CH
(
Ω

)
,

‖ f −Sn ( f )‖CH(Ω) � (logn)2 ωH

(
f ,

1
n

)
. (7)

Hence we get

‖ f −Sn ( f )‖CH(Ω) �
(logn)2

nα
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for f ∈ Hα (
Ω

)
, 0 < α � 1.

A non-decreasing continuous function ω : [0,∞) → [0,∞) is called a modulus of
continuity if

ω (0) = 0, ω (t1 + t2) � ω (t1)+ ω (t2) .

For any modulus of continuity ω , we define the generalized Hölder class Hω (
Ω

)
as the set of functions f ∈CH

(
Ω

)
for which

ωH ( f ,δ ) � ω (δ ) , (δ > 0) .

If ω (δ ) = δ α ,0 < α � 1, then it is clear that Hω (
Ω

)
coincides with Hα (

Ω
)
,

and ‖ f‖Hω (Ω) be ‖ f‖Hα(Ω) .

In [9], L. Leindler introduced a certain class of moduli of continuity:
for 0 � α � 1, let Mα denote the class of moduli of continuity ωα having the

following properties:
(i) for any α ′ > α there exists a natural number μ = μ (α ′) such that

2μα ′
ωα

(
2−n−μ)

> 2ωα
(
2−n) , (n = 1,2, ...) ,

(ii) for every natural number ν, there exists a natural number N (ν) such that

2ναωα
(
2−n−ν)

� 2ωα
(
2−n) , (n > N (ν)) .

It is clear that ω (δ ) = δ α ∈ Mα , but ωα (δ ) is an extension of ω (δ ) = δ α . Conse-
quently, in general, Hωα

(
Ω

)
is larger than Hα (

Ω
)
.

If f ∈ Hωα
(
Ω

)
, where ωα ∈ Mα (0 � α � 1) , by (7) we get

‖ f −Sn ( f )‖CH(Ω) � (logn)2 ωα (1/n) ,

and (6) gives the following theorem.

THEOREM 2. Let ωα ∈ Mα (0 � α � 1) , f ∈ Hωα
(
Ω

)
and ϕ be an increas-

ing function such that ωα (δ )
ϕ(δ ) is non-decreasing. Then

‖ f −Sn ( f )‖ϕ �
(

1+
1

ϕ (1/n)

)
ωα (1/n)(logn)2 .

It is known that if 0 � β < α � 1, ωβ ∈ Mβ and ωα ∈ Mα , then the function
ωα/ωβ is non-decreasing. Hence we obtain the following estimate.

COROLLARY 1. If 0 � β < α � 1, ωβ ∈ Mβ , ωα ∈ Mα and f ∈ Hωα
(
Ω

)
,

then

‖ f −Sn ( f )‖H
ωβ (Ω) �

ωα (1/n)
ωβ (1/n)

(logn)2 .

In the case of classical Fourier series, the analogue of Corollary 1 was proved in
[9].

In special case we get the following analogue of (5) :
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COROLLARY 2. If 0 � β < α � 1 and f ∈ Hα (
Ω

)
, then

‖ f −Sn ( f )‖Hβ (Ω) �
(logn)2

nα−β .
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