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HARMONIC SERIES WITH POLYGAMMA FUNCTIONS

OVIDIU FURDUI

Abstract. The paper is about evaluating in closed form the following classes of series involving
the product of the n th harmonic number and the polygamma functions
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∞
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)
=

(−1)k

(k−1)!
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=
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(k−1)!

∞

∑
n=1

nHnψ (k−1)(n+1), k � 4,

and

Rk =
∞

∑
n=1

H2
n

(
ζ (k)−1− 1

2k −···− 1
nk

)
=

(−1)k

(k−1)!

∞

∑
n=1

H2
n ψ (k−1)(n+1), k � 3,

where k is an integer.

1. Introduction and the main results

The celebrated Riemann zeta function ζ is a function of a complex variable (see
[10, p. 265]) defined by

ζ (z) =
∞

∑
n=1

1
nz = 1+

1
2z +

1
3z + · · ·+ 1

nz + · · · , ℜ(z) > 1.

When z = k � 2 is an integer, one has that the Riemann zeta function value ζ (k) is
defined by the series formula

ζ (k) =
∞

∑
n=1

1
nk = 1+

1
2k +

1
3k + · · ·+ 1

nk + · · · .

The polygamma functions ψ(k) are defined (see [7, p. 22]) by

ψ(k)(z) =
dk+1

dzk+1 logΓ(z) =
dk

dzk ψ(z) k � 0, z /∈ {0,−1,−2, . . .} ,

or, in terms of the generalized (or Hurwitz) zeta function ζ (·, ·)

ψ(k)(z)= (−1)k+1k!
∞

∑
i=0

1
(i+ z)k+1 = (−1)k+1k!ζ (k+1,z) k � 1, z /∈{0,−1,−2, . . .} .
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Series involving closed form evaluation of ζ (k) are collected in [7] and, more re-
cently, in [8]. Other series, involving the Riemann zeta function and harmonic numbers,
that evaluate to special constants can be found in [5].

The n th harmonic number Hn is defined, for n � 1, by Hn = 1 + 1
2 + · · ·+ 1

n .
A famous sum, due to Euler, in which the n th harmonic number is involved is given
below ([4], [7, p. 103], [8, p. 228]):

Eq =
∞

∑
k=1

Hk

nq = (1+
q
2
)ζ (q+1)− 1

2

q−2

∑
k=1

ζ (q− k)ζ (k+1), q ∈ N\ {1} , (1)

where an empty sum is understood to be nil.
For a proof of (1) the reader is referred to [7, pp. 103–105]. We mention that other

series of Euler type can be found in [9].
In this paper we evaluate three classes of series involving the product of the n th

harmonic number and the tail of ζ (k) . More precisely, we calculate in closed form the
infinite series

Sk =
∞

∑
n=1

Hn

(
ζ (k)−1− 1

2k −·· ·− 1
nk

)
=

(−1)k

(k−1)!

∞

∑
n=1

Hnψ(k−1)(n+1), (2)

where k � 3 is an integer. We also consider the series

Tk =
∞

∑
n=1

nHn

(
ζ (k)−1− 1

2k
−·· ·− 1

nk

)
=

(−1)k

(k−1)!

∞

∑
n=1

nHnψ(k−1)(n+1), k � 4,

(3)
and

Rk =
∞

∑
n=1

H2
n

(
ζ (k)−1− 1

2k −·· ·− 1
nk

)
=

(−1)k

(k−1)!

∞

∑
n=1

H2
n ψ(k−1)(n+1), k � 3, (4)

where k is an integer.
The main results of this paper are the following theorems.

THEOREM 1. Let k � 3 be an integer and let Sk be the series in (2). Then,

Sk =
k+1

2
ζ (k)− ζ (k−1)− 1

2

k−3

∑
i=1

ζ (k−1− i)ζ (i+1),

where the last sum is missing when k = 3 .

In particular when k = 3 or k = 4 we have the following result.

COROLLARY 1. The following equalities hold:

(a)
∞

∑
n=1

Hn

(
ζ (3)−1− 1

23 −·· ·− 1
n3

)
= 2ζ (3)− ζ (2) ;
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(b)
∞

∑
n=1

Hn

(
ζ (4)−1− 1

24 −·· ·− 1
n4

)
=

5
4

ζ (4)− ζ (3) .

THEOREM 2. Let k � 4 be an integer and let Tk be the series in (3). Then,

Tk =
1
2
Ek−2− 1

2
Ek−1− 1

4
ζ (k−2)+

1
4

ζ (k−1),

where Ek−2 and Ek−1 are the series defined in (1).

The following particular cases are worth mentioning.

COROLLARY 2. The following equalities hold:

(a)
∞

∑
n=1

nHn

(
ζ (4)−1− 1

24 −·· ·− 1
n4

)
= −1

4
ζ (2)+

5
4

ζ (3)− 5
8

ζ (4) ;

(b)
∞

∑
n=1

nHn

(
ζ (5)−1− 1

25 −·· ·− 1
n5

)
=

7
8

ζ (4)− 1
4

ζ (3)− 3
2

ζ (5)+
1
2

ζ (2)ζ (3) .

THEOREM 3. (A quadratic harmonic sum)

(a) The following equality holds:

∞

∑
n=1

H2
n

(
ζ (3)−1− 1

23 −·· ·− 1
n3

)
= 3ζ (4)−4ζ (3)+2ζ (2).

(b) Let k � 3 be an integer and let Rk be the sum in (4). Then,

Rk =
∞

∑
m=1

H2
m

mk−1 −Ek −Ek−1−Sk + ζ (k−1),

where Ek−1 and Ek are the series defined in (1).

REMARK 1. We mention that, the quadratic series ∑∞
m=1

H2
m

mk−1 has been evaluated
in terms of products of Riemann zeta function values, for all even integer k , in [3].

We need in our analysis Abel’s summation formula ([1, p. 55], [5, p. 258]) which

states that if (an)n�1 and (bn)n�1 are two sequences of real numbers and An =
n
∑

k=1
ak ,

then
n

∑
k=1

akbk = Anbn+1 +
n

∑
k=1

Ak(bk −bk+1). (5)

We will also be using, in our calculations, the infinite version of the preceding formula

∞

∑
k=1

akbk = lim
n→∞

(Anbn+1)+
∞

∑
k=1

Ak(bk −bk+1). (6)
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2. Some lemmas and the proofs of the main results

Before we prove the main results of this paper we need the following lemmas.

LEMMA 1. Let n � 1 be an integer. The following equalities hold:

(a)
n

∑
k=1

Hk = (n+1)Hn+1− (n+1) = (n+1)Hn−n ;

(b)
n

∑
k=1

kHk =
n(n+1)

2
Hn+1− n(n+1)

4
.

Proof. The lemma can be proved by induction or by an application of formula
(5). �

LEMMA 2. Let k � 3 be an integer. Then,

∞

∑
n=1

(
ζ (k)−1− 1

2k −·· ·− 1
nk

)
= ζ (k−1)− ζ (k).

Proof. We apply formula (6), with an = 1 and bn = ζ (k)−1− 1
2k −·· ·− 1

nk , and
we have

∞

∑
n=1

(
ζ (k)−1− 1

2k−·· ·− 1
nk

)
= lim

n→∞
n

(
ζ (k)−1− 1

2k−·· ·− 1
(n+1)k

)
+

∞

∑
n=1

n
(n+1)k

=
∞

∑
n=1

n
(n+1)k

= ζ (k−1)− ζ (k),

and Lemma 2 is proved. �

Now we are ready to prove Theorem 1.

Proof. We apply formula (6), with an = Hn and bn = ζ (k)−1− 1
2k −·· ·− 1

nk , com-
bined to part (a) of Lemma 1 and we have, since

bn−bn+1 =
1

(n+1)k ,

that

Sk = lim
n→∞

(H1 +H2 + · · ·+Hn)
(

ζ (k)−1− 1
2k −·· ·− 1

(n+1)k

)

+
∞

∑
n=1

H1 +H2 + · · ·+Hn

(n+1)k
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= lim
n→∞

((n+1)Hn+1−n−1)
(

ζ (k)−1− 1
2k −·· ·− 1

(n+1)k

)

+
∞

∑
n=1

(n+1)Hn+1− (n+1)
(n+1)k

=
∞

∑
n=1

(
Hn+1

(n+1)k−1 −
1

(n+1)k−1

)

=
∞

∑
m=2

(
Hm

mk−1 − 1
mk−1

)

=
∞

∑
m=1

(
Hm

mk−1 − 1
mk−1

)

= Ek−1− ζ (k−1)

=
k+1

2
ζ (k)− ζ (k−1)− 1

2

k−3

∑
i=1

ζ (k−1− i)ζ (i+1),

where the last equality follows based on formula (1). We also used that

lim
n→∞

((n+1)Hn+1−n−1)
(

ζ (k)−1− 1
2k −·· ·− 1

(n+1)k

)

= lim
n→∞

(n+1)Hn+1−n−1
(n+1)k−1 · lim

n→∞
(n+1)k−1

(
ζ (k)−1− 1

2k −·· ·− 1
(n+1)k

)
= 0,

and Theorem 1 is proved. �
Now we prove Theorem 2.

Proof. We apply formula (6), with an = nHn and bn = ζ (k)− 1− 1
2k − ·· ·− 1

nk ,
combined to part (b) of Lemma 1 and we have that

Tk = lim
n→∞

(H1 +2H2 + · · ·+nHn)
(

ζ (k)−1− 1
2k −·· ·− 1

(n+1)k

)

+
∞

∑
n=1

H1 +2H2 + · · ·+nHn

(n+1)k

= lim
n→∞

(
n(n+1)

2
Hn+1− n(n+1)

4

)(
ζ (k)−1− 1

2k −·· ·− 1
(n+1)k

)

+
∞

∑
n=1

(
n(n+1)

2
Hn+1− n(n+1)

4

)
1

(n+1)k

=
1
2

∞

∑
n=1

nHn+1

(n+1)k−1 −
1
4

∞

∑
n=1

n
(n+1)k−1

=
1
2

∞

∑
n=1

(
Hn+1

(n+1)k−2 −
Hn+1

(n+1)k−1

)
− 1

4
(ζ (k−2)− ζ (k−1))

=
1
2

∞

∑
m=2

(
Hm

mk−2 −
Hm

mk−1

)
− 1

4
(ζ (k−2)− ζ (k−1))
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=
1
2

∞

∑
m=1

(
Hm

mk−2 −
Hm

mk−1

)
− 1

4
(ζ (k−2)− ζ (k−1))

=
1
2
Ek−2− 1

2
Ek−1− 1

4
ζ (k−2)+

1
4

ζ (k−1),

and Theorem 2 is proved. �
Next we give the proof of Theorem 3.

Proof. (b) We apply formula (6) with an = Hn and bn = Hn

(
ζ (k)−1− 1

2k −·· ·− 1
nk

)
combined to part (a) of Lemma 1 and we have, since

bn−bn+1 =
Hn

(n+1)k
− 1

n+1

(
ζ (k)−1− 1

2k
−·· ·− 1

(n+1)k

)
,

that

Rk = lim
n→∞

(H1 +H2 + · · ·+Hn)Hn+1

(
ζ (k)−1− 1

2k
−·· ·− 1

(n+1)k

)

+
∞

∑
n=1

(H1 +H2 + · · ·+Hn)
[

Hn

(n+1)k −
1

n+1

(
ζ (k)−1− 1

2k −·· ·− 1
(n+1)k

)]

= lim
n→∞

((n+1)Hn+1− (n+1))Hn+1

(
ζ (k)−1− 1

2k
−·· ·− 1

(n+1)k

)

+
∞

∑
n=1

((n+1)Hn+1−(n+1))
[

Hn

(n+1)k−
1

n+1

(
ζ (k)−1− 1

2k−·· ·− 1
(n+1)k

)]
.

It is an exercise in classical analysis to show that

lim
n→∞

(n+1)k−1
(

ζ (k)−1− 1
2k

−·· ·− 1
(n+1)k

)
=

1
k−1

,

and this implies, since k � 3, that

lim
n→∞

((n+1)Hn+1− (n+1))Hn+1

(
ζ (k)−1− 1

2k −·· ·− 1
(n+1)k

)

= lim
n→∞

H2
n+1−Hn+1

(n+1)k−2 · (n+1)k−1
(

ζ (k)−1− 1
2k −·· ·− 1

(n+1)k

)
= 0.

It follows that

Rk =
∞

∑
n=1

((n+1)Hn+1−(n+1))
[

Hn

(n+1)k−
1

n+1

(
ζ (k)−1− 1

2k−·· ·− 1
(n+1)k

)]
.

Let

xn = ((n+1)Hn+1− (n+1))
[

Hn

(n+1)k −
1

n+1

(
ζ (k)−1− 1

2k −·· ·− 1
(n+1)k

)]
.
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A calculation shows that

xn =
HnHn+1

(n+1)k−1 −Hn+1

(
ζ (k)−1− 1

2k −·· ·− 1
(n+1)k

)
− Hn

(n+1)k−1

+ ζ (k)−1− 1
2k

−·· ·− 1
(n+1)k

,

and since

HnHn+1

(n+1)k−1 =
H2

n+1

(n+1)k−1 −
Hn+1

(n+1)k and
Hn

(n+1)k−1 =
Hn+1

(n+1)k−1 −
1

(n+1)k ,

we get that

xn =
H2

n+1

(n+1)k−1 −
Hn+1

(n+1)k −Hn+1

(
ζ (k)−1− 1

2k −·· ·− 1
(n+1)k

)

− Hn+1

(n+1)k−1 +
1

(n+1)k + ζ (k)−1− 1
2k −·· ·− 1

(n+1)k

= yn+1.

Thus,

Rk =
∞

∑
n=1

xn =
∞

∑
n=1

yn+1 =
∞

∑
m=2

ym
y1=0
=

∞

∑
m=1

ym

=
∞

∑
m=1

H2
m

mk−1 −
∞

∑
m=1

Hm

mk −
∞

∑
m=1

Hm

(
ζ (k)−1− 1

2k −·· ·− 1
mk

)

−
∞

∑
m=1

Hm

mk−1 +
∞

∑
m=1

1
mk +

∞

∑
m=1

(
ζ (k)−1− 1

2k −·· ·− 1
mk

)

Lemma2=
∞

∑
m=1

H2
m

mk−1 −Ek −Sk−Ek−1 + ζ (k)+ ζ (k−1)− ζ (k)

=
∞

∑
m=1

H2
m

mk−1 −Ek −Sk −Ek−1 + ζ (k−1).

(a) When k = 3 we get, based on part (b) of the theorem, that

∞

∑
n=1

H2
n

(
ζ (3)−1− 1

23 −·· ·− 1
n3

)

=
∞

∑
m=1

H2
m

m2 −E3−S3−E2 + ζ (2)

=
17
4

ζ (4)− 5
4

ζ (4)− (2ζ (3)− ζ (2))−2ζ (3)+ ζ (2)

= 3ζ (4)−4ζ (3)+2ζ (2),

since

E3 =
5
2

ζ (4)− 1
2

ζ 2(2) =
5
4

ζ (4), E2 = 2ζ (3) and
∞

∑
m=1

H2
m

m2 =
17
4

ζ (4).
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We mention that, the identity ∑∞
m=1

H2
m

m2 = 17
4 ζ (4) was discovered numerically by

Enrico Au-Yeung and proved rigorously by David Borwein and Jonathan Borwein in
[2] who used Fourier series techniques combined to Parseval’s formula for proving it
and a recent proof involving integrals of polylogarithm functions was given in [6]. �
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[9] A. SOFO AND D. CVIJOVIĆ, Extensions of Euler harmonic sums, Appl. Anal. Discrete Math., 6

(2012), 317–328.
[10] E. T. WHITTAKER AND G. N. WATSON, A Course of Modern Analysis, Fourth Edition, Cambridge,

AT The University Press, 1927.

(Received July 30, 2015) Ovidiu Furdui
Department of Mathematics

Technical University of Cluj-Napoca
Str. Memorandumului Nr. 28, 400114, Cluj-Napoca, Romania

e-mail: Ovidiu.Furdui@math.utcluj.ro, ofurdui@yahoo.com

Journal of Classical Analysis
www.ele-math.com
jca@ele-math.com


