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UNIQUENESS SETS FOR FOURIER SERIES

ASHOT VAGHARSHAKYAN

Abstract. This article explores some of the sets of uniqueness for Fourier series. The case, when
these sets have zero Lebesgue measure is considered.

1. Introduction

In this article the following problem is discussed: to find conditions on a set E ⊆
[−π ,π ] , such that Fourier series of a function f (x) , −π < x < π , from the given classis,
which converges to zero at each point of the set E , is identically zero.

The first nontrivial result of this type was proved by G. Cantor and W. Young, see
[1], p. 191.

THEOREM 1. Let ck → 0 and for each point x ∈ [−π ,π ]\F we have

lim
n→∞

n

∑
k=−n

cke
ikx = 0,

where F is a countable set. Then ck = 0 for each k ∈ Z .

D. Menshov, see [1], p. 806, has constructed a nonzero measure dμ which has the
zero Lebesgue measure support and such that its Fourier coefficients go to zero. The
partial sums, of its Fourier series converge to zero outside of the set supp(dμ) .

2. Auxiliary definitions and results

More information, about the following quantities, related with Hausdorff’s mea-
sure and the capacities, one can find in [3], pp. 13–46. For convenience of the reader
here we give some definitions.

DEFINITION 1. Let h(x) � 0, 0 � x � 1 be a non-negative, increasing function
and h(0) = 0. Let the subset E ⊆ {z; |z| = 1} be covered by arcs {Sk}∞

k=1 , i.e.

E ⊆
∞⋃

k=1

Sk.
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Then we put

Mh(E) = inf

(
∞

∑
k=1

h(|Sk|)
)

,

where |S| is the length of the arc S and the infimum is taken over all covers.

DEFINITION 2. Let 0 < α < 1 and E be bounded Borel set. The Cα(E) – capac-
ity of the set E is defined by the formula

Cα(E) =
(

inf
dμ≺E

∫
E

∫
E

dμ(x)dμ(y)
|x− y|α

)−1

,

where dμ ≺ E means that dμ is a probability measure with support in E .
For each number 0 < α < 1 from Parseval’s equality it follows that there is a

constant M such that,

∞

∑
k=−∞

| f̂k|2|k|α � M
∫ π

−π
| f (x)|2dx+M

∫ π

−π

∫ π

π

| f (x)− f (y)|2
|x− y|1+α dxdy.

The following A. Zigmund’s statement one can find in [6], p. 22. Let g(−π) = g(π)
and the function g(x) , −π � x � π have bounded variation. If

|g(x)−g(y)|� M ·h(|x− y|)

then there is a constant B such that the Fourier coefficients of the function g(x) satisfy
the inequalities

∑
2 j�|k|<2 j+1

|ĝk|2 � B2− jh
(π

3
21− j

)
.

DEFINITION 3. Denote Λ(n) the function of von Mangoldt

Λ(pn) = ln p,

where p is prime number and n is a natural number. For all other natural numbers m

Λ(m) = 0.

It is known, that for an arbitrary natural number n � 2 the following equality

lnn = ∑
d/n

Λ(d)

is valid, where the sum is taken over all positive divisors d of the number n . In the
following theorem of A. Broman’s see [1], p. 851, the characterization for exceptional
closed sets is given.
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THEOREM 2. Let 0 < α < 1 and

∞

∑
n=−∞
n �=0

|cn|2|n|−α < ∞.

Let f be closed set and

lim
r→1−0

∞

∑
k=−∞

r|k|cke
ikx = 0,

for an arbitrary point x ∈ [−π ,π ]\F . Then ck = 0 for arbitrary k ∈ Z , if and only if

C1−α(F) = 0.

A. Zygmund, see [7], proved the next nontrivial result.

THEOREM 3. Let ε > 0 and εn > 0 , n = 1,2, . . . be an arbitrary decreasing
sequence, tending to zero. Let |cn| � εn , n = 1,2, . . . . Then there is a subset E ⊆
[−π ,π ] with m(E) > 2π − ε , such that, if for each point x ∈ [−π ,π ]\E we have

lim
n→∞

n

∑
k=−n

cke
ikx = 0,

then ck = 0 for arbitrary k ∈ Z .

The proof of the next theorem can be found in [5].

THEOREM 4. Let 0 � α < 1 and

∫ π

−π
| f (x)|dx+

∫ π

−π

∫ π

−π

| f (x)− f (y)|
|x− y|1+α dxdy < ∞.

Let E ⊂ [−π ,π ] be a subset such that for almost all points x0 ∈ [−π ,π ] we have

∞

∑
n=1

2n(1−α)C1−α(En(x0)) = ∞,

where

En(x0) = {x �∈ E;2−n−1 � |x− x0| < 2−n}.
If

lim
n→∞

n

∑
k=−n

f̂ke
ikx = 0, x ∈ E,

where f̂n are Fourier coefficiens of f , then f (x) = 0 , x ∈ [−π ,π ] .

In this paper is proved a new result of this type for other classes od functions.
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3. New uniqueness result

The next result, in different form, one can find in the article [4].

THEOREM 5. Let f (−π) = f (π) be a differentiable function. Then

∑
p∈P

ln p

(
∞

∑
n=1

[
1
pn

pn

∑
k=1

(
2πk
pn

)
− f̂0

])
=

∞

∑
j �=0

j=−∞

f̂ j ln | j|,

where P denotes the set of primes.

Proof. For z = reix , 0 < r < 1, we have

A = ∑
p∈P

ln p
∞

∑
n=1

(
1
pn

pn

∑
k=1

1−|z|2
|1− zexp{− 2π ik

pn }|2 −1

)

=
∞

∑
n=1

Λ(n)

(
1
n

n

∑
k=1

1−|z|2
|1− zexp{− 2π ik

n }|2 −1

)

=
∞

∑
n=1

Λ(n)
1
n

n

∑
k=1

⎛
⎜⎝ n

∑
j �=0

j=−∞

r| j| exp

{
ix j− 2π ik j

n

}⎞⎟⎠

=
∞

∑
n=1

Λ(n)
n

∑
j �=0

j=−∞

r| j|eix j

(
1
n

n

∑
k=1

exp

{
−2π ik j

n

})

=
∞

∑
j �=0

j=−∞

r| j|eix j

(
∑

j=0 (mod n)
Λ(n)

)
.

Since

∞

∑
n=1

Λ(n) ∑
j �=0

j=0 (mod n)

r| j|
∣∣∣∣∣1n

n

∑
k=1

exp

{
ix j− 2π ik j

n

}∣∣∣∣∣
� 2

∞

∑
n=1

Λ(n)
∞

∑
q=1

rqn � 2
1− r

∞

∑
n=1

rn lnn < ∞.

So, we have

A =
∞

∑
j �=0

j=−∞

r| j|eix j ln | j|.

Multiplying absolutely covergent series by the function 1
2π f (x) and intergrating we

have

∞

∑
n=1

Λ(n)

(
1
n

n

∑
k=1

1
2π

∫ π

−π

1− r2

|1− rexp{ix− 2π ik
n }|2 f (x)dx− f̂0

)
=

∞

∑
j �=0

j=−∞

r| j| f̂ j ln | j|.
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Passing to the limit if r → 1−0 we get the required equality. �

REMARK. This result we can write in the form

∑
p∈P

ln p

(
∞

∑
n=1

[
1
pn

pn

∑
k=1

δ
(

x− 2πk
pn

)
−1

])
=

∞

∑
j �=0

j=−∞

ei jx ln | j|, 0 � x < 2π .

This equality is a generalization of the following Poisson’s formula:

2π
∞

∑
n=−∞

δ (x−2πn) =
∞

∑
j=−∞

ei jx, −∞ < x < ∞.

THEOREM 6. Let 0 < α < 1 and a non-negative function h(k) satisfy the follow-
ing condition:

1. h(x) � x , 0 � x < 1 ;
2. ∫ 1

0

h(x)
x2−α ln2 e

x
dx < ∞.

Let for the function f (x) we have

∫ π

−π
| f (x)|2dx+

∫ π

−π

∫ π

π

| f (x)− f (y)|2
|x− y|1+α dxdy < ∞.

Let E ⊂ [−π ,π ] be a set satisfying the following conditions:
3. Mh(E) > 0 ,
4. if x ∈ E then every point

x+
2πk
pn ,

where k ∈ Z , n ∈ N and p is prime number, belongs to the set E in the sense
mod (2π) .

If for every x ∈ E we have

lim
r→1−0

∞

∑
k=−∞

r|k| f̂keikx = 0,

then the function f (x) is identicaly zero.

Proof. By O. Frostman’s theorem, see [3], p. 7, there is a probability measure dμ
such that supp(dμ) ⊆ E ,

1. Mh(supp(dμ)) > 0,

and for each 0 < δ the inequality
∫

[x,x+δ ]
dμ � Ah(δ )
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valid. Let us assume that the function μ(t) be continuous at the points 0 and 2π and
μ(0)+1 = μ(2π) . We know that

f (reix) =
∞

∑
n=−∞

r|n| f̂neinx.

Then we have

∑
p∈P

ln p

(
∞

∑
n=1

[
1
pn

pn

∑
k=1

∫
E

f

(
rexp

{
2π ik
pn + ix

})
dμ(x)− f̂0

])

=
∞

∑
n=2

rn
[

f̂n

∫
E

einxdμ(x)+ f̂−n

∫
E

e−inxdμ(x)
]
lnn

= 2π i
∞

∑
n=2

( f̂nĝ−n + f̂−nĝ−n)rn lnn.

where
g(x) = μ(x)− x

2π
.

Indeed, for n �= 0 we have

ĝn =
1
2π

∫ 2π

0
e−inx

(
μ(x)− x

2π

)
dx

=
1

2πni

∫ 2π

0
e−inxdμ(x) =

1
2πni

∫
E

e−inxdμ(x).

Since the function f (eix) vanishes on the set E we have∣∣∣∣∣∑p∈P
f̂0 ln p

∣∣∣∣∣� 2
∞

∑
n=2

(| f̂−n||ĝn|+ | f̂n||ĝ−n|)n lnn.

Using, the given above Zygmund’s estimation, we get

∞

∑
n=2

| f̂n||ĝ−n|n lnn �
(

∞

∑
n=1

| f̂n|2nα

) 1
2
(

∞

∑
n=1

|ĝ−n|2n2−α ln2 n

) 1
2

�
(

∞

∑
n=1

| f̂n|2nα

) 1
2
(

∞

∑
j=1

j22(2−α) j
2 j+1−1

∑
n=2 j

|ĝ−n|2
) 1

2

� M

(
∞

∑
j=1

j22(1−α) jh(2− j)

) 1
2

< ∞.

The inequality ∣∣∣∣∣∑p∈P
f̂0 ln p

∣∣∣∣∣< ∞

valid only if f̂0 = 0. Instead of f (x) by examing the functions einx f (x) , n ∈ Z we get

f̂n = 0, n ∈ Z. �
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