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HIGHER ORDER CORRECTED TRAPEZOIDAL

RULES IN LEBESGUE AND ALEXIEWICZ SPACES

ERIK TALVILA

Abstract. If f :[a,b] → R such that f (n) is integrable then integration by parts gives the formula

∫ b

a
f (x)dx =

(−1)n

n!

n−1

∑
k=0

(−1)n−k−1
[
φ (n−k−1)

n (a) f (k)(a)−φ (n−k−1)
n (b) f (k)(b)

]
+En( f ),

where φn is a monic polynomial of degree n and the error is given by

En( f ) =
(−1)n

n!

∫ b

a
f (n)(x)φn(x)dx.

This then gives a quadrature formula for
∫ b
a f (x)dx . The polynomial φn is chosen to optimize

the error estimate under the assumption that f (n) ∈ Lp([a,b]) for some 1 � p � ∞ or if f (n) is
integrable in the distributional or Henstock–Kurzweil sense. Sharp error estimates are obtained.
It is shown that this formula is exact for all such φn if f is a polynomial of degree at most n−1 .
If φn is a Legendre polynomial then the formula is exact for f a polynomial of degree at most
2n−1 .

1. Introduction

This paper is based on the following observation. Suppose we wish to approximate
the integral

∫ b
a f (x)dx . If the n th derivative of function f is integrable then repeated

integration by parts yields the formula,

∫ b

a
f (x)dx =

(−1)n

n!

n−1

∑
k=0

(−1)n−k−1
[
φ (n−k−1)

n (a) f (k)(a)−φ (n−k−1)
n (b) f (k)(b)

]
+En( f ), (1.1)

where φn is a monic polynomial of degree n and En( f ) = (−1)n
n!

∫ b
a f (n)(x)φn(x)dx .

This then gives a quadrature formula for the integral of f with error term En( f ) .
If f (n) ∈ Lp([a,b]) then the Hölder inequality gives the error estimate |En( f )| �

‖ f (n)‖p‖φn‖q/n! , where p and q are conjugate exponents. (If p,q∈ (1,∞) then p−1 +
q−1 = 1. If p = 1 then q = ∞ . If p = ∞ then q = 1. Hence, we define 1/∞ = 0.) A
natural question is then how to choose φn to minimize this error.
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For n = 1 this problem is completely solvable. It is easy to see that the unique
minimizing polynomial is φ1(x) = x− c , where c is the midpoint of [a,b] . See Corol-
lary 2.2. The case n = 2 was considered in [25]. It was shown there that the polyno-
mial that minimizes ‖φ2‖q is unique. An explicit minimizing polynomial was found
for p = 1,2,4/3,∞ . This gave sharp estimates on the error for these values of p , which
improved on a number of error estimates that appear in the literature. For other values
of p ∈ [1,∞] good estimates were found for the minimizing value of ‖φ2‖q . See also
[13].

In the present paper we examine the case n � 3. The minimizing polynomial
is shown to be unique and to have n simple zeros in [a,b] . When p = 1 it is the
Chebychev polynomial of the first kind, Tn . When p = 2 it is the Legendre polynomial
Pn . When p = ∞ it is the Chebychev polynomial of the second kind, Un . Each of
these is multiplied by a normalising factor so as to have leading coefficient one. These
polynomials are orthogonal on [−1,1] . Each of our polynomials is composed with a
linear function that maps the interval [a,b] onto the interval [−1,1] .

We also consider the case when
∫ b
a f (n)(x)dx exists as a Henstock–Kurzweil in-

tegral. This allows conditional convergence in the error term and includes the case of
convergence as an improper Riemann integral or as a Cauchy–Lebesgue integral. A
suitable norm is then the Alexiewicz norm, given as ‖g‖ = supa�x�b|

∫ x
a g(t)dt| . The

polynomial that minimizes the error is again shown to be unique and to have n simple
zeroes in [a,b] . It is given by φn(x) = 21−n(Tn(x)− 1) , suitably modified by a lin-
ear transformation as above. The same formulas hold when f (n−1) is merely assumed
to be continuous. Then f (n) exists as a distribution and the error integral exists as a
continuous primitive integral. For a discussion of the Henstock–Kurzweil integral and
Alexiewicz norm, see [14] or [23]. The continuous primitive integral is discussed in
[24].

The final section of the paper discusses the degree of exactness. If f is a polyno-
mial of degree at most n− 1 then En( f ) = 0 for all φn ∈ Pn . If φn is a normalized
Legendre polynomial of degree n , composed with a linear transformation as above,
then En( f ) = 0 for all polynomials f of degree at most 2n−1.

Several other authors have considered modified trapezoidal rules under conditions
on f (n) . Cerone and Dragomir [2] assume f (n) ∈ Lp and obtain formulas like (2.1)
but with larger error coefficients than in this theorem or in Corollaries 2.3, 2.4, 2.5.
Similarly with Dedić, Matić and Pečarić in [6]. Liu [16] assumes the condition f (n−1) ∈
C([a,b])∩BV([a,b]) and has a quadrature formula with degree of exactness equal to
n− 1. The problem is tackled using the Peano kernel by Dubeau [9] and Pečarić and
Ujević [20]. Ding, Ye and Yang [8] estimate the remainder when f ′′ is Henstock–
Kurzweil integrable.

2. f (n) ∈ Lp([a,b])

Let Pm denote the monic polynomials of degree m . For 1 � p < ∞ let Lp([a,b])
be the Lebesgue measurable functions such that ‖g‖p = (

∫ b
a |g(x)|p dx)1/p < ∞ . Let

L∞([a,b]) be the essentially bounded functions, with norm ‖g‖∞ = esssupx∈[a,b]|g(x)| .
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All measure-theoretic statements are with respect to Lebesgue measure.

THEOREM 2.1. Let n ∈ N . Let p,q ∈ [1,∞] be conjugate exponents. Let f :
[a,b] → R such that f (n−1) is absolutely continuous and f (n) ∈ Lp([a,b]) . Let φn ∈
Pn . Write

∫ b

a
f (x)dx =

(−1)n

n!

n−1

∑
k=0

(−1)n−k−1
[
φ (n−k−1)

n (a) f (k)(a)−φ (n−k−1)
n (b) f (k)(b)

]
+En( f ), (2.1)

where En( f ) = (−1)n
n!

∫ b
a f (n)(x)φn(x)dx . Then

|En( f )| � ‖ f (n)‖p‖φn‖q

n!
� Kn,p‖ f (n)‖p(b−a)n+1/q (2.2)

for a constant Kn,p that depends on n, p and φn but is independent of f and b− a.
There is a unique polynomial φ̃n ∈Pn that minimizes Kn,p . The estimate on |En( f )| is
then sharp in the sense that the coefficient of ‖ f (n)‖p cannot be reduced. The minimum
value of Kn,p is K̃n,p = 2−n−1/q‖φ̃n‖q/n! where the norm of φ̃n is taken over [−1,1] .

Proof. Integration by parts establishes (2.1). The Hölder inequality gives (2.2).
Define φ̃n ∈ Pn by φn(x) = [(b− a)/2]nφ̃n([2x− a− b]/[b−a]) . And write ‖φ̃n‖q =
(
∫ 1
−1|φ̃n(x)|q dx)1/q for 1 � q < ∞ and ‖φ̃n‖∞ = max|x|�1|φ̃n(x)| . Then for 1 � q < ∞ ,

‖φn‖q =
(

b−a
2

)n(∫ b

a

∣∣∣∣φ̃n

(
2x−a−b

b−a

)∣∣∣∣
q

dx

)1/q

=
(

b−a
2

)n+1/q

‖φ̃n‖q.

Similarly when q = ∞ . This produces the factor (b−a)n+1/q in (2.2).
Existence of a unique minimizing polynomial for ‖φn‖q is proved in Lemma 3.1.
To show the coefficient of ‖ f (n)‖p in (2.2) cannot be made any smaller, note that

for 1 < p < ∞ there is equality in the Hölder inequality when

f (n)(x) = d sgn[φn(x)]|φn(x)|1/(p−1)

for some d ∈ R and almost all x ∈ [a,b] . See [15, p. 46]. Integrate to get

f (x) = d
∫ x

a
· · ·
∫ xi+1

a
· · ·
∫ x2

a
sgn[φn(x1)]|φn(x1)|1/(p−1)dx1 · · ·dxi · · ·dxn

=
d

(n−1)!

∫ x

a
(x− t)n−1sgn[φn(t)]|φn(t)|1/(p−1)dt,

modulo a polynomial of degree at most n−1. When p = ∞ the condition for equality
in the Hölder inequality is that f (n)(x) = d sgn[φn(x)] for some d ∈ R and almost all
x ∈ [a,b] . See [15, p. 46]. We can integrate as before to get

f (x) =
d

(n−1)!

∫ x

a
(x− t)n−1sgn[φn(t)]dt,
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modulo a polynomial of degree at most n−1.
When p = 1 the condition for equality in the Hölder inequality, |∫ 1

−1 f (n)φn| =
‖ f (n)‖1‖φn‖∞ , is that φn(x) = d sgn[ f (n)(x)] for some d ∈R and almost all x∈ [−1,1] .
See [15, p. 46]. (Because of the scaling argument above, it suffices to work on [−1,1] .)
In general, this condition cannot be satisfied. Take α ∈ [−1,1] such that ‖φn‖∞ =
|φn(α)| . Let δ be the Dirac distribution. If α ∈ (−1,1) and f (n)(x) = δ (x− α)
then

∫ 1
−1 f (n)(x)φn(x)dx = φn(α) . Now, δ (x−α) �∈ L1([−1,1]) so use a δ -sequence.

Let ψm : [−1,1] → [0,∞) be continuous with support in (α −1/m,α +1/m) such that∫ α+1/m
α−1/m ψm(x)dx = 1. Let

fm(x) =
∫ x

−1
· · ·
∫ xi+1

−1
· · ·
∫ x2

−1
ψm(x1)dx1 · · ·dxi · · ·dxn

=
1

(n−1)!

∫ x

−1
(x− t)n−1ψm(t)dt.

Then fm ∈ L1([−1,1]) . Note that

‖ f (n)
m ‖1 =

∫ 1

−1

∣∣∣ f (n)
m (x)dx

∣∣∣= ∫ 1

−1
|ψm(x)|dx = 1.

And, since φn is continuous, we get

lim
m→∞

∣∣∣∣
∫ 1

−1
f (n)
m (x)φn(x)dx

∣∣∣∣= |φn(α)| = ‖φn‖∞,

thus showing that the coefficient of ‖ f (n)‖1 in (2.2) cannot be reduced. If |α| = 1 then
for each ε > 0 there is β ∈ (−1,1) such that ‖φn‖∞ < ε + |φn(β )| . �

Now we look at some special cases that can be solved completely.
When n = 1 we get the usual trapezoidal rule. See [4].

COROLLARY 2.2. If n = 1 the approximation becomes
∫ b
a f (x)dx

.= b−a
2 [ f (a)+

f (b)] with sharp error estimate

|E1( f )| �

⎧⎪⎨
⎪⎩

1
2‖ f ′‖1(b−a), p = 1

1
2

(
1

q+1

)1/q‖ f ′‖p(b−a)1+1/q, 1 < p < ∞
1
4‖ f ′‖∞(b−a)2, p = ∞.

Proof. The minimizing polynomial is φ1(x) = x− c , where c is the midpoint of
[a,b] . �

The case n = 2 is discussed in detail in [25], where φ2 and the exact values of
K̃2,p are found for p = 1,2,4/3,∞ .

As mentioned in the Introduction, the unique minimizing polynomial for ‖φn‖p is
known when p = 1,2,∞ . For these cases we can get an explicit form of the approx-
imation to the integral that minimizes the error and compute the exact value of K̃n,p
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from Theorem 2.1. Since [a,b] is a compact interval we have L∞([a,b]) ⊆ Ls([a,b]) ⊆
Lr([a,b]) ⊆ L1([a,b]) if 1 � r � s � ∞ . The estimate for p = 1 then applies when
f ∈ Lr([a,b]) for 1 � r � ∞ . The estimate for p = 2 applies when f ∈ Lr([a,b]) for
2 � r � ∞ .

COROLLARY 2.3. If f (n) ∈ Lr([a,b]) for some 1 � r � ∞ then

∫ b

a
f (x)dx

.=
1

(n−1)!

n−1

∑
k=0

[
(b−a)k+1(2n−k−2)!(n−k−1)!

22k+1(2n−2k−2)!(k+1)!

][
f (k)(a)+(−1)k f (k)(b)

]
(2.3)

with sharp error estimate

|En( f )| � ‖ f (n)‖1(b−a)n

22n−1n!
. (2.4)

Proof. The unique polynomial minimizing ‖·‖∞ over Pn on [−1,1] is φ̃n(x) =
21−nTn(x) , where Tn is the Chebyshev polynomial of first type. See [3, p. 63], [18,
p. 39] or [21, p. 31, 45]. Since Tn(cosθ ) = cos(nθ ) we have ‖φ̃n‖∞ = 21−n . The
minimizing polynomial on [a,b] is then φn(x) = (b−a)n21−2nTn([2x−a−b]/[b−a]) .
From the proof of the Theorem, the sharp error estimate is then

|En( f )| � ‖ f (n)‖1‖21−nTn‖∞

n!

(
b−a

2

)n

=
‖ f (n)‖1(b−a)n

22n−1n!
.

To compute the expansion in (2.1) we need the derivatives of φn . We have,

φ (m)
n (x) = 21+m−2n(b−a)n−mT (m)

n ([2x−a−b]/[b−a]) . Derivatives of Tn can be com-
puted in terms of Gegenbauer polynomials Cλ

n . See [12, 8.949.2, 8.937.4]. Then

φ (m)
n (b) = 21+m−2n(b−a)n−mn2m−1(m−1)!Cm

n−m(1)

=
(b−a)n−mn(n+m−1)!m!

22n−2m−1(n−m)!(2m)!
.

Since Tn(−x) = (−1)nTn(x) get φ (m)
n (a) = (−1)n+mφ (m)

n (b) . This gives (2.3). �

COROLLARY 2.4. If f (n) ∈ Lr([a,b]) for some 2 � r � ∞ then

∫ b

a
f (x)dx

.=
n!

(2n)!

n−1

∑
k=0

[
(b−a)k+1(2n−k−1)!

(n−k−1)!(k+1)!

][
f (k)(a)+(−1)k f (k)(b)

]
(2.5)

with sharp error estimate

|En( f )| � ‖ f (n)‖2n!(b−a)n+1/2

(2n+1)1/2(2n!)
. (2.6)
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Proof. The unique polynomial minimizing ‖·‖2 over Pn on [−1,1] is φ̃n(x) =
2n(n!)2Pn(x)/(2n)! , where Pn is the Legendre polynomial. See [3, p. 109], [19, p. 48]
or [21, p. 62]. As in the proof of Corollary 2.3, the error estimate follows from the
integral

∫ 1
−1 P2

n (x)dx = 2/(2n+1) [1, 22.2.10].
Derivatives of Pn can be computed from the hypergeometric representation Pn(x)=

2F1(−n,n+1;1;(1− x)/2) [1, 22.5.49, 15.2.2]. We get

P(m)
n (x) =

(−n)m(n+1)m(−1)m

(1)m2m 2F1(m−n,m+n+1;m+1;(1− x)/2),

where (a)m is the Pochhammer symbol. Since 2F1(a,b;c;0) = 1 we get

P(m)
n (1) =

(n+m)!
(n−m)!m!2m .

This gives

φ (m)
n (b) =

(b−a)n−m(n!)2(n+m)!
(2n)!(n−m)!m!

with φ (m)
n (a) = (−1)n+mφ (m)

n (b) . And, (2.5) follows. �

COROLLARY 2.5. If f (n) ∈ L∞([a,b]) then

∫ b

a
f (x)dx

.=
1
n!

n−1

∑
k=0

[
(b−a)k+1(2n−k)!(n−k−1)!
22k+2(2n−2k−1)!(k+1)!

][
f (k)(a)+(−1)k f (k)(b)

]
(2.7)

with sharp error estimate

|En( f )| � ‖ f (n)‖∞(b−a)n+1

22nn!
. (2.8)

Proof. The unique polynomial minimizing ‖·‖1 over Pn on [−1,1] is φ̃n(x) =
2−nUn(x) , where Un is the Chebyshev polynomial of second type. See [3, p. 222], [11,
p. 26] or [21, p. 72, 83]. From the formula Un(cosθ ) = sin([n + 1]θ )/sinθ we can
directly compute

‖Un‖1 =
1

n+1

∫ (n+1)π

0
|sinθ |dθ = 2.

Then ‖φ̃n‖1 = 21−n and the error estimate (2.8) follows as in the previous corollaries.
Derivatives of Un can be computed in terms of Gegenbauer polynomials [12,

8.949.5, 8.937.4]. We get

U (m)
n (1) = 2mm!

(
n+m+1

n−m

)
.

And,

φ (m)
n (b) =

(b−a)n−mm!(n+m+1)!
22n−2m(2m+1)!(n−m)!



CORRECTED TRAPEZOIDAL RULES 83

with φ (m)
n (a) = (−1)n+mφ (m)

n (b) . Expansion (2.7) now follows. �
The minimizing polynomial for ‖·‖p is even or odd about the midpoint of [a,b]

as n is even or odd. See Lemma 3.1. We use this simplification when computing the
composite rule for uniform partitions. The polynomial φ̃n can be replaced with any of
the minimizing polynomials from Corollaries 2.3, 2.4 or 2.5.

COROLLARY 2.6. Let φ̃n ∈ Pn such that φ̃n is even or odd as n is even or odd.
The composite rule for a uniform partition, xi = a+(b−a)i/m, 0 � i � m, is∫ b

a
f (x)dx

=
1
n!

	(n−1)/2

∑
�=0

(
b−a
2m

)2�+1

φ̃ (n−2�−1)
n (1)

[
f (2�)(a)+ f (2�)(b)+2

m−1

∑
i=1

f (2�)(xi)

]
(2.9)

+
1
n!

	n/2

∑
�=1

(
b−a
2m

)2�

φ̃ (n−2�)
n (1)

[
f (2�−1)(a)− f (2�−1)(b)

]
+Em

n ( f ), (2.10)

where
|Em

n ( f )| � Kn,p‖ f (n)‖p(b−a)n+1/qm−n. (2.11)

Proof. Write
∫ b
a f (x)dx

.= ∑m
i=1
∫ xi
xi−1

f (x)dx and use the approximation in the The-
orem on each interval [xi−1,xi] . Scaling to [xi−1,xi] gives

φn,i(x) =
(

b−a
2m

)n

φ̃n

(
2mx−2ma−2(b−a)i+b−a

b−a

)
.

Upon changing summation order, this gives∫ b

a
f (x)dx

.=
1
n!

n−1

∑
k=0

(−1)k+1
(

b−a
2m

)k+1 m

∑
i=1

[
φ̃ (n−k−1)

n (−1) f (k)(xi−1)−φ̃ (n−k−1)
n (1) f (k)(xi)

]
.

We have that φ̃ (n−k−1)
n is even whenever k is odd, and is odd whenever k is even.

Hence, the sum on i telescopes when k is odd.
The error is written

|Em
n ( f )| = 1

n!

∣∣∣∣
∫ b

a
f (n)(x)ψn(x)dx

∣∣∣∣� ‖ f (n)‖p‖ψn‖q

n!
,

where ψn(x) = φn,i(x)χ(xi−1,xi)(x) . And, with Δx = (b−a)/(2m) ,

‖ψn‖q =

(
m

∑
i=1

∫ xi

xi−1

|φn,i(x)|q dx

)1/q

=
(

b−a
2m

)n
(

m

∑
i=1

∫ xi

xi−1

∣∣∣∣φ̃n

(
2x− xi−1− xi

Δx

)∣∣∣∣
q

dx

)1/q

=
(

b−a
2m

)n+1/q
(

m

∑
i=1

∫ 1

−1
|φ̃n(x)|q dx

)1/q

=
(

b−a
2

)n+1/q

‖φ̃n‖qm
−n.
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The constant is proved sharp as in the Theorem. In the case p = 1 the same method
works since at each point where ψn attains its extrema, it is either continuous from the
left or from the right and we can take a δ -sequence supported on the left or right. �

When n = 1, the sum in (2.10) is absent and we get the usual composite trapezoidal
rule ∫ b

a
f (x)dx

.=
b−a
2m

[
f (a)+ f (b)+2

m−1

∑
i=1

f (xi)

]
.

When n = 2, the sum in (2.9) contains only the � = 0 term. Derivatives of f then
appear as f ′(a) and f ′(b) but not at interior nodes, cf. [25].

If f (n) ∈ Lp([a,b]) for a value of p different from 1, 2, or ∞ we can use the
norm ‖ f (n)‖p in (2.2) and estimate the value of ‖φn‖q , even though the minimizing
polynomial is not known. This gives an estimate of K̃n,p . Together with the exact
values of K̃n,p from Corollaries 2.3, 2.4, 2.5, these give the asymptotic behaviour of
K̃n,p as n → ∞ , uniformly valid for all p ∈ [1,∞] .

PROPOSITION 2.7. Let K̃n,p be the constant from Theorem 2.1. Then K̃n,1 =
21−2n/n! , K̃n,2 = n!(2n+ 1)−1/2/(2n)! , K̃n,∞ = 2−2n/n! . For each fixed n, Kn,p is
a decreasing function of p. Hence, Kn,p � Kn,1 .

Proof. The values of K̃n,p for p = 1,2,∞ are given in Corollaries 2.3, 2.4, 2.5,
respectively.

If q < r < ∞ then Jensen’s inequality gives

‖φ̃n‖r
q =

(
2
∫ 1

−1
|φ̃n(x)|q dx

2

)r/q

� 2r/q
∫ 1

−1
|φ̃n(x)|r dx

2
= 2r/q−1‖φ̃n‖r

r.

And, ‖φ̃n‖q � 21/q−1/r‖φ̃n‖r .
Let 1 � p1 < p2 � ∞ with corresponding conjugate exponents q1,q2 . Let φ̃n be

the minimizing polynomial for ‖·‖q1 . Then

Kn,p2 � ‖φ̃n‖q2

n!2n+1/q2
� 21/q2−1/q1‖φ̃n‖q1

n!2n+1/q2
= Kn,p1 .

Hence, Kn,p is decreasing. �

3. Lemma on minimizing polynomials

For each of the Lp norms there is a unique monic polynomial that minimizes the
norm. Define Fq :Pm → R by Fq(φ) = ‖φ‖q where 1 � q � ∞ and the norms are over
compact interval [a,b] . Since Fq(φ) is bounded below for φ ∈ Pm it has an infimum
over Pm . It also has a unique minimum at a polynomial that has m roots in [a,b] . As
well, the error-minimizing polynomial is even or odd about the midpoint of [a,b] as m
is even or odd.
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LEMMA 3.1. (a) For m � 2 , let φ ∈ Pm with a non-real root. There exists ψ ∈
Pm with a real root such that Fq(ψ) < Fq(φ) .

(b) Let φ ∈ Pm with a root t �∈ [a,b] . There exists ψ ∈ Pm with a root in [a,b]
such that Fq(ψ) < Fq(φ) .

(c) If φ minimizes Fq then it has m simple zeros in [a,b] .
(d) If Fq has a minimum in Pm it is unique.
(e) Fq attains its minimum over Pm .
(f) If φ ∈ Pm is neither even nor odd about c := (a+ b)/2 then there is a poly-

nomial ψ ∈ Pm that is either even or odd about c such that Fq(ψ) < Fq(φ) .
(g) The minimum of Fq occurs at a polynomial φ ∈ Pm with m simple zeros in

[a,b] . If m is even about c then so is φ . If m is odd about c then so is φ . This
minimizing polynomial is unique.

(h) Suppose φ ∈ Pm is a minimum of F∞ . Then φ(x) = ∏m
i=1(x− ti) for a < t1 <

t2 < · · · < tm < b. For each 1 � i � m− 1 there is ξi ∈ (ti,ti+1) such that |φ(ξi)| =
‖φ‖∞ .

This result is proved in [25]. See also [3], [5], [7], [11], [17], [18], [19], [21], [22],
[26] for background on this problem and references to original papers by Bernstein,
Chebyshev, Jackson, etc.

The cases q = 1,2,∞ are used in Corollaries 2.5, 2.4, 2.3, respectively. Here, the
minimizing polynomials are orthogonal polynomials. No explicit solutions appear to
be known for any other values of q . Gillis and Lewis [10] give a heuristic argument to
show that for no other values of q are the minimizing polnomials a family of orthogonal
polynomials.

4. Alexiewicz norm

The Alexiewicz norm is useful for functions or distributions for which
∫ b
a f (x)dx

exists but
∫ b
a | f (x)|dx diverges. It is defined as ‖ f‖ = supa�x�b|

∫ x
a f (t)dt| . If F ∈

C([a,b]) with F(a) = 0 then define Ac to be the Schwartz distributions, f , for which
F ′ = f . The derivative is understood in the distributional sense, 〈F ′,φ〉 = −〈F,φ ′〉 =
−∫ b

a F(x)φ ′(x)dx where φ ∈ C∞
c ((a,b)) (smooth functions with compact support in

(a,b)). Then Ac is a Banach space isometrically isomorphic to the continuous func-
tions on [a,b] that vanish at a , and ‖ f‖ = ‖F‖∞ where F is the unique primitive
of f . This integration process is often called the continuous primitive integral and∫ x
a f (x)dx = F(x) for all x ∈ [a,b] . See [24] for details. Since this integral uses the

space of all continuous functions as primitives, it includes the Lebesgue integral (whose
primitives are absolutely continuous) and the Henstock–Kurzweil integral (whose prim-
itives are continuous but need not be absolutely continuous and are described in [14]).

An example of a function integrable in the Henstock–Kurzweil sense but not in
L1([−1,1]) is given by f (x) = F ′(x) where

F(x) =
{

x2 sin(x−3), x �= 0
0, x = 0.
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The pointwise derivative F ′(x) exists at each point. If we take F to be a continuous
monotonic function whose derivative is zero almost everywhere then the Lebesgue inte-
gral

∫ b
a F ′(x)dx = 0 while the continuous primitive integral gives

∫ b
a F ′ = F(b)−F(a) .

If f is a continuous function differentiable nowhere in the pointwise sense then the dis-
tributional derivative F ′ ∈ Ac and

∫ x
a F ′ = F(x)−F(a) for all x ∈ [a,b] , even though

F ′ is a distribution that does not have any pointwise values and the Lebesgue integral
of F ′ is meaningless. Additional examples are given in [24].

The integration by parts formula for f ∈ Ac with primitive F and function g of
bounded variation is given in terms of a Riemann–Stieltjes integral

∫ b

a
f (x)g(x)dx = F(b)g(b)−F(a)g(a)−

∫ b

a
F(x)dg(x). (4.1)

The Hölder inequality is then∣∣∣∣
∫ b

a
f (x)g(x)dx

∣∣∣∣� ‖ f‖(|g(b)|+Vg). (4.2)

See [14, Theorem 12.3].

THEOREM 4.1. Let n ∈ N . Let f : [a,b] → R such that the pointwise derivative
f (n−1) is continuous. Then the distributional derivative f (n) ∈ Ac . Write

∫ b

a
f (x)dx =

1
(n−1)!

n−2

∑
k=0

[
(b−a)k+1(2n−k−2)!(n−k−1)!

22k+1(2n−2k−2)!(k+1)!

][
f (k)(a)+(−1)k f (k)(b)

]

+

{
(b−a)n f (n−1)(a)

n!22n−2 , n odd
0, n even

+En( f ). (4.3)

Then

|En( f )| � ‖ f (n)‖(b−a)n

(n−1)!22n−2 . (4.4)

The estimate on |En( f )| is then sharp in the sense that the coefficient of ‖ f (n)‖ cannot
be reduced.

Proof. Let φn ∈Pn . From (2.1) and the Hölder inequality (4.2) we have |En( f )|�
‖ f (n)‖(|φn(b)|+Vφn) . Note that Vφn =

∫ b
a |φ ′

n(x)|dx = ‖φ ′
n‖1 = n‖ψn−1‖1, where

ψn−1 = φ ′
n/n . Hence, to minimize the variation over φn ∈ Pn we minimize the one-

norm over ψn−1 ∈ Pn−1 . Adding a constant to φn does not affect the variation so the
unique minimizing polynomial on [−1,1] is (cf. proof of Corollary 2.5)

φ̃n(x) = −n21−n
∫ 1

x
Un−1(t)dt

= −21−n
∫ 1

x
T ′
n(t)dt = 21−n[Tn(x)−1]. (4.5)
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The minimizing polynomial on [a,b] is

φn(x) = 21−2n (b−a)n
[
Tn

(
2x−a−b

b−a

)
−1

]
.

We have φn(b) = 0 and

Vφn = 22−2n(b−a)n−1
∫ b

a

∣∣∣∣T ′
n

(
2x−a−b

b−a

)∣∣∣∣ dx

= 21−2n(b−a)n‖T ′
n‖1 = 21−2n(b−a)nn‖Un−1‖1 = 22−2n(b−a)nn.

The Hölder inequality (4.2) now gives the estimate in (4.4).
Formula (4.3) is computed as in the proof of Corollary 2.3.
Now show there can be equality in (4.4). Using (4.5), integrate by parts (4.1) to

get

En( f ) =
(−1)n

n!

∫ 1

−1
f (n)(x)φ̃n(x)dx

=

⎧⎨
⎩

− 21−n

(n−1)!
∫ 1
−1 f (n−1)(x)Un−1(x)dx, n even

− 22−n f (n−1)(−1)
n! + 21−n

(n−1)!
∫ 1
−1 f (n−1)(x)Un−1(x)dx, n odd.

By the usual Hölder inequality,

21−n

(n−1)!

∣∣∣∣
∫ 1

−1
f (n−1)(x)Un−1(x)dx

∣∣∣∣ � 21−n

(n−1)!
‖ f (n−1)‖∞‖Un−1‖1

=
22−n

(n−1)!
‖ f (n−1)‖∞.

As in the proof of Theorem 2.1 there is equality when f (n−1)(x) = d sgn[Un−1(x)] for
some d ∈ R . Since the final term in (4.1) can then have any sign, we integrate to get

f (x) =
d

(n−2)!

∫ x

−1
(x− t)n−2sgn[Un−1(t)]dt

for n � 2, modulo a polynomial of degree at most n−2 that vanishes at −1. For n = 1,
f (x) = d(x+1) . Hence, the coefficient in (4.4) cannot be reduced. �

When n = 1 the minimizing polynomial is φ1(x) = x− b . The approximation
becomes

∫ b
a f (x)dx

.= f (a)(b−a) with error |E1( f )| � ‖ f ′‖(b−a) .
When n = 2 the minimizing polynomial is φ2(x) = (x−a)(x−b) . The approxi-

mation reduces to the usual trapezoidal rule,
∫ b
a f (x)dx

.= (b−a)[ f (a)+ f (b)]/2 with
error |E2( f )| � ‖ f ′′‖(b− a)2/4. This appears as Theorem 5.1 in [25]. An alternate
form of the Alexiewicz norm is also considered in this paper.

If f (n) ∈ Ac then f (n−1) ∈ L∞([a,b]) and the results of Theorem 4.1 agree with
Corollary 2.5 with n reduced by one.
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COROLLARY 4.2. The composite rule for a uniform partition, xi = a+(b−a)i/m,
0 � i � m, is

∫ b

a
f (x)dx

.=
1

(n−1)!

	(n−2)/2

∑
�=0

(
b−a

m

)2�+1 (2n−2�−2)!(n−2�−1)!
24�+1(2n−4�−2)!(2�+1)!

×
[

f (2�)(a)+ f (2�)(b)+2
m−1

∑
i=1

f (2�)(xi)

]

+
1

(n−1)!

	(n−1)/2

∑
�=1

(
b−a
m

)2� (2n−2�−1)!(n−2�)!
24�−1(2n−4�)!(2�)!

[
f (2�−1)(a)− f (2�−1)(b)

]

+

{
(b−a)n

n!22n−2mn ∑m−1
i=0 f (n−1)(xi), n odd
0, n even.

A sharp estimate for the error is

|Em
n ( f )| � ‖ f (n)‖(b−a)n

mn−1(n−1)!22n−2 . (4.6)

Proof. Using the minimizing polynomial (4.5), the proof of the approximation
formula is similar to the proof of Corollary 2.6. With the notation of that corollary,

Vψn =
m

∑
i=1

∫ xi

xi−1

|φ ′
n,i(x)|dx =

(
b−a
2m

)n−1 m

∑
i=1

∫ xi

xi−1

∣∣∣∣φ̃ ′
n

(
2x− xi−1− xi

Δx

)∣∣∣∣ dx

=
(

b−a
2m

)n m

∑
i=1

∫ 1

−1
|φ̃ ′

n(x)|dx =
(

b−a
2m

)n

mV(21−nTn)

=
(

b−a
2m

)n

m21−nn‖Un−1‖1 =
(b−a)nn
mn−122n−2 .

Formula (4.6) now follows from the Hölder inequality (4.2). �

5. Degree of exactness

We now show that formula (2.1) is exact for all φn ∈ Pn when f is a polyno-
mial of degree at most n− 1 and this formula is exact for f being a polynomial of
degree at most 2n−1 when φn is the composition of a linear function and a Legendre
polynomial.

THEOREM 5.1. Let f ∈Cn−1([a,b]) . Write

∫ b

a
f (x)dx =

(−1)n

n!

n−1

∑
k=0

(−1)n−k−1
[
φ (n−k−1)

n (a) f (k)(a)−φ (n−k−1)
n (b) f (k)(b)

]
+En( f ), (5.1)



CORRECTED TRAPEZOIDAL RULES 89

where En( f ) = (−1)n
n!

∫ b
a f (n)(x)φn(x)dx and φn ∈ Pn . (a) If f is a polynomial of

degree at most n− 1 then (5.1) is exact (En( f ) = 0 ) for all φn ∈ Pn . (b) If f is a
polynomial of degree at most 2n−1 then (5.1) is exact (En( f ) = 0 ) if and only if

φn(x) =
(b−a)n(n!)2

(2n!)
Pn

(
2x−a−b

b−a

)
,

where Pn is a Legendre polynomial.

Proof. (a) Integrate by parts. (b) First consider the interval [−1,1] . By (a) and
linearity we need only consider f (x) = ∑2n−1

i=n Aixi for real numbers Ai . Let φ ∈ Pn .
We then require

(−1)nn!En( f ) =
2n−1

∑
i=n

Aii(i−1) · · ·(i−n+1)
∫ 1

−1
xi−nφn(x)dx = 0.

But the terms Aii(i− 1) · · · (i− n+ 1) are linearly independent so we require the mo-
ments

∫ 1
−1 x jφn(x)dx to vanish for 0 � j � n− 1. The Legendre polynomial Pn sat-

isfies this integral condition [12, 7.222.1]. Legendre polynomials are orthogonal with
respect to the inner product 〈g,h〉 =

∫ 1
−1 f (x)g(x)dx . If there was another polyno-

mial ψn ∈ Pn that also satisfied the moment condition then it could be expanded as
ψn(x) = ∑n

k=0 BkPk(x) where Bk = 〈ψn,Pk〉/〈Pk,Pk〉 . The moment condition gives

0 =
∫ 1

−1
x jψn(x)dx =

j

∑
k=0

Bk

∫ 1

−1
x jPk(x)dx

for each 0 � j � n−1. Putting j = 0 gives 0 = B0
∫ 1
−1 P0(x)dx . But

∫ 1
−1 xmPm(x)dx =

(m!)22m+1/(2m+1)! �= 0 [12, 7.224.3]. So, B0 �= 0. Successively putting j = 1,2,3, . . .
now shows Bk = 0 for each 0 � k � n− 1. Hence, ψn is a multiple of Pn . A linear
transformation gives the required polynomial on [a,b] . �
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