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SOME STABILITY RESULTS RELATED

TO SOME FIXED POINT THEOREMS

MIHAI MONEA AND DAN ŞTEFAN MARINESCU

Abstract. In this paper, we introduce two types of stability and we investigate some fixed point
theorems, as Schauder Theorem, Borsuk Theorem and Knaster Lemma, from this viewpoint.

1. Introduction

The starting point of a wide range of stability notions was the following question:

”When is it true that the solution of an equation differing slightly from a given one,
must of necessity be close to the solution of the given equation ?”

The author of previous question was S. M. Ulam(see [21]). The first mathemati-
cian which gave an important answer to Ulam’s question was D. H. Hyers (see [8]). In
fact, he proved the following theorem:

THEOREM. Let f :U −→V be a function between two Banach spaces and ε > 0 .
If

‖ f (x+ y)− f (x)− f (y)‖ < ε,

for all x,y ∈U, then exists a unique additive function A : U −→V such that

‖A(x)− f (x)‖ < ε,

for all x ∈U.

This result opened a new direction in mathematics and a new mathematical concept
was born. Now it is said that the Cauchy additive functional equation, f (x + y) =
f (x) + f (y) , satisfies the Hyers–Ulam stability. The stability concept has influenced
a number of mathematicians studying the stability problems of functional equations
(a large collection of results can be found in [9]). Today, the terminologies Hyers–
Ulam stability is also applicable to the case of other mathematical objects: differential
equation (e.g. [1] or [20]), dynamical equations (e.g. [2]), linear recurrences (e.g. [11]
or [13]), convexity (e.g. [14] or [15]), mean value point (e.g. [6] or [12]) or fixed points
(e.g. [4]). In this context, we find more ways to obtain the Hyers–Ulam stability. For
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example, V. Radu ([17]) used the fixed point methods to study the functional equation
or I. A. Rus ([18]) introduced an operatorial approach for many types of problems.

In this paper, we want to investigate the stability of the fixed point equations and
of the fixed points. An important collection of some recent results on this topic can
be found in the paper [5], but we want to show another viewpoint. We present two
types of stability and we investigate some fixed point theorems from this viewpoint.
The definitions and some comments are introduced in second section of this paper.
We mention that our definitions are less restrictive as the classic definition of Hyers-
Ulam stability (for example, see [19]), but our viewpoint leads us to some fixed point
theorems which were less studied.

The third section is reserved to the Contraction Principle. Nowadays a lot of stabil-
ity results are known about this theorem, some of them are stronger than our results(e.g.
[3] or [16]), but it is a good example of the applicability of our ideas. The following sec-
tions are about Schauder Theorem, Borsuk Theorem and Knaster Lemma. We present
some conditions for both types of stability.

2. The definitions and some counterexamples

Let (X ,d) be a metric space. For any function f : X −→ X , we denote Fix( f ) ,
its fixed points set. Also, we denote FP(X) , the set of all functions f : X −→ X with
property Fix( f ) �= ∅. Let M (X) be a nonempty subset of FP(X) . We introduce two
definitions involving the stability of equation f (x) = x, respectively the solution of this
equation.

DEFINITION 1. Let f ∈ FP(X) . We say that the equation f (x) = x is stable if
for any ε > 0 there exists δ > 0 such that, for any x ∈ X satisfying the property

d ( f (x) ,x) < δ ,

there exists a fixed point u ∈ Fix( f ) with

d (x,u) < ε.

DEFINITION 2. Let f ∈ M (X) . We say that the point u ∈ Fix( f ) is stable if for
any ε > 0, there exists δ > 0 such that any function g ∈M (X) , which is satisfying the
property

d (g(x), f (x)) < δ ,

for any x ∈ X , admits a fixed point v ∈ X such that

d (v,u) < ε.

We can see that not every fixed point equation and not every fixed point is stable
according to the previous definitions.. First, we consider the function

h : R −→ R,h(x) =
x3

x2 +1
.
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Then Fix(h) = {0} . Further

lim
x−→∞

(h(x)− x) = lim
x−→∞

−x
x2 +1

= 0.

Then, for any δ > 0, we find γ > 0 such that for any x ∈ (γ,∞) we have

|h(x)− x| < δ .

Now, for any ε > 0 we find c ∈ (γ,∞) and c /∈ (−ε,ε) such that |h(c)− c| < δ . This
means that the equation h(x) = x is not stable in the sense of Definition 1.

For the second definition, we reload an example which can be found in [12]. We
consider the function

h : R −→ R,h(x) = x2 − x+1.

Then Fix(h) = {1} . Let δ > 0 and we consider the function

g : R −→ R,g(x) = x2 − x+1+
δ
2

.

For any x ∈ X , we have
|g(x)−h(x)| < δ ,

but Fix(g) = ∅. This means that the fixed point of h is not stable.
The conclusion is that in order to assure these types of stability we need supple-

mentary conditions.

3. The Contraction Principle

We start with some easy example. Let X be a complete metric space. Let f :
X −→ X be a contraction. We denote by k, the Lipschitz constant of f , so

d ( f (x) , f (y)) � kd (x,y) ,

for any x,y ∈ X , where k ∈ [0,1) . The Contraction Principle (e.g. Theorem 1.1, pag.
9 from [7] ) give us a unique point u ∈ X such that f (u) = u. First, we prove that the
equation f (x) = x is stable is sense of Definition 1.

PROPOSITION 1. Let f : X → X be a contraction and u, its fixed point. For any
ε > 0, there exists δ > 0 such that for any x ∈ X satisfying the property

d ( f (x) ,x) < δ ,

we have d (x,u) < ε.

Proof. For some δ > 0 and for any x ∈ X such that d ( f (x) ,x) < δ , we have

d (x,u) � d (x, f (x))+d ( f (x) ,u)
= d (x, f (x))+d ( f (x) , f (u))
� δ + kd (x,u) .
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Then
(1− k)d (x,u) � δ . (1)

Now, for any ε > 0, we choose δ > 0 such that

δ < (1− k)ε.

From (1) , we obtain
(1− k)d (x,u) < (1− k)ε

and the conclusion follows now. �
For the second type of stability, we observe that, in this case, M (X) represents the

class of all contraction defined to X on itself. The following proposition says that the
only fixed point of any f ∈ M (X) is stable.

PROPOSITION 2. Let f : X → X be a contraction and u, its fixed point. For any
ε > 0, there exists δ > 0 such any contraction g : X −→ X satisfying the property

d (g(x) , f (x)) < δ ,

for any x ∈ X , admits a fixed point v ∈ X such that

d (v,u) < ε.

Proof. The existence of v is due to Contraction Principle. For some δ > 0, we
have

d (v,u) = d (g(v) , f (u))
� d (g(v) , f (v))+d ( f (v) , f (u))
� δ + kd (v,u) ,

which it goes to
(1− k)d (v,u) � δ . (2)

Now, for any ε > 0, we choose δ > 0 such that δ < (1− k)ε. Then, (2) becomes

(1− k)d (v,u) < (1− k)ε

and we conclude the proof. �

4. Schauder and Borsuk Theorems

In this section, we consider (Y,‖·‖) a linear normed space. We denote K, a convex
and compact subset of Y. The fixed point theorem of Schauder said that any continuous
function on K to itself admits a fixed point . (e.g. Theorem 3.2, pag. 119 from [7]). We
prove that the equation f (x) = x is stable in the sense of Definition 1 and the stability
of the fixed point holds if this point is unique.
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PROPOSITION 3. Let f : K −→ K be a continuous function. Then, for any ε > 0,
there exists δ > 0 such that for any x ∈ X which it is satisfying the property

‖ f (x)− x‖ < δ ,

there exists u ∈ Fix( f ) such
‖x−u‖< ε.

Proof. We prove by contradiction. We claim that there exists ε > 0 with following
property: for any δ > 0 there exists x ∈ K such that ‖ f (x)− x‖ < δ and for any
u ∈ Fix( f ) we have

‖x−u‖� ε.

We choose δ =
1
n
. For any n ∈ N,n � 1, we find xn ∈ K such that

‖ f (xn)− xn‖ <
1
n

and ‖xn−u‖ � ε.

The set K is compact, so the sequence (xn)n�1 has a convergent sub-sequence
(
xnk

)
k�1 .

We denote v, its limit. The function f is continuous, so

f
(
xnk

) −→
k−→∞

f (v) .

Then

‖ f (v)− v‖ =
∥∥ f (v)− f

(
xnk

)
+ f

(
xnk

)− xnk + xnk − v
∥∥

�
∥∥ f (v)− f

(
xnk

)∥∥+
∥∥ f

(
xnk

)− xnk

∥∥+
∥∥xnk − v

∥∥
�

∥∥ f (v)− f
(
xnk

)∥∥+
∥∥xnk − v

∥∥+
1
nk

.

The condition k −→ ∞ leads to f (v) = v.
Since xnk −→ v, then, for any ε > 0, we find k0 such that for any k > k0, we have

∥∥xnk − v
∥∥ < ε.

This result contradicts our claim and concludes the proof. �
For the second type of stability, we present two examples to show that the hypoth-

esis from the following proposition cannot be weakened in general.
First, we consider the function f : [0,1]−→ [0,1] defined by

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
3
, x ∈

[
0,

1
3

]

x, x ∈
(

1
3
,
2
3

)

2
3
, x ∈

[
2
3
,1

] .
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It is a continuous function and Fix( f ) =
[
1
3
,
2
3

]
. For any δ > 0, we choose ν > 0

such that ν < min

{
δ ,

1
3

}
. We define the function

g : [0,1]−→ [0,1] , g(x) = f (x)+ ν.

For any x ∈ [0,1] , we have |g(x)− f (x)| < δ . More, we obtain Fix(g) =
{

2
3

+ ν
}

.

Now, we consider α =
1
3
∈ Fix( f ) and ε =

1
3
. We observe that (α − ε,α + ε)∩

Fix(g) = ∅ and the point α is not stable in the sense of the Definition 2.
The problem is nonuniqueness of the fixed point. The following example investi-

gates the case when the fixed point is unique on a neighborhood.
We consider the function f : [0,1]−→ [0,1] defined by

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
3
, x ∈

[
0,

1
3

]

4
3
x− 1

9
, x ∈

(
1
3
,
2
3

)

7
9
, x ∈

[
2
3
,1

] .

It is a continuous function and Fix( f ) =
{

1
3
,
7
9

}
. Now, for any δ > 0, we choose

ν > 0 such that ν < min

{
δ ,

2
9

}
. We define the function

g : [0,1]−→ [0,1] , g(x) = f (x)+ ν.

For any x ∈ [0,1] , we have |g(x)− f (x)| < δ . More, we obtain Fix(g) =
{

7
9

+ ν
}

.

Now, we consider ε =
4
9

and α =
1
3
∈ Fix( f ) . We observe that (α − ε,α + ε)∩

Fix(g) = ∅ and the point α is not stable in the sense of the Definition 2.
The previous examples lead to the following result.

PROPOSITION 4. Let f : K −→K be a continuous function which admits a unique
fixed point u ∈ K . Then, for any ε > 0 there exists δ > 0 such that any continuous
function g : K −→ K, which is satisfying the property

‖g(x)− f (x)‖ < δ ,

for any x ∈ K, admits a fixed point v ∈ X such that

‖v−u‖< ε.

To prove Proposition 4, first we need the following lemma.
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LEMMA 1. Let f : K −→K be a continuous function. Then, for any ε > 0 there is
δ > 0 such that for any continuous function g : K −→ K that is satisfying the property

‖g(x)− f (x)‖ < δ

for any x ∈ K, and for any v ∈ Fix(g) there exists u ∈ Fix( f ) such that

‖v−u‖< ε.

Proof. We prove by contradiction. If we suppose the contrary, then there exists
ε > 0 such that for any δ > 0, there exist a continuous function g : K −→ K, which is
satisfying the property ‖g(x)− f (x)‖< δ , for any x ∈K, and a fixed point v ∈ Fix(g)

such that for any w∈ Fix( f ) , we have ‖v−w‖� ε. We choose δ =
1
n

, n∈N, n � 1.

We obtain a sequence of a continuous functions (gn)n�1 such ‖gn (x)− f (x)‖ <
1
n
, for

any x ∈ K. Also, we obtain a sequence (vn)n�1 such that gn (vn) = vn, for any n � 1.
Moreover,

‖vn −w‖ � ε, (3)

for any n � 1 and w ∈ Fix( f ) .
The set K is compact, so the sequence (vn)n�1 has a convegent sub-sequence(

vnk

)
k�1 . Denote u, its limit. Then f

(
vnk

) −→
k−→∞

f (u) .

We have

‖ f (u)−u‖ �
∥∥ f (u)− f

(
vnk

)∥∥+
∥∥ f

(
vnk

)−gnk

(
vnk

)∥∥
+

∥∥gnk

(
vnk

)− vnk

∥∥+
∥∥vnk −u

∥∥
�

∥∥ f (u)− f
(
vnk

)∥∥+
1
nk

+
∥∥vnk −u

∥∥ .

The condition k−→∞ shows us that u is a fixed point of f . From vnk −→ u, we obtain
that for any ε > 0, we find k > 0 such that

∥∥vnk −u
∥∥ < ε, which it contradicts (3). This

concludes our proof. �
Proof. [Proof of Proposition 4] The conclusion can be obtained from the previous

lemma and from the uniqueness of the fixed point of f . �
Further, we investigate a similar result. Let B be the closed unit ball from Rn. We

denote �, the following set:

� = { f : B −→ R
n | f is continuous and f (−x) = − f (x) , for any x ∈ ∂B } .

Borsuk Theorem said that any f ∈ � has at least one fixed point (e.g Theorem 3.3,
pag. 119 from [7]).

PROPOSITION 5. Let f ∈ � . Then, for any ε > 0, there exists δ > 0 such that
for any x ∈ X which it is satisfying the property

‖ f (x)− x‖ < δ ,
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there exists u ∈ Fix( f ) such
‖x−u‖< ε.

Proof. Hence the closed ball B is compact, then the proof is similar to the proof
of Proposition 3. �

The stability in the sense of Definition 2 fails in the hypothesis of Borsuk Theorem.
First, we observe that if u∈Fix( f )∩∂B, then f (−u)=− f (u)=−u, so −u∈Fix(g) .
On the other hand, the function f : [−1,1]−→ R, f (x) = x3 has Fix( f ) = {−1,0,1} .
The fixed points x = 1 and x =−1 are not stable. For any δ > 0, we define the function

g : [−1,1]−→ R, g(x) = x3− δ
2

x. Then Fix(g) = {0} . For any x ∈ [−1,1] , we have

|g(x)− f (x)| =
∣∣∣∣δ
2

x

∣∣∣∣ � δ
2

< δ .

If we choose ε =
1
2
, we cannot find a fixed point of g on the interval

(
−1− 1

2
,−1+

1
2

)

or

(
1− 1

2
,1+

1
2

)
.

This example leads to the following result related to the stability, in the sense of
Definition 2, of the fixed point obtained from Borsuk Theorem.

PROPOSITION 6. Let f ∈ � . We suppose that it admits a unique fixed point
u ∈ B. Then, for any ε > 0, there exists δ > 0 such that any function g ∈ �, which is
satisfying the condition

‖g(x)− f (x)‖ < δ ,(x ∈ B)

admits a fixed point v ∈ B such that

‖v−u‖< ε.

Proof. The proof is similar with the proof of Proposition 4. �

5. Knaster Lemma on the real axis

Knaster Lemma on real axis said that Fix( f ) �= ∅, for any nondecreasing function
f : [a,b] −→ [a,b] . In fact, it is a particular case of Knaster–Tarski Theorem. (see
Theorem 1.1, pag 26 from [7] ).

Unfortunately, the hypothesis of Knaster Lemma is too weak to obtain a stability
in the sense of Definition 1. For example, the function f : [0,1] −→ [0,1] , defined by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2
, x ∈

[
0,

1
2

)

1, x ∈
[
1
2
,1

] ,
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has Fix( f ) = {1} . We choose ε =
1
2
. The equality

lim

x↗
1
2

f (x) =
1
2

and the inequality

| f (x)− x|�
∣∣∣∣ f (x)− 1

2

∣∣∣∣+
∣∣∣∣x− 1

2

∣∣∣∣
show that for any δ > 0, we find x0 <

1
2

such that

| f (x0)− x0| < δ and |x0−1|> 1
2
.

The stability in the sense of Definition 2 must be studied only in the cases of
uniqueness of the fixed point. The examples from the previous section are conclusive.

PROPOSITION 7. Let f : [a,b] −→ [a,b] be a nondecreasing function which it
admits a unique fixed point c ∈ [a,b] . Then for any ε > 0, there exists δ > 0 such that
any nondecreasing function g : [a,b]−→ [a,b] , which is satisfying the property

|g(x)− f (x)| < δ ,

for any x ∈ [a,b] , admits a fixed point d ∈ [a,b] such that |d− c| < ε.

Proof. We have three cases. First, we suppose that a < c < b. Then, we claim that
f (x) > x, for any x∈ [a,c) and f (x) < x, for any x∈ (c,b] . We admit by contradiction
that there exists u ∈ [a,c) such that f (u) < u. For any x ∈ [a,u] , we have f (a) �
f (x) � f (u) . The conditions f (a) � a and f (u) < u goes to conclusion f (x) ∈
[a,u] , for any x ∈ [a,u] . Then the restriction f : [a,u]−→ [a,u] admits a fixed point on
the interval [a,u] . This contradicts the uniqueness of the point c. A similar reasoning
shows us that f (x) < x, for any x ∈ (c,b] .

Now, for an arbitrary ε > 0, we consider y ∈ (c,b)∩ (c,c+ ε) and z ∈ (a,c)∩
(c− ε,c) . We have f (y) < y and f (z) > z. We choose δ > 0 such that f (y)+ δ <
y− δ and f (z)− δ > z+ δ . We consider a nondecreasing function g : [a,b] −→ [a,b]
such that |g(x)− f (x)| < δ , for any x ∈ [a,b] . We have

g(y) < f (y)+ δ < y− δ < y.

Further,
g(z) > f (z)− δ > z+ δ > z.

The function g is nondecreasing. Then, for any x ∈ [z,y] we have

g(z) � g(x) � g(y) .
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The restriction g : [z,y] −→ [z,y] is satisfying the hypothesis of Knaster Lemma. Then,
the function g admits a fixed point d ∈ [z,y] ⊂ (c− ε,c+ ε) .

For the second case, we assume that c = a. From the previous case, we obtain that
f (x) < x, for any x ∈ (a,b] .

For an arbitary ε > 0, we consider y ∈ (a,b)∩ (a,a+ ε) . We have f (y) < y.
We choose δ > 0 such that f (y)+ δ < y− δ . We consider a nondecreasing function
g : [a,b] −→ [a,b] such that |g(x)− f (x)| < δ , for any x ∈ [a,b] . We have

g(y) < f (y)+ δ < y− δ + δ = y.

Further,
g(a) � a.

The function g is nondecreasing. Then, for any x ∈ [a,y] we have

g(a) � g(x) � g(y) .

and the restriction g : [a,y] −→ [a,y] is satisfying the hypothesis of Knaster Lemma.
Then the function g admits a fixed point d ∈ [a,y] ⊂ [a,a+ ε).

For the last case, we assume that c = b. Then f (x) > x, for any x ∈ [a,b) . For
an arbitary ε > 0, we consider y ∈ (a,b)∩ (b− ε,b) . We have f (y) > y. We choose
δ > 0 such that f (y)− δ > y+ δ .

We consider a nondecreasing function g : [a,b]−→ [a,b] such that |g(x)− f (x)|<
δ , for any x ∈ [a,b] . We have

g(y) > f (y)− δ > y+ δ > y.

Further,
g(b) � b.

The function g is nondecreasing. Then, for any x ∈ [y,b] we have

g(y) � g(x) � g(b) .

and the restriction g : [y,b] −→ [y,b] is satisfying the hypothesis of Knaster Lemma.
Then the function g admits a fixed point d ∈ [y,b] ⊂ (b− ε,b] . Now the proof is com-
plete. �
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