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GENERALIZATION ON UNIQUENESS OF MEROMORPHIC

FUNCTIONS OF A CERTAIN DIFFERENTIAL POLYNOMIALS

HARINA P. WAGHAMORE AND HUSNA V.

Abstract. In this paper by introducing the notion of multiplicity we study the uniqueness of
meromorphic functions concerning differential polynomials and obtain some results. The results
of the paper improve and generalize some results due to Jin-Dong Li [7].

1. Introduction

In this paper, a meromorphic function means meromorphic in the open complex
plane. We shall adopt the standard notations in Nevanlinna’s value distribution the-
ory of meromorphic functions such as the characteristic function T (r, f ) , the counting
function of the poles N(r, f ), and the proximity function m(r, f ) (see [10], [4]).

Let f and g be two nonconstant meromorphic functions and let a ∈ C∪{∞} . We
say that f and g share a CM if f − a and g− a have the same zeros, with the same
multiplicities. Similarly, we say that f and g share a IM if f −a and g−a have the
same zeros, ignoring multiplicities. When a = ∞ the zeros of f − a means the poles
of f . A meromorphic function a(�≡ ∞) is called a small function with respect to f
provided that T (r,a) = S(r, f ).

Let p be a positive integer. We use Np)(r, 1
f−a ) to denote the counting function

of the zeros of f −a whose multiplicities are not greater than p , N(p(r, 1
f−a ) to denote

the counting function of the zeros of f − a whose multiplicities are not less than p.
And Np)(r,

1
f−a) N(p(r,

1
f−a) are their reduced functions, respectively. We also use

Np(r, 1
f−a ) to denote the counting function of the zeros of f − a where a zero with

multiplicity m is counted m times if m � p and p times if m > p. Clearly, N1(r, 1
f−a ) =

N(r, 1
f−a).

Define

δp(a, f ) = 1− limsup
r→∞

Np(r, 1
f−a)

T (r, f )

Obviously,
1 � Θ(a, f ) � δp(a, f ) � δ (a, f ) � 0.

Hayman [3] and Clunie[1] proved the following result:
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THEOREM A. Let f (z) be a transcendental entire function and let n � 1 be a
positive integer. Then f n f ′ = 1 has infinitely many solutions.

In 1997, Yang and Hua [9] obtained a unicity theorem corresponding to the above
result and proved the following result:

THEOREM B. Let f (z) and g(z) be two transcendental entire functions and let
n � 6 be a positive integer. If f n f ′ and gng′ share 1 CM, then either f = tg for a
constant t such that tn+1 = 1 or f (z) = c2e−cz and g(z) = c1ecz , where c,c1 and c2

are three constants satisfying (c1c2)n+1c2 = −1.

THEOREM C. Let f (z) and g(z) be two nonconstant meromorphic functions and
let n � 11 be a positive integer. If f n f ′ and gng′ share 1 CM, then either f = tg for a
constant t such that tn+1 = 1 or f (z) = c2e−cz and g(z) = c1ecz , where c,c1 and c2

are three constants satisfying (c1c2)n+1c2 = −1.

In 2011, R. S. Dyavnal [2] have improved these results and obtained the following
results:

THEOREM D. Let f (z) and g(z) be two nonconstant meromorphic functions
whose zeros and poles have multiplicities not smaller than s, where s is a positive
integer. Let n � 2 be a positive integer satisfying the inequality (n + 1)s � 12. If
f n f ′ and gng′ share 1 CM, then either f = tg for a constant t such that tn+1 = 1 or
f (z) = c2e−cz and g(z) = c1ecz, where c,c1 and c2 are three constants satisfying the
equality (c1c2)n+1c2 = −1.

THEOREM E. Let f (z) and g(z) be two transcendental entire functions whose
zeros have multiplicities not smaller than s, where s is a positive integer.Let n be a
positive integer satisfying the inequality (n+ 1)s � 7. If f n f ′ and gng′ share 1 CM,
then either f = tg for a constant t such that tn+1 = 1 or f (z) = c2e−cz and g(z) =
c1ecz, where c,c1 and c2 are three constants satisfying the equality (c1c2)n+1c2 =−1.

In 2008, Li [6] proved the following result:

THEOREM F. Let f (z) and g(z) be two nonconstant meromorphic functions and
let n � 23 be a positive integer. If f n f ′ and gng′ share 1 IM, then either f = tg for a
constant t such that tn+1 = 1 or f (z) = c2e−cz and g(z) = c1ecz, where c,c1 and c2

are three constants satisfying the equality (c1c2)n+1c2 = −1.

In 2015, Jin Dong Li [7] proved the following two theorems.

THEOREM G. Let f (z) and g(z) be two nonconstant meromorphic functions
whose zeros and poles have multiplicities not smaller than s, where s is a positive
integer. Let n � 2 be a positive integer satisfying the inequality (n + 1)s � 24. If
f n f ′ and gng′ share 1 IM, then either f = tg for a constant t such that tn+1 = 1 or
f (z) = c2e−cz and g(z) = c1ecz, where c,c1 and c2 are three constants satisfying the
equality (c1c2)n+1c2 = −1.
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THEOREM H. Let f (z) and g(z) be two transcendental entire functions whose
zeros have multiplicities not smaller than s, where s ia a positive integer. Let n be a
positive integer satisfying the inequality (n+ 1)s � 13. If f n f ′ and gng′ share 1 IM,
then either f = tg for a constant t such that tn+1 = 1 or f (z) = c2e−cz and g(z)= c1ecz,
where c,c1 and c2 are three constants satisfying the equality (c1c2)n+1c2 = −1.

In this paper, we partially extend Theorem G and Theorem H to a certain differen-
tial polynomials and obtain the following results.

THEOREM 1. Let f and g be two nonconstantmeromorphic functions and let n,k
and m be three positive integers with s(n+m) > 12k+2m+19 and max{χ1,χ2} < 0,
where

χ1 =
2m

n+m−2k
+

2
(n+m)s+2k

+
2k+1

(n+m)s+ k
+1−Θk)(1, f )+ Θk−1)(1, f ) (1)

and

χ2 =
2m

n+m−2k
+

2
(n+m)s+2k

+
2k+1

(n+m)s+ k
+1−Θk)(1,g)+ Θk−1)(1,g) (2)

Let { f nP( f )}(k) and {gnP(g)}k share 1 IM, then
(i) when P(ω) = amωm +am−1ωm−1 + ...+a0, one of the following two cases holds.

(i1) f ≡ tg, for a constant t such that td = 1, where d = {n + m, ...,n + m−
i, ...,n}, am−i �= 0 for some i = 0,1, ...,m.

(i2) f and g satisfy the algebraic equation R( f ,g) ≡ 0, where R(ω1,ω2) =
ωn

1 (amωm
1 +am−1ωm−1

1 + ...+a0)−ωn
2(amωm

2 +am−1ωm−1
2 + ...+a0).

(ii) when P(ω) = c0 , f (z) = tg(z) for a constant t such that tn = 1.

THEOREM 2. Let f and g be two nonconstant entire functions and let n,k and
m be three positive integers with s(n+m) > 1 and max{χ1,χ2} < 0, where

χ1 =
m

n+m−2k
+

1
(n+m)s+2k

−Θk)(1, f ) (3)

and

χ2 =
m

n+m−2k
+

1
(n+m)s+2k

−Θk)(1,g) (4)

Let { f nP( f )}(k) {gnP(g)}(k) share 1 IM, then
(i) when P(ω) = amωm +am−1ωm−1 + ...+a0, one of the following two cases holds.

(i1) f ≡ tg, for a constant t such that td = 1, where d = {n + m, ...,n + m−
i, ...,n}, am−i �= 0 for some i = 0,1, ...,m.

(i2) f and g satisfy the algebraic equation R( f ,g) ≡ 0, where R(ω1,ω2) =
ωn

1 (amωm
1 +am−1ωm−1

1 + ...+a0)−ωn
2(amωm

2 +am−1ωm−1
2 + ...+a0).

(ii) when P(ω) = c0 , f (z) = tg(z) for a constant t such that tn = 1.
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2. Some Lemmas

To prove our result, we need following lemmas:

LEMMA 1. [7] Let f (z) and g(z) be two meromorphuc functions and let k be a
positive integer. If f (k) and g(k) share the value 1 IM and

� = (2k+3)Θ(∞, f )+ (2k+4)Θ(∞,g)+ (k+3)Θ(0, f )+ (2k+3)Θ(0,g)
+δk+1(0, f )+ δk+1(0,g) > 7k+13

then either f (k)g(k) ≡ 1 or f ≡ g.

LEMMA 2. [8] Let h be a nonconstant meromorphic function that is not a poly-
nomial with its degree � k−1 .Then

N0(r,
1

h(k) ) � Nk(r,
1
h
)+ kN(r,h)+S(r,h)

where k(� 1) is a positive integer, and N0(r, 1
h(k) ) denotes the counting function of those

zeros of h(k) that are not the zeros of h.

3. Proof of Theorem 1

Proof. Let
F = f nP( f ) and G = gnP(g) (5)

Consider,

N(r,
1
F

) = N(r,
1

f nP( f )
) � 1

s(n+m)
N(r,

1
F

) � 1
s(n+m)

[T (r,F)+o(1)],

then we have

Θ(0,F) = 1− limsup
r→∞

N(r, 1
f )

T (r,F)
� 1− 2

s(n+m)
(6)

and

δk+1(0,F) = 1− limsup
r→∞

Nk+1(r, 1
F )

T (r,F)

= 1− limsup
r→∞

(k+m+1)N(r, 1
F )

T (r,F)

� 1− k+m+1
s(n+m)

(7)

Θ(∞,F) = 1− limsup
r→∞

N(r,F)
T (r,F)

� 1− 1
s(n+m)

(8)
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Similarly,

Θ(0,G) � 1− 2
s(n+m)

(9)

δk+1(0,G) � 1− k+m+1
s(n+m)

(10)

Θ(∞,G) � 1− 1
s(n+m)

(11)

Next, we have from Lemma 1 ,(5)–(11) and the condition s(n+m) > 12k+ 2m+ 19,
we get

� > 7k+13. (12)

From (12), Lemma 1 and the condition that F (k) and G(k) share 0 IM we know that F
and G are meromorphic functions such that F (k)G(k) = 1 or F = G.

We discuss the following two cases.
Case 1. Suppose that F (k)G(k) = 1. Then it follows from (5) that

{ f nP( f )}(k){gnP(g)}(k) = 1 (13)

Let z0 �∈ {z : P(z) = 0} be a zero of f of order p. Then it follows from (13) that
z0 is a pole of g. Suppose that z0 is a pole of g of order q, then we have np− k =
(n+m)q+ k , i.e., n(p−q) = mq+2k which implies that p � q+1 and q � n−2k

m , so
we have

p � n+m−2k
m

(14)

Let z1 �∈ {z : P(z) = 0} be a zero of P( f ) of order p1 � k + 1 , then it follows
from (13) that z1 is a pole of g . Suppose that z1 is a pole of g of order q1.

Then from (13) we have p1− k = (n+m)q1 + k.
From this we get

p1 � (n+m)s+2k. (15)

Let z2 �∈ {z : P(z) = 0} be a zero of { f nP( f )}(k) of order p2 that is not a zero of
f P( f ). Then from (13) we see that z2 is a pole of g. Suppose that z2 is a pole of g of
order q2, then p2 = (n+m)q2 + k.Thus

p2 � (n+m)s+ k. (16)

Let z3 �∈ {z : P(z) = 0}∪{z : f (z)P( f ) = 0} be a zero of { f nP( f )}(k) = 1 of multiplicity
p3. Then from (13) we deduce that z3 is a pole of g of multiplicity q3, say. Hence
p3 = (n+m)q3 + k � (n+m)s+ k.
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This together with (14)–(16) and Lemma 2 gives

N(r, f ) � N(r,
1
g
)+Nk−1)(r,

1
g−1

)+N(r,
1

g−1
)

+
1

(n+m)s+ k
N0(r,

1

{gnP(g)}(k) )+o(logr)

� 1
p
N(r,

1
g
)+Nk−1)(r,

1
g−1

)+
1
p1

N(r,
1

g−1
)

+
1

(n+m)s+ k
N0(r,

1

{gnP(g)}(k) )+o(logr)

� 1
n+m−2k

m

N(r,
1
g
)+Nk−1)(r,

1
g−1

)+
1

(n+m)s+2k
N(r,

1
g−1

)

+
1

(n+m)s+ k
{kN(r,g)+ kN(r,

1
g
)+Nk(r,

1
g−1

)}+o(logr)+S(r,g).

N(r, f ) � { m
n+m−2k

+
1

(n+m)s+2k
+

2k+1
(n+m)s+ k

+1−Θk−1)(1,g)

+ ε}T (r,g)+S(r,g)
(17)

By (17), the above analysis and the second fundamental theorem we get

T (r, f ) � N(r, f )+N(r,
1
f
)+N(r,

1
f −1

)+S(r, f )

� { m
n+m−2k

+
1

(n+m)s+2k
+

2k+1
(n+m)s+ k

+1−Θk−1)(1,g)+ ε}T(r,g)+
m

n+m−2k
N(r,

1
f
)

+Nk)(r,
1

f −1
)+

1
(n+m)s+2k

N(r,
1

f −1
)+S(r, f )+S(r,g)

(18)

T (r, f ) � { m
n+m−2k

+
1

(n+m)s+2k
+

2k+1
(n+m)s+ k

+1−Θk−1)(1,g)+ ε}T(r,g)+{ m
n+m−2k

+
1

(n+m)s+2k

+1−Θk)(1,g)+ ε}T(r,g)+S(r, f )+S(r,g)

Similarly,

T (r,g) � { m
n+m−2k

+
1

(n+m)s+2k
+

2k+1
(n+m)s+ k

+1−Θk−1)(1, f )+ ε}T (r, f )+{ m
n+m−2k

1
(n+m)s+2k

+1−Θk)(1,g)+ ε}T(r,g)+S(r, f )+S(r,g)

(19)
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from (18) and (19) we get

(−χ1−2ε)T (r, f )+ (−χ2−2ε)T(r,g) � S(r, f )+S(r,g) (20)

where χ1 and χ2 are defined as in and (2) respectively. From (20) and the condition
max{χ1,χ2} < 0 we get a contradiction.

Case 2. Suppose that F ≡ G . Then from (5) we get

f nP( f ) ≡ gnP(g)

i.e.,
f n(am f m + ...+a0) = gn(amgm + ...+a0) (21)

Let h = f
g . If h is a constant, then substituting f ≡ gh into (21) we deduce

amgn+m(hn+m − 1) + am−1gn+m−1(hn+m−1 − 1) + ...a0gn(hn − 1) = 0 which implies
hd = 1, where d = (n+m, ...,n+m− i, ...,n), am−i �= 0 for some i = 0,1, ..,m. Thus
f (z) = tg(z) for a constant t such that td = 1, where d = (n +m, ...,n + m + i, ...n),
am−i �= 0 for some i = 0,1, ..,m. If h is not a constant, then we know by (21) that
f and g satisfy the algebraic equation R( f ,g) = 0, where R(ω1,ω2) = ωn

1 (amωm
1 +

am−1ωm−1
1 + ...+a0)−ωn

2(amωm
2 +am−1ωm−1

2 + ...+a0).
This proves the Theorem 1.

4. Proof of Theorem 2

Proof. Since f and g are entire functions, we have N(r, f ) = N(r,g) = 0. Pro-
ceeding as in the proof Theorem 1 and applying Lemma 1, we complete the proof of
Theorem 2.
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