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APPLICATIONS OF THEORY OF DIFFERENTIAL SUBORDINATION

OF FUNCTIONS WITH FIXED INITIAL COEFFICIENT

KANIKA SHARMA AND V. RAVICHANDRAN

Abstract. Open door lemma is proved for the analytic function f in the unit disc with fixed
second coefficient. Conditions on f are obtained so that α -convex integral operator on f belong
to certain subclasses of starlike functions. Several interesting applications are given.

1. Introduction

Let H denote the class of analytic functions in the unit disc D := {z∈C : |z|< 1} .
For a fixed positive integer n , let H [a,n] be the subset of H consisting of functions
p of the form

p(z) = a+ pnz
n + pn+1z

n+1 + · · · .
Let S be the subclass of H [0,1] consisting of univalent functions of the form f (z) =
z+a2z2 +a3z3 + · · · . In the theory of univalent functions, the second coefficient in the
Taylor series expansion of functions in the class S plays an important role and influ-
ences many properties. For example, a bound for the second coefficient of functions in
the class S yields growth and distortion estimates [4] as well as the Koebe constant.
The investigation of univalent functions with fixed second coefficients were initiated by
Gronwall [6]. For a brief survey of these developments, see [1]. Works in this direction
include those of [2, 5, 7, 8, 13–15].

The theory of differential subordination developed by Miller and Mocanu (see
their monograph [11]) was extended to analytic functions with fixed initial coefficient
by Ali et al. [3]. Nagpal and Ravichandran [12] applied the results in [3] to obtain
several generalization of classical results in univalent function theory. In this paper, we
investigate conditions on analytic function f in D with fixed second coefficient so that
α -convex integral operator on f belongs to certain subclasses of starlike functions.
We also obtain open door lemma for such type of functions f . Certain interesting
applications are given.

For a fixed constant β ∈ C , let Hβ [a,n] denote the subset of H [a,n] consisting
of functions p of the form

p(z) = a+ β zn + pn+1z
n+1 + · · · .
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Without loss of generality, we assume that β is a nonnegative real number. Let Q be
the class of functions q that are analytic and injective in D\E(q) , where

E(q) := {y ∈ ∂D : lim
z→y

q(z) = ∞},

and are such that q′(y) �= 0 for y ∈ ∂D\E(q) . The following fundamental lemma for
functions with fixed second coefficient is required in our investigation.

LEMMA 1.1. [3] Let q ∈ Q, with q(0) = a, and let p ∈ Hβ [a,n] with p(z) �≡ a
and n � 1 . If p is not subordinate to q, then there exist points z0 = r0eiθ0 ∈ D and
ζ0 ∈ ∂D\E(q) for which p({z ∈ C : |z| < r0}) ⊂ q(D) ,

(i) p(z0) = q(ζ0) ,

(ii) z0p′(z0) = mζ0q′(ζ0) ,

(iii) Re(1+(z0p′′(z0))/p′(z0) � mRe(1+(ζ0q′′(ζ0))/q′(ζ0)) , and

(iv) m � n+(|q′(0)|−β |z0|n)/(|q′(0)|+ β |z0|n) .

2. Main results

For a fixed b ∈ C , let An,b denote the subset of H consisting of functions f of
the form

f (z) = z+bzn+1 +an+2z
n+2 + · · · .

For α > 0, let Aα be the α -convex integral operator defined as

F(z) = Aα [ f ](z) :=
1
α

(∫ z

0
f 1/α(t)t−1 dt

)α
. (2.1)

The name come from the fact that f is starlike if and only if F is α -convex; this can
be directly seen from the equation

z f ′(z)
f (z)

= (1−α)
zF ′(z)
F(z)

+ α
(zF ′′(z)

F ′(z)
+1

)
:= J(α,F ;z).

In this section, we find the conditions on f ∈ An,b such that F = Aα [ f ] will belong
to a certain subclass of starlike functions. For this purpose, we need the following
differential subordination result.

LEMMA 2.1. Let n be a positive integer, α > 0 , 0 < β � 1 and suppose that the
function P ∈ H−β (αn+1)[1,n] satisfies the subordination

P(z) ≺ 1+ z+
(
n+

1−β
1+ β

) αz
1+ z

=: h(z). (2.2)

If the function p ∈ Hβ [1,n] satisfies the differential equation

αzp′(z)+P(z)p(z) = 1, (2.3)
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then p(z) ≺ 1/(1+ z) .

Proof. The univalent function q : D→ C defined by q(z) = 1/(1+ z) is related to
the function h by the equation

h(z) =
1

q(z)
−

(
n+

1−β
1+ β

)
α

zq′(z)
q(z)

.

Then

Re [(1+ z)h′(z)] = Re
(
1+ z+

(
n+

1−β
1+ β

) α
1+ z

)
> 0, z ∈ D.

Therefore, h is close-to-convex, and hence univalent in D . Clearly, the region h(D) is
symmetric with respect to the real axis. For t ∈ [−π ,π ] , set

w = h(eit) =
(
2cos(t/2)+

(
n+

1−β
1+ β

) α
2cos(t/2)

)
eit/2. (2.4)

Using (2.2) and (2.3), we get

P(z) =
1

p(z)
−α

zp′(z)
p(z)

≺ h(z). (2.5)

If we assume that p is not subordinate to q , then by Lemma 1.1, there exist points
z0 ∈ D and ζ0 ∈ ∂D and an

m � n+
1−β |z0|n
1+ β |z0|n , (2.6)

such that p(z0) = q(ζ0) and z0p′(z0) = mζ0q′(ζ0) . Hence from (2.5), we get that

P(z0) =
1

q(ζ0)
−α

mq′(ζ0)
q(ζ0)

= 1+ ζ0 +
mαζ0

1+ ζ0
.

If we set ζ0 = eit , then using (2.6) and (2.4), we get P(z0) = Reit/2 where

R = 2cos(t/2)+
mα

2cos(t/2)

� 2cos(t/2)+
(
n+

1−β |z0|n
1+ β |z0|n

) α
2cos(t/2)

� 2cos(t/2)+
(
n+

1−β
1+ β

) α
2cos(t/2)

= |h(eit)|.

This shows that P(z0) /∈ h(D) , which contradicts (2.2). Hence we must have p(z) ≺
1/(1+ z) . �

REMARK 2.2. If β = 1, then Lemma 2.1 reduces to [11, Lemma 5.1a, p. 253].
Since

1+ z+
nαz
1+ z

≺ 1+ z+
(
n+

1−β
1+ β

) αz
1+ z

(0 < β � 1),

it is clear that Lemma 2.1 extends [11, Lemma 5.1a, p. 253] for functions p∈Hβ [1,n] .
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THEOREM 2.3. Let n be a positive integer, α > 0 , 0 < −nb/(αn+1) � 1 . Let
f ∈ An,b and F = Aα [ f ] , where Aα is defined by (2.1) . If

z f ′(z)
f (z)

≺ 1+ z+
(
n+

αn+1+nb
αn+1−nb

) αz
1+ z

, (2.7)

then zF ′(z)/F(z) ≺ 1+ z or |zF ′(z)/F(z)−1|< 1 .

Proof. Suppose that the function f ∈ An,b satisfy (2.7). Let

p(z) =
1

α f 1/α(z)

∫ z

0
f 1/α(t)t−1 dt. (2.8)

By [11, Lemma 1.2c, p. 11], p is well defined. A calculation shows that p ∈ Hβ [1,n] ,
where β =−nb/(αn+1) . Therefore, by the given condition, 0 < β � 1. The function
P defined by P(z) = z f ′(z)/ f (z) belongs to H−β (αn+1)[1,n] and on differentiating
(2.8), we see that p satisfies the differential equation

αzp′(z)+P(z)p(z) = 1. (2.9)

Therefore, by Lemma 2.1 and (2.7), it follows that p(z) ≺ 1/(1+ z) . Since p(D) ⊆
{w : Rew > 1/2} , p(z) �= 0 and we can define the analytic function F ∈ An,b/(αn+1)
by

F(z) = f (z)(p(z))α . (2.10)

It can be easily verified that this function F coincides with the function given in (2.1).
Using (2.9) and (2.10), we get that

zF ′(z)
F(z)

= P(z)+ α
zp′(z)
p(z)

=
1

p(z)
.

Since p(z) ≺ 1/(1+ z) , we deduce that zF ′(z)/F(z) ≺ 1+ z . �

REMARK 2.4. If b = −(α + 1/n) , then Theorem 2.3 reduces to [11, Theorem
5.1b, p. 255]. Since, for 0 < −nb

αn+1 � 1,

1+ z+
nαz
1+ z

≺ 1+ z+
(
n+

αn+1+nb
αn+1−nb

) αz
1+ z

Theorem 2.3 extends [11, Theorem 5.1b, p. 255] for functions f ∈ An,b .

THEOREM 2.5. Let n be a positive integer, α > 0 , −1/n � c < 0 . Suppose that
F ∈ An,c and

J(α,F ;z) ≺ 1+ z+
(
n+

1+nc
1−nc

) αz
1+ z

:= h(z)

then zF ′(z)/F(z) ≺ 1+ z and |zF ′(z)/F(z)−1|< 1 .

Proof. Let f ∈ An,b satisfy

z f ′(z)
f (z)

= J(α,F ;z) := (1−α)
zF ′(z)
F(z)

+ α
(zF ′′(z)

F ′(z)
+1

)
.
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A simple calculation shows that b = c(αn+1) . Therefore, by the given condition, we
get 0 < −nb/(αn+1) � 1. Hence the result follows from Theorem 2.3. �

REMARK 2.6. If c = −1/n , then Theorem 2.5 reduces to [11, Theorem 5.1c, p.
255]. Since, for −1/n � c < 0,

1+ z+
nαz
1+ z

≺ 1+ z+
(
n+

1+nc
1−nc

) αz
1+ z

,

it is clear that Theorem 2.5 extends [11, Theorem 5.1c, p. 255] for functions F ∈ An,c .

REMARK 2.7. For F ∈ An,c , α > 0 and −1/n � c < 0, Theorem 2.5 can be
restated in the following symmetric form

J(α,F ;z) ≺ J
(

α
(
n+

1+nc
1−nc

)
,k;z

)

implies

J(0,F ;z) ≺ J(0,k;z),

where k(z) = zez .
Let us next formulate the Theorem 2.5 to the two important particular cases of

h(D) containing a circle centered at origin and a circle centered at the point (1,0) .

Case 1. Set w = u + iv = h(eit) = reit/2 , where h is given by Theorem 2.5 and
t ∈ [−π ,π ] . Then,

r = r(t) = 2cos(t/2)+
(
n+

1+nc
1−nc

) α
2cos(t/2)

, (2.11)

u = 2cos2(t/2)+
(
n+

1+nc
1−nc

)α
2

, (2.12)

and

v = u tan(t/2). (2.13)

Using (2.11), we get

M(α,n,c) = minr(θ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

√(
n+

1+nc
1−nc

)
α, 0 <

(
n+

1+nc
1−nc

)
α � 4,

2+
(

n+
1+nc
1−nc

)
α
2

,

(
n+

1+nc
1−nc

)
α > 4.

(2.14)

The set of points |w|� M(α,n,c) is contained in h(D) . In this particular case, Theorem
2.5 can be expressed in the following form:
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COROLLARY 2.8. If F ∈ An,c , α > 0 and −1/n � c < 0 and |J(α,F ;z)| <
M(α,n,c) , where M(α,n,c) is given by (2.14) then |zF ′(z)/F(z)−1|< 1 .

Case 2. In this case, we consider the particular case of Theorem 2.5 by taking a
circle centered at the point (1,0) which is contained in h(D) . For this, we evaluate the
minimum distance from (1,0) to the boundary h(eit) . From (2.12) and (2.13), we get

d2 = (u−1)2 + v2 =
4u2

2u− (n+(1+nc)/(1−nc))α
−2u+1,

for (
n+

1+nc
1−nc

)
α
2

< u � 2+
(

n+
1+nc
1−nc

)
α
2

.

A simple computation shows that

mind = 1+
(

n+
1+nc
1−nc

)
α
2

.

In this particular case, Theorem 2.5 can be rephrased in the following form.

COROLLARY 2.9. If F ∈ An,c , α > 0 and −1/n � c < 0 and

|J(α,F ;z)−1| < 1+
(

n+
1+nc
1−nc

)
α
2

then |zF ′(z)/F(z)−1|< 1 .

REMARK 2.10. If c = −1/n , then Corollary 2.9 reduces to [11, Corollary 5.1c.2,
p. 257]. For −1/n � c < 0,

1+
nα
2

� 1+
(

n+
1+nc
1−nc

)
α
2

.

Therefore, Corollary 2.9 extends [11, Corollary 5.1c.2, p. 257]. Similarly, [11, Corol-
lary 5.1c.1, p. 256] is extended by Corollary 2.8.

A sufficient condition for a function p ∈ H [1,n] to be a function with positive
real part is that p(z)+ zp′(z)/p(z) ≺ R(z) , where R is the open door mapping given
by

R(z) :=
1+ z
1− z

+
2z

1− z2 .

Similarly, we will next investigate the sufficient condition for a function p ∈ Hb[1,1]
to be a function with positive real part. To find this, we will first prove the following
lemma.

LEMMA 2.11. Let n be a positive integer, 0 < β � 2 and suppose that the func-
tion P ∈ H−β (n+1)[1,n] satisfies the subordination

P(z) ≺ 1+ z
1− z

+2
(
n+

2−β
2+ β

) z
1− z2 =: h(z). (2.15)
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If the function p ∈ Hβ [1,n] satisfies the differential equation

zp′(z)+P(z)p(z) = 1, (2.16)

then Re p(z) > 0 in D .

Proof. Let q be the convex univalent function defined by q(z) = (1+ z)/(1− z) .
Then it is clear that q(0) = 1 and q maps D onto the right-half plane. If we assume that
p is not subordinate to q , then by Lemma 1.1, there exist points z0 ∈ D and ζ0 ∈ ∂D

and an

m � n+
2−β |z0|n
2+ β |z0|n , (2.17)

such that
p(z0) = q(ζ0) (2.18)

and
z0p′(z0) = mζ0q

′(ζ0) = −m
2
|1−q(ζ0)|2. (2.19)

Now, q(ζ0) = ik and mζ0q′(ζ0) = l , for some real number k and l . Then, using (2.17),
(2.18) and (2.19), we get

p(z0) = ik (2.20)

and

z0p′(z0) = l = −m
2

(1+ k2−2Re(ik))

= −m
2

(1+ k2) � −1+ k2

2

(
n+

2−β |z0|n
2+ β |z0|n

)
< 0. (2.21)

Substituting z = z0 in (2.16) and then using (2.20) and (2.21), we get

l + ikP(z0) = 1.

Taking P(z) = C(z)+ iD(z) and then using the above equation, we get

l− kD(z0) = 1 and kC(z0) = 0. (2.22)

Since by using (2.21), we obtain l < 0, we can use (2.22) to deduce that k �= 0 and
C(z0) = 0. Therefore, we have the two following cases:

Case 1: k > 0. In this case, by using (2.21) and (2.22), we get

D(z0) =
l−1

k
� − 1

2k

(
2+(1+ k2)

(
n+

2−β |z0|n
2+ β |z0|n

))
:= F(k).

It can be easily verified that

maxF(k) = −
(
n+

2−β |z0|n
2+ β |z0|n

)
×

(
1+2

/(
n+

2−β |z0|n
2+ β |z0|n

)) 1
2

:= −Bn.
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Therefore, D(z0) � −Bn .

Case 2: k < 0. Similarly, in this case, we get D(z0) � Bn .
Note that h(D) is the complex plane with the slits along the half-lines Rew = 0

and | Imw| � Bn . Hence, in both the cases, we have

P(z0) = C(z0)+ iD(z0) /∈ h(D),

which contradicts (2.15). Hence we must have Re p(z) > 0 in D . �

REMARK 2.12. If β = 2, then Lemma 2.11 reduces to [11, Lemma 2.5b, p. 46]
with c = 1. Lemma 2.11 extends [11, Lemma 2.5b, p. 46] with c = 1.

THEOREM 2.13. Let −2 � b < 0 and suppose that the function p ∈ Hb[1,1]
satisfies the subordination

p(z)+
zp′(z)
p(z)

≺ 1+ z
1− z

+
( 8

2−b

) z
1− z2 =: h(z) (2.23)

then Re p(z) > 0 in D .

Proof. If the function p satisfies (2.23), then we are assuming that p(z) �= 0 for
z ∈ D . Set f (z) = 1/p(z) . Then f ∈ H−b[1,1] and from (2.23), we get

1
f (z)

− z f ′(z)
f (z)

≺ h(z).

Define

P(z) =
1

f (z)
− z f ′(z)

f (z)
.

Then clearly, P ∈ H2b[1,1] , P(z) ≺ h(z) and P(z) f (z) + z f ′(z) = 1. Therefore, by
Lemma 2.11, we get Re f (z) > 0 and hence, Re p(z) > 0. �

Taking p(z) = z f ′(z)/ f (z) in Theorem 2.13, we get the following result.

COROLLARY 2.14. Let −2 � b < 0 and suppose that the function f ∈ A1,b sat-
isfies the subordination

1+
z f ′′(z)
f ′(z)

≺ 1+ z
1− z

+
( 8

2−b

) z
1− z2

then f is starlike function in D .

REMARK 2.15. If b = −2, then Corollary 2.14 reduces to [11, Theorem 2.6 d, p.
61]. Corollary 2.14 extends [11, Theorem 2.6 d, p. 61] for functions f ∈ A1,b .
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