
Journal of
Classical

Analysis

Volume 8, Number 2 (2016), 155–161 doi:10.7153/jca-08-14

A NEW PROOF FOR A CLASSICAL QUADRATIC HARMONIC SERIES
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Abstract. In the following paper we intend to present a new way of calculating a series similar
to the quadratic series of Au-Yeung (see [1])

∞

∑
n=1

H2
n

n3 =
7
2

ζ (5)−ζ (2)ζ (3),

where Hn denotes the n th harmonic number. We will prove the result by combining a series of
techniques based on the calculation of two special logarithmic integrals, the elementary manip-
ulations of series and then the use of the Euler’s identity in (1) .

1. Introduction and the main result

The following result

∞

∑
n=1

H2
n

n3 =
7
2

ζ (5)− ζ (2)ζ (3),

is one of many such series involving the harmonic number that Philippe Flajolet and
Bruno Salvy derived in their paper Euler Sums and Contour Integral Representations
(see [2]) by means of contour integration. Like the quadratic series of Au-Yeung that
appears in [1], the present series has become a classic in the theory of nonlinear har-
monic series.

In this paper we calculate a series similar to the quadratic series of Au-Yeung, but a
more advanced one where the difference is that in denominator we have now n3 instead
of n2 . Our strategy will involve the calculation of two special logarithmic integrals, the
calculation of an Euler sum by symmetry reasons and the use of the Euler’s identity
involving harmonic numbers.

We state now a classical quadratic harmonic series summation result.

THEOREM 1. The following equality holds:

∞

∑
n=1

H2
n

n3 =
7
2

ζ (5)− ζ (2)ζ (3),

where Hn is the nth harmonic number defined, for n � 1 , by Hn = 1+ 1
2 + · · ·+ 1

n .
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Before we prove Theorem 1 we collect some results we need in our analysis.
Next we prove the lemmas which are used in the proof of Theorem 1.

LEMMA 2. Let n � 1 be an integer. The following equalities hold:

(a) In =
∫ 1

0
xn−1 ln(1− x)dx = −Hn

n
;

(b) Jn =
∫ 1

0
xn−1 ln2(1− x)dx =

2
n

n

∑
k=1

Hk

k
=

H2
n

n
+

H(2)
n

n
,

where H(2)
n is the nth harmonic number of order 2 defined, for n � 1 , by H(2)

n =
1+ 1

22 + · · ·+ 1
n2 .

Proof. (a) We have, using integration by parts, that

In =
∫ 1

0
xn−1 ln(1− x)dx

= (x−1)xn−1 log(1− x)
∣∣∣∣
x=1

x=0
−
∫ 1

0
xn−1dx+(n−1)In−1− (n−1)In

= −1
n

+(n−1)In−1− (n−1)In

which yields the recurrence relation in k ,

kIk − (k−1)Ik−1 = −1
k
.

Giving values to k from k = 2 to n and using that
∫ 1
0 log(1− x)dx = −1, we obtain

that

In =
∫ 1

0
xn−1 log(1− x)dx = −Hn

n
,

and the part (a) of the lemma is proved.
(b) We have, using integration by parts as in (a) , that

Jn =
∫ 1

0
xn−1 ln2(1− x)dx

= (x−1)xn−1 log2(1− x)
∣∣∣∣
x=1

x=0
−2
∫ 1

0
xn−1 log(1− x)dx+(n−1)Jn−1− (n−1)Jn

= 2
Hn

n
+(n−1)Jn−1− (n−1)Jn,

where above we used the part (a) of the lemma, In =
∫ 1
0 xn−1 log(1− x)dx = −Hn

n .
Then, we obtain the recurrence relation in k ,

kJk − (k−1)Jk−1 = 2
Hk

k
,
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where giving values to k from k = 2 to n and using that
∫ 1
0 log2(1− x)dx = 2, we

obtain that

Jn =
∫ 1

0
xn−1 log2(1− x)dx =

2
n

n

∑
k=1

Hk

k
=

H2
n

n
+

H(2)
n

n
,

and the last equality follows immediately from the fact that,

H2
n =

n

∑
i=1

n

∑
j=1

1
i j

= 2
n

∑
i=1

i

∑
j=1

1
i j
−
(

1+
1
22 + · · ·+ 1

n2

)

= 2
n

∑
i=1

Hi

i
−H(2)

n ,

whence we get that
n

∑
i=1

Hi

i
=

1
2

(
H2

n +H(2)
n

)
and the part (b) of the lemma is proved. �

We state now the result of a special Euler sum.

LEMMA 3. The following equality holds:

∞

∑
n=1

1
n3

(
1+

1
22 + · · ·+ 1

n2

)
= 3ζ (2)ζ (3)− 9

2
ζ (5).

Proof. We start with a slightly different series,

S =
∞

∑
n=1

1
n3

(
ζ (2)−1− 1

22 −·· ·− 1
n2

)
=

∞

∑
n=1

∞

∑
k=1

1
n3(n+ k)2 ,

where based upon symmetry reasons we have that S =
∞
∑

n=1

∞
∑

k=1

1
n3(n+k)2 =

∞
∑

n=1

∞
∑

k=1

1
k3(n+k)2 .

Summing both sides, we have that

2S =
∞

∑
n=1

∞

∑
k=1

1
n3(n+ k)2 +

∞

∑
n=1

∞

∑
k=1

1
k3(n+ k)2

=
∞

∑
n=1

∞

∑
k=1

k3 +n3

k3n3(n+ k)2

=
∞

∑
n=1

∞

∑
k=1

(k+n)3−3kn(k+n)
k3n3(n+ k)2

=
∞

∑
n=1

∞

∑
k=1

1
k2n3 +

∞

∑
n=1

∞

∑
k=1

1
k3n2 −3

∞

∑
n=1

∞

∑
k=1

1
k2n2(n+ k)

= 2ζ (2)ζ (3)−3
∞

∑
n=1

∞

∑
k=1

1
k2n2(n+ k)
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whence S = ζ (2)ζ (3)− 3
2

∞

∑
n=1

∞

∑
k=1

1
k2n2(n+ k)

.

Now, we have that

1
k2(n+ k)

=
1
n

(
1
k2 −

1
k(n+ k)

)
,

and multiplying both sides by
1
n2 , we obtain

1
k2n2(n+ k)

=
1
n3

(
1
k2 −

1
k(n+ k)

)

=
1
n3

(
1
k2 −

1
n

(
1
k
− 1

n+ k

))

=
1

k2n3 −
1
n4

(
1
k
− 1

n+ k

)
.

Therefore, we have that

S = ζ (2)ζ (3)− 3
2

∞

∑
n=1

∞

∑
k=1

1
k2n2(n+ k)

= ζ (2)ζ (3)− 3
2

∞

∑
n=1

∞

∑
k=1

(
1

k2n3 −
1
n4

(
1
k
− 1

n+ k

))

= ζ (2)ζ (3)− 3
2

∞

∑
n=1

1
n3

∞

∑
k=1

1
k2 +

3
2

∞

∑
n=1

1
n4

∞

∑
k=1

(
1
k
− 1

n+ k

)

= −1
2

ζ (2)ζ (3)+
3
2

∞

∑
n=1

Hn

n4

=
9
2

ζ (5)−2ζ (2)ζ (3)

where we have used Euler’s identity (see [3, p. 228])

2
∞

∑
k=1

Hk

kn = (n+2)ζ (n+1)−
n−2

∑
k=1

ζ (n− k)ζ (k+1), n ∈ N, n � 2. (1)

Hence, we obtain that

∞

∑
n=1

1
n3

(
ζ (2)−1− 1

22 −·· ·− 1
n2

)
=

9
2

ζ (5)−2ζ (2)ζ (3).

As a consequence of the result above, since ζ (2)
∞

∑
n=1

1
n3 = ζ (2)ζ (3) , we obtain that

∞

∑
n=1

1
n3

(
1+

1
22 + · · ·+ 1

n2

)
= 3ζ (2)ζ (3)− 9

2
ζ (5). �
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Now we are ready to prove Theorem 1.

Proof. We have, based on part (b) of Lemma 2, that

∫ 1

0

xn−1

n2 ln2(1− x)dx =
H2

n

n3 +
H(2)

n

n3 ,

and it follows that

∞

∑
n=1

∫ 1

0

xn−1

n2 ln2(1− x)dx =
∞

∑
n=1

(
H2

n

n3 +
H(2)

n

n3

)
.

Then, we obtain that

∞

∑
n=1

(
H2

n

n3 +
H(2)

n

n3

)
=

∞

∑
n=1

H2
n

n3 +
∞

∑
n=1

H(2)
n

n3 =
∞

∑
n=1

∫ 1

0

xn−1

n2 log2(1− x)dx

=
∫ 1

0

∞

∑
n=1

xn−1

n2 log2(1− x)dx.

(2)

Now, recall the generating function of the harmonic numbers is − log(1−t)
1−t = ∑∞

n=1 tnHn,
|t| < 1. If integrating both sides from t = 0 to t = x , we get that

1
2

log2(1− x) =
∫ x

0

∞

∑
n=1

tnHndt =
∞

∑
n=1

∫ x

0
tnHndt =

∞

∑
n=1

xn+1

n+1
Hn. (3)

Using (3) in (2) , we get that

∫ 1

0

∞

∑
k=1

xk−1

k2 log2(1− x)dx = 2
∫ 1

0

∞

∑
k=1

∞

∑
n=1

xk+n

k2(n+1)
Hndx

= 2
∞

∑
k=1

∞

∑
n=1

∫ 1

0

xk+n

k2(n+1)
Hndx

= 2
∞

∑
k=1

∞

∑
n=1

Hn

k2(n+1)(k+n+1)

= 2
∞

∑
n=1

∞

∑
k=1

Hn

k2(n+1)(k+n+1)
.

(4)

Since we have, by partial fraction decomposition, that

1
k2(k+n+1)

=
1

k(n+1)

(
1
k
− 1

k+n+1

)

=
1

k2(n+1)
− 1

(n+1)2

(
1
k
− 1

k+n+1

)
,
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then
∞

∑
k=1

1
k2(k+n+1)

=
∞

∑
k=1

(
1

k2(n+1)
− 1

(n+1)2

(
1
k
− 1

k+n+1

))

=
ζ (2)
n+1

− Hn+1

(n+1)2 .

(5)

Using (5) in (4) , we obtain

2
∞

∑
n=1

∞

∑
k=1

Hn

k2(n+1)(k+n+1)
= 2

∞

∑
n=1

Hn

n+1

(
ζ (2)
n+1

− Hn+1

(n+1)2

)

= 2ζ (2)
∞

∑
n=1

Hn

(n+1)2 −2
∞

∑
n=1

HnHn+1

(n+1)3

= 2ζ (2)
∞

∑
n=1

Hn+1− 1
n+1

(n+1)2 −2
∞

∑
n=1

(Hn+1− 1
n+1)Hn+1

(n+1)3

= 2ζ (2)
∞

∑
n=1

Hn+1

(n+1)2 −2ζ (2)
∞

∑
n=1

1
(n+1)3

−2
∞

∑
n=1

H2
n+1

(n+1)3 +2
∞

∑
n=1

Hn+1

(n+1)4

= 2ζ (2)
∞

∑
n=1

Hn

n2 −2ζ (2)
∞

∑
n=1

1
n3 −2

∞

∑
n=1

H2
n

n3 +2
∞

∑
n=1

Hn

n4

= 6ζ (5)−2
∞

∑
n=1

H2
n

n3 ,

(6)
where we used that ∑∞

n=1
Hn
n2 = 2ζ (3) and ∑∞

n=1
Hn
n4 = 3ζ (5)− ζ (2)ζ (3) that are both

obtained from Euler’s identity in (1) .
Thus, combining (6) , (4) and (2) , we get that

∞

∑
n=1

H2
n

n3 = 2ζ (5)− 1
3

∞

∑
n=1

H(2)
n

n3 . (7)

Combining (7) and Lemma 3, we obtain that

∞

∑
n=1

H2
n

n3 =
7
2

ζ (5)− ζ (2)ζ (3),

and the theorem is proved. �
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[1] C. I. VĂLEAN AND O. FURDUI, Reviving the quadratic series of Au–Yeung, JCA 6, (2015), no. 2,
113–118.

[2] P. FLAJOLET AND B. SALVY, Euler sums and contour integral representations, Experiment. Math,.
7 (1998), 15–35.

[3] H. M. SRIVASTAVA, J. CHOI, Zeta and q-Zeta Functions And Associated Series And Integrals, Else-
vier, Amsterdam (2012).

(Received November 30, 2015) Cornel Ioan Vălean
Teremia Mare, Nr. 632, Timis, 307405, Romania

e-mail: cornel2001 ro@yahoo.com

Journal of Classical Analysis
www.ele-math.com
jca@ele-math.com


