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A NOTE ON DEGENERATE HERMITE
POLY-BERNOULLI NUMBERS AND POLYNOMIALS

WASEEM A. KHAN

Abstract. In this paper, we introduce a new class of degenerate Hermite poly-Bernoulli polyno-
mials and give some identities of these polynomials related to the Stirling numbers of the second
kind. Some implicit summation formulae and general symmetry identities are derived by using
different analytical means and applying generating functions. These results extend some known
summations and identities of degenerate Hermite poly-Bernoulli numbers and polynomials.

1. Introduction

The 2-variable Kampe de Feriet generalization of the Hermite polynomials [3] and
[6] reads

[’71] r n—2r

Hn(x,y):n!%h. (1.1)

These polynomials are usually defined by the generating function

2 hnd t"
= 3ty (12)
and reduce to the ordinary Hermite polynomials H,(x) (see [1]) when y = —1 and x is

replaced by 2x.
Based on the definition and generating function above, we can define degenerate
Hermite polynomials by means of the generating function

(14201 +a)F = ZHn()Qy;?L)% (1.3)
n=0 :

where A # 0. Since (1+ M)% —¢' as A — 0, it is evident that (1.3) reduces to
(1.2). That is H,(x,y) limiting case of H,(x,y;A) when A — 0.

By equating coefficients of #" on both the sides of (1.3), the following representa-
tion of H,(x,y;A) is obtained

(_%)n—Zr (_%)r (_l)n*" )

rl(n—2r)! (1.4)

(5]
Hn(x,y;l):n!E
r=0
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Since limy,__,oH,(x,y; 1) = Hy(x,y), (1.1) is a limiting case of (1.4).

For A € C, Carlitz introduced the degenerate Bernoulli polynomials given by the

generating function

t X
b gaant ’ x , (see [4,19,20
ranE 1 A= Zﬁ B el !
so that m
. — n i
ﬁn(xsx)_ngz)<m)ﬁm(l)(l>n—m.

When x =0, 3,(1) = B,(0;4) are called the degenerate Bernoulli numbers.

From (1.5), we note that

Z hm Bn x A)n' A_}Qm(l‘f’kl)l
R "
¢ —rgz)Bn(x)H

where B, (x) are called the Bernoulli polynomials (see [1-27]).
The classical polylogarithm function Li(z) is

Lix(z 2 -, (ke Z) (see[15-18])
so for k<1,
Lig(z) = —In(1—2z), Lig(z) = ——, Li_i(z)=——
k\Z) = 2), 02_1—17 71Z_(1_Z)27
The poly-Bernoulli polynomials are given by
Lig(l —e™) ad
1"(76 2 BY (0=, (see[2, 10, 12]).

For k=1 in (1.9), we have
Lil(l—e_t) t

o= ! e"f:ig(x)tn
e —1 e —1 = !

From (1.7) and (1.10), we have

1.7)

(1.8)

(1.9)

(1.10)

Very recently, Pathan and Khan introduced the generalized Hermite-Bernoulli

polynomials of two variables HB,(qa) (x,y) defined by

(at—l) e = 2 B . (see [21-26])

(1.11)
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which is essentially a generalization of Bernoulli numbers, Bernoulli polynomials, Her-
mite polynomials and Hermite-Bernoulli polynomials B, (x,y) introduced by Dattoli
etal [6, p. 386 (1.6)] in the form

L ext+yt2 _ iHB (x y)ﬂ (1 12)
e —1 ST '

The Stirling number of the first kind is given by
p=x(x—1)---(x—n+1)= ZSI (n,D)x', (n=0) (1.13)

and the Stirling number of the second kind is defined by generating function to be

l

t
(¢ —1)" —n'ZSgln

7 (1.14)

A generalized falling factorial sum oy (n;A) can be defined by the generating func-
tion [27]

+1)
ad ik (1—|—7Lt) -1

omA)— =2 °
go T st -

where limy g ox(n;A) = Si(n).
In this paper, we first give definition of the degenerate Hermite poly-Bernoulli

(1.15)

>>\— >>

polynomials g ﬁ,Ek) (x,y;A) and then extend and illustrate how, a connection between
Hermite and Bernoulli polynomials can yield new expansions and representations. Some
implicit summation formulae and general symmetry identities are derived. These results
establish a link between these families of polynomials (namely degenerate Hermite and
degenerate poly-Bernoulli polynomials).

2. Degenerate Hermite poly-Bernoulli numbers and polynomials

For A € C, k € Z, we consider the degenerate Hermite poly-Bernoulli polynomi-
als given by the generating function

Lig(1—e") . 2 -
@T(HM)A (1+ %)% g UrRey) ) (2.1)

so that i
B (1, ;1) = 2( )ﬁm (W) Hyom (.32 ). (2.2)

m=0

When x =y =0 in (2.1), HB,Sk) (0,0;4) = ﬁ,gk)(k) are called the degenerate poly-
Bernoulli numbers.
(k)(

Note that 7B8" (x,:1) = yBu(x,y; 1) and limy__o B (x,v:4) = #BP (x,).
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For y =0 in (2.1), the result reduces to the degenerate poly-Bernoulli polynomials
of Kimet al [18., p. 2, Eq. (2.1)] defined as

Lig(1 —e™) R ) t"
—————(14+A)r =) B’ (xA)—, (keZ). (2.3)
(1+A0)% —1 gb n!
THEOREM 2.1. For n > 0, we have
n n B
W07 i) = 3 (1) B apeatent) .4

Proof. Applying Definition (2.1), we have

3 b i)

n=0
_ Lig(1—e™)

(1+A0)% —1

_(1+Az)‘(1+xz)2/r 11 L' g 5)
B . 0e—1Joee—1 e—1Jo et—1 ¢ '
(1+7Lt)x 1

(14 20)% (1 4+ A) 7

(k—2)—times

For k=2 in (2.5), we have

iaﬁf’(w;%)ﬁ (1+A0)% (1+M)/0 :

n! (1407 —1 et—1
B i Bu 1"\ (1+A0)i (1+7u)%
m=0m+1m! (1+AZ)I—1

oo Bm tm oo . tn
- (r;om—F 1 %) (%Hﬁn(ny,)L)E)

Replacing n by n —m in above equation, we have

n

=53 (0] segebentend)

On equating the coefficients of the like powers of t in the above equation, we get the
result (2.4). [

REMARK 1. For y =0 in Theorem (2.1), the result reduces to known result of
Kim et al [18., p. 3, Theorem (2.1)].

COROLLARY 1. For n >0, we have

n

B2 = 3 (1) oo pnliih). 26)

m=0
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THEOREM 2.2. For n > 0, we have

norn (RS (= DPHIS, (p+1,1) _
Hﬁn (X ys )_172{0<p> <l:21 lk(p—i—l) )Hﬁnp(xh%l)' (27)

Proof. From equation (2.1), we have

el (L= H(14+ A% (1+A2)7
EHﬂn(yv). ( . )( TR ) (2.8)

Now

~ | =
ok
~

~

I
~ | —

1
7le(1 — e_t) =

N
Il
—_

Ms

~ | =
~
Il
—_
=
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I
—_
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Il
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~ | =
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~| —
=~
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<

Il

o
o
~ =
Il +
— —

-1 I+p+1 S 1 l
( )k pSp+10 (2.9)
[ p+1 p'

From equations (2.8) and (2.9), we have

< A =D S(p+ L)\ P [ "
(ES% = I — | = (6, A)— |
Zb i Eo<zzl I it )\ G

n=0

Replacing n by n— p in the r.h.s of above equation and comparing the coefficients of
t", we get the result (2.7). U

REMARK 2. For y =0 in Theorem (2.2), the result reduces to known result of
Kimet al [18., p. 5, Theorem (2.2)].
COROLLARY 2. For n >0, we have

n p+l_ 1\l+p+1
B ) =Y (;) (2 S ;k(;!izl(erl’l))Bn_p(x;x). (2.10)

p=0 =1

THEOREM 2.3. For n > 1, we have

Hﬁrgk)(x'f'lvy’ ) Hﬁ" (xy’ )

< (n pl (—1)i+ptl |
_,,21<p> (120 W(l“)!s2(l7»’+1>> Hyp(x,y: ). 2.11)
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Proof. Using the Definition (2.1), we have

S B i) - 3wl i) g
n=0 !
Liz(1—e™) sl oo Lig(l—e™) . 2
=" 7 A1)~ AtV — — 7 At) 2 A /1
(1+)Lz)i—1(l+ 1) (14 At7) (1+M)%_ (14 A0)% (14 A2%)
=Lig(1—e ) (1+A0)7 (14 As2 )%
(1—e ")l

:EO (I + 1)

o0 —1/ 1\ 1 . R
=Y <j=o %(H—l)!&(p,H—l)) §(1+Az)x(1+m2)x

oo p—l( 1)l+p+l
:<ZI<ZOW(H—I)32([?,Z+1> )(ZH (x,y; A )
p=1 \ /=

Replacing n by n — p in the above equation and comparing the coefficients of ", we
get the result (2.11). O

REMARK 3. For y =0 in Theorem (2.3), the result reduces to known result of
Kimet al [18., p. 5, Theorem (2.3)].
COROLLARY 3. For n > 1, we have

n -1/ 1\l 1 n
B 1) Bl st = 3 (2 s+ 1)) () iy
p= =0
(2.12)

THEOREM 2.4. Forn >0, d € N and k € Z, we have

“1n 141 (—1)HPH IS, (1 + 1, p) I+x A
B (x ;2 Z D ( )d"_l_l 1Pt ( Y )
! a=0[=0p=1 pkl-l-l d

(2.13)

Proof. From equation (2.1), we can be written as

3l ) = SO b )
_ L= S a5 1+ )
(1+At>7—1a—0

Lig(1—e™") - Lx 21
(*) g 1+lt)l—1(l+)u) (14 At%)

oo [ I+1 Nl (] 1, I - 1 I+ x A n
(& (82 1) (S Som (5 03) )

=0 \p=1 =0 a
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Replacing n by n—1 in above equation and comparing the coefficient of ¢, we get the
result (2.13). O

REMARK 4. For y =0 in Theorem (2.4), the result reduces to known result of
Kim et al [18., p. 6., Theorem (2.4)].

COROLLARY 4. Forn >0, d € N and k € Z, we have

dzliprzl ( )dn—l—l (_1)1+P+1P!S2(l+l7p)ﬁ <l—|—x7t>
—] s |-
a=0[=0p=1 pkl+1 ’ d d
(2.14)

3. Implicit summation formulae involving degenerate
Hermite poly-Bernoulli polynomials

For the derivation of implicit formulae involving degenerate poly-Bernoulli poly-
nomials B,Ek) (x;A) and degenerate Hermite poly-Bernoulli polynomials Hﬁ,gk) (x,y; 1)
the same considerations as developed for the ordinary Hermite and related polynomi-
als in Khan et al [11] and Hermite-Bernoulli polynomials in Pathan and Khan [21-26]
holds as well. First we prove the following results involving degenerate Hermite poly-

Bernoulli polynomials g Bn(k) (x,y;1).

THEOREM 3.1. Let x,y € R and n > 0. The following lmpllCll summanon for-

mula involving degenerate Hermite poly-Bernoulli polynomials Hﬂn (x,y,A) holds
true

aB ety +wid) = i (Zt> 1B (6, ) H (1, w3 ). (3-1)

m=0

Proof. By the definition of degenerate poly-Bernoulli polynomials and the defini-
tion (1.3), we have

Lis(1=(&) ), L X awid )
7(1+M)x—1(1+ 1) (1442 (Zaﬁn(y, ><2H =

Now replacing n by n —m and comparing the coefficients of 7", we get the result
3.1). O

THEOREM 3.2. For x,y € R and n > 0. The following implicit summation for-

mula involving degenerate Hermite poly-Bernoulli polynomials Hﬁn( )(x, y,A) holds
true

n—2j [3]

upl i) = X300 (<7) L O (43) =

0 50 (n—2j—m)!’
(3.2)
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Lik(lfeit)
1
(1420) % —1

Proof. Applying the definition (2.1) to the term and expanding the
function (1+Af)% (14 2Ar2)7 at 1 =0 yields

Lik(l —eit)
(1+A0)% —1

(o) (£00.57) (B0
£ (5 () mwe ), a (3

Replacing n by n—2j, we have

(14 20)% (1 4+ A) 7

S b 2)

n=0

o [n=2 n
E(BRC ), ) )

n=0 \ m=0 j=0
(3.3)
Equating their coefficients of ", we get the result (3.2). O

THEOREM 3.3. Let x,y € R and n > 0. The following implicit summation for-

mula involving degenerate Hermite poly-Bernoulli polynomials Hﬁ,E“ (x,y,A) holds
true

nb i) = 3 (0 ) (<5), AP e, (4)

m=0 m
Proof. By exploiting the generating function (2.1), we can write the equation

i Oy = B2 4 nFasadiaant 65)
n=0 (14 A7 -1

2 "Nz (A
(B (2005

0

Replacing n by n —m in above equation and equating their coefficients of " leads to
formula (3.4). [

THEOREM 3.4. The following implicit summation formula involving degenerate

Hermite poly-Bernoulli polynomials Hﬂn(k) (x,y;A) holds true:

w1 =3 (1) (<3) Carplesn. 6o

r=0 r
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Proof. By the definition of degenerate Hermite poly-Bernoulli polynomials, we
have

= tn e tn
2, B+ L)+ B b (i)

n=0

_ B=e) a1+ At + 1)

(I+At)%r —1

[ < (x t” & 1 (A1) . "
—(2 i )(z( 1) S ) P

SPIDNTISTER) (1) A o i S )

Finally, equating the coefficients of the like powers of 7, we get (3.6). [

4. General symmetry identities for degenerate
Hermite poly-Bernoulli polynomials

In this section, we give general symmetry identities for the degenerate poly-Ber-
noulli polynomials B,Sk) (x;A) and the degenerate Hermite poly-Bernoulli polynomials

Hﬂn (x y;A) by applying the generating function(2.1) and (2.3). The results extend
some known identities of Young [27], Khan [13-15] and Khan et al [16], Pathan et al
[21-26].

THEOREM 4.1. Let a,b >0 and a #b. For x,y € R and n > 0. Then the
following identity holds true:

2 ( )bm o B0 (bx, b2y ) B (ax, Py A )

-y (Z)amb"—mHﬁ,E’i)m(axﬁ?y;A)Hﬁ,&“(bx,#y;x). (4.1)
m=0
Proof. Start with

_ ( Lix(1—e~@)Lig(1 — e~ ")
(L+ AT —1D)((1+A0)E —1

252

))(1+7Lt) (1+ A2 7. (4.2)

Then the expression for g(t) is symmetric in a and b and we can expand g(t) into series
in two ways to obtain

B b 2) S 5 arte)

=
=
~—

I
MS

3
Il
=]

n

( " ) a"_’"b’”Hﬁ,gli)m(bL bzy;l)Hﬁn(qk) (ax,azy;k)t—'.
n!

m

3
Il
=3

|
Ms
-



74 WASEEM A. KHAN

On the similar lines we can show that

bt)" & )"
b axa?yid) UL S B i)
m=0 :

<m> BB (e v M BY (b by A)

=
=

I
gk

3
Il
=}

I
M s
M=

3
Il
=
3
Il
=}

Comparing the coefficients of " on the right hand sides of the last two equations we
arrive the desired result. [J

REMARK 1. By setting b = 1 in Theorem 4.1, we immediately following result
COROLLARY.

( , ) a B, e,y A B (ax, a?y; )
0 m

- 2 (Zl)amHﬁ,Ek)m(ax,a2y;A)Hﬁ,E,k)(x’y;)L)' (4.3)
m=0

THEOREM 4.2. For all integers a > 0,b > 0, and n > 0, the following identity
holds true:

i (" ) a7 B, (bx, b2z 1) i ( l ) oi(a—1:2)BY (ay: 1)

m=0 m
S (n m
= Z < ) a"pm ﬂn ” ax a? A 2 ( l) b—1; l)ﬂm l(by,l) (4.4)
i=0
where generalized falling factorial sum o(n;A) is given by (1.15).
Proof. We now use

ab

. . ablx+y) 2
Liz(1 —e ) Lig(1 —e ) (14+At)% —1)(14+A1)" 2 (1+A1?) %

g(t): a b
((1+7Lt)l—1)((1+7tt)k—1)2
to find that
[ Li(i—e) e (1+A0% 1
g(t)—<(l+m)%_l>(l+7tt) (1+7L) ((l—i—lt)g 1)
(B0 2
(I+A)7r —1

—zHﬁn (bx,b%z; )%icn(a—l;l) - Y B (ay;2) r; (4.5)

n=0 * n=0
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Using a similar plan, we get

s0)= 3 up® (ax.a?z2) % 3 ou(b—1:2) 9 S 50 gy 2 (‘Zf (4.6)

n=0 =0 n=0

n!

By comparing the coefficients of " on the right hand sides of the last two equations,
we arrive at the desired result. [

5. Conclusion

The definition and generating function (2.1) of the degenerate Hermite poly-Bernoulli
polynomials HB,Ek) (x,y;4) plays a major role in obtaining new expansions,identities
and representations. We can introduce and study a class of related generalized polyno-
mials by defining degenerate Gould- Hopper poly-Bernoulli polynomials

Lig(1—e! . > , n
%(H—M)A(H—M’){ = EE)H[},SI" )(x,y;l)%. (5.1)

The equation (2.1) may be derived from (5.1) for r =2.
This process can easily be extended to establish degenerate multi-variable Hermite
poly-Bernoulli polynomials and Apostle type Bernoulli polynomials.
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