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HARMONIC SERIES WITH POLYGAMMA FUNCTIONS

OVIDIU FURDUI

Abstract. The paper is about evaluating in closed form the following classes of series involving
the product of the nth harmonic number and the polygamma functions

. 1 1 .
:;Hn<é(k)—l—27 _____ ﬁ)z(iii)!

< 1 1 (-DF < (k1)
— - — g 7 = >
Tk Zan <C(k) 1 2k nk) (kil)',,g‘lanw (n+1)7 k/47

n=1

Y Hy (1), k>3,

n=1

and

vk
2H2< _l_zl_k _____ L) = (E{_li)! ZH,?W(kfl)(n-l-l), k>3,

n=1

where k is an integer.

1. Introduction and the main results

The celebrated Riemann zeta function { is a function of a complex variable (see
[10, p. 265]) defined by
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When z =k > 2 is an integer, one has that the Riemann zeta function value (k) is
defined by the series formula
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The polygamma functions y*) are defined (see [7, p. 22]) by
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or, in terms of the generalized (or Hurwitz) zeta function (-, -)
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Series involving closed form evaluation of {(k) are collected in [7] and, more re-
cently, in [8]. Other series, involving the Riemann zeta function and harmonic numbers,
that evaluate to special constants can be found in [5].

The nth harmonic number H, is defined, for n > 1, by H, = 1+ +- +
A famous sum, due to Euler, in which the nth harmonic number is mvolved is glven
below ([4], [7, p. 103], [8, p. 228]):

E §q+1——26q K (k+1), geN\{1}, (1)

where an empty sum is understood to be nil.

For a proof of (1) the reader is referred to [7, pp. 103—105]. We mention that other
series of Euler type can be found in [9].

In this paper we evaluate three classes of series involving the product of the nth
harmonic number and the tail of { (k). More precisely, we calculate in closed form the
infinite series
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where k > 3 is an integer. We also consider the series
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where k is an integer.
The main results of this paper are the following theorems.

THEOREM 1. Let k > 3 be an integer and let Sy be the series in (2). Then,

:k“g() —1——24“ — 1=+ 1),

where the last sum is missing when k = 3.

In particular when k =3 or kK =4 we have the following result.

COROLLARY 1. The following equalities hold:
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THEOREM 2. Let k > 4 be an integer and let T}, be the series in (3). Then,
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where E;_, and Ey_ are the series defined in (1).

The following particular cases are worth mentioning.

COROLLARY 2. The following equalities hold:
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THEOREM 3. (A quadratic harmonic sum)
(a) The following equality holds:
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(b) Let k > 3 be an integer and let Ry be the sum in (4). Then,
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where E;_1 and Ey are the series defined in (1).
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REMARK 1. We mention that, the quadratic series Y, % has been evaluated
in terms of products of Riemann zeta function values, for all even integer &, in [3].

We need in our analysis Abel’s summation formula ([1, p. 55], [5, p. 258]) which
states that if (a,),>1 and (b,),>1 are two sequences of real numbers and A, = Y, ay,

k=1
then
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We will also be using, in our calculations, the infinite version of the preceding formula

D aby = i (Anby1) + Y Ax(bg — brsr). (6)
k=1 k=1
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2. Some lemmas and the proofs of the main results

Before we prove the main results of this paper we need the following lemmas.
LEMMA 1. Let n > 1 be an integer. The following equalities hold.:
n
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Proof. The lemma can be proved by induction or by an application of formula
(5). 0O

LEMMA 2. Let k > 3 be an integer. Then,
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n

Proof. We apply formula (6), with a, =1 and b, = {(k) — 1 — 2%( ----- #, and
we have
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and Lemma 2 is proved. [J

Now we are ready to prove Theorem 1.

Proof. We apply formula (6), with a,, = H,, and b, = {(k)—1 —2%( ————— # , com-
bined to part (a) of Lemma 1 and we have, since
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where the last equality follows based on formula (1). We also used that
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Now we prove Theorem 2.
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and Theorem 2 is proved. [J

Next we give the proof of Theorem 3.

Proof. (b) We apply formula (6) with a, = H,, and b, = H, (c(k)— 1—gp—— &
combined to part (a) of Lemma | and we have, since
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A calculation shows that
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(a) When k =3 we get, based on part (b) of the theorem, that
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2
We mention that, the identity ¥, % = 14—7C (4) was discovered numerically by

Enrico Au-Yeung and proved rigorously by David Borwein and Jonathan Borwein in
[2] who used Fourier series techniques combined to Parseval’s formula for proving it
and a recent proof involving integrals of polylogarithm functions was givenin [6]. [
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