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APPROXIMATION OF PERIODIC FUNCTIONS

BY ZYGMUND MEANS IN ORLICZ SPACES

SADULLA Z. JAFAROV

Abstract. In the present work we investigate the approximation of the functions by Zygmund
means in the Orlicz spaces LM(T) in the terms of the best approximation En( f )M and modulus
of smoothness ωk(·, f )M .

1. Introduction and Main Results

Let M(u) be a continuous increasing convex function on [0,∞) such that M(u)/u→
0 if u → 0, and M(u)/u → ∞ if u → ∞ . We denote by N the complementary of M in
Young’s sense, i.e. N(u) = max{uv−M(v) : v � 0} if u � 0. We will say that M sat-
isfies the Δ2−condition if M(2u) � cM(u) for any u � u0 � 0 with some constant c ,
independent of u.

Let T denote the interval [−π ,π ] , C the complex plane, and Lp(T) , 1 � p � ∞ ,
the Lebesgue space of measurable complex-valued functions on T .

For a given Young function M , let L̃M(T) denote the set of all Lebesgue measur-
able functions f : T → C for which∫

T

M (| f (x)|)dx < ∞.

Let N be the complementary Young function of M . It is well-known [21, p. 69],
[34, pp. 52-68] that the linear span of L̃M(T) equipped with the Orlicz norm

‖ f‖LM(T) := sup

⎧⎨⎩
∫
T

| f (x)g(x)|dx : g ∈ L̃N(T),
∫
T

N (|g(x)|)dx � 1

⎫⎬⎭ ,

or with the Luxemburg norm

‖ f‖∗LM(T) := inf

⎧⎨⎩k > 0 :
∫
T

M

( | f (x)
k

)
dx � 1

⎫⎬⎭
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becomes a Banach space. This space is denoted by LM(T) and is called an Orlicz space
[21, p. 26]. The Orlicz spaces are known as the generalizations of the Lebesgue spaces
Lp(T), 1 < p < ∞. The Luxemburg and Orlicz norms are equivalent since [21, p. 80]

‖ f‖∗LM(T) � ‖ f‖LM(T) � 2‖ f‖∗LM(T) , f ∈ LM(T).

If we choose M(u) = up/p (1 < p < ∞) then the complementary function is
N(u) = uq/q with 1

p + 1
q = 1 and we have the relation

p−1/p‖u‖Lp(T) = ‖u‖∗LM(T) � ‖u‖LM(T) � q1/q‖u‖Lp(T) ,

where ‖u‖Lp(T) =
(∫

T

|u(x)|p dx

)1/p

denotes the usual norm of the Lp(T) space.

The Orlicz space LM(T) is reflexive if and only if the N− function M and its
complementary function N both satisfy the Δ2−condition [34, p. 113].

Note that the detailed information about properties of the Orlicz spaces can be
found in [6], [7], [21], [27], [28] and [29].

Let LM(T) be an Orlicz space. Suppose that x,h are real, and let us take into
account the sum

Δk
h f (x) =

k

∑
ν=0

(−1)k−ν
(

k
ν

)
f (x+ νh) , f ∈ LM(T), k ∈ N,

where (
k
ν

)
:=

k(k−1)...(k−ν +1)
ν!

.

The function

ωk( f ,δ )M := sup
0<h�δ

∥∥∥Δk
h f (x)

∥∥∥
LM(T)

, δ > 0

is called k− th modulus of smoothness of f ∈ LM(T) .
It can easily be shown that ωk ( f ,δ )M is a continuous, non-negative and non-

decreasing function satisfying the conditions

lim
δ→0+

ωk ( f ,δ )M = 0, ωk ( f +g, ·)M � ωk ( f , ·)M + ωk (g, ·)M ,

for f ,g ∈ LM (T) .
Let

a0

2
+

∞

∑
k=1

Ak(x, f ) (1)

be the Fourier series of the function f ∈L1(T) , where Ak(x, f ) := (ak ( f )coskx+bk ( f ) sinkx) ,
ak( f ) and bk( f ) are Fourier coefficients of the function f ∈ L1(T).
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The n− th partial sums, Zygmund means of order k (k ∈ N) of the series (1) are
defined, respectively as [10], [40]

Sn(x, f ) =
a0

2
+

n

∑
ν=1

Aν(x, f ),

Zn,k(x, f ) =
a0

2
+

n

∑
ν=1

(1− νk

(n+1)k )Aν (x, f ), k = 1,2, ..., n = 1,2, ...

It is clear that
S0(x, f ) = Z0,k(x, f ) =

a0

2
.

We denote by En( f )M the best approximation of f ∈ LM (T) by trigonometric
polynomials of degree not exceeding n, i.e.,

En( f )M = inf{‖ f −Tn ‖LM(T) : Tn ∈ Πn}

where Πn denotes the class of trigonometric polynomials of degree at most n.
The approximation problems by trigonometric polynomials in nonweighted and

weighted Orlicz spaces have been investigated by several authors (see, for example,
[1]-[4], [9], [10], [13], [15]-18], [23], [31], [32], [35], [42]). The approximation of
the functions by the means of Fourier trigonometric series in different spaces were
studied in [5], [11], [12], [19], [24]-[26], [36]-[41] and [43]. In the present paper, we
investigate the deviation of functions from their Zygmund means in the terms of the
best approximation En( f )M and modulus of smoothness ωk( f , ·)M of these functions
in the Orlicz spaces LM(T). Note that in the proof of the main results we use the methot
in the [40] and [11].

Our main results are the following.

THEOREM 1. Let LM(T) be a reflexive Orlicz space and k ∈ N. Then for every
f ∈ LM(T) the inequality

‖ f −Zn,k(·, f ) ‖LM(T)�
c1(M,k)
(n+1)k

n

∑
ν=0

(ν +1)k−1Eν( f )M (2)

holds.

THEOREM 2. Let LM(T) be a reflexive Orlicz space and k ∈ N. Then for every
f ∈ LM(T) the inequality

‖ f −Zn,k(·, f ) ‖LM(T)� c2(M,k)ωk( f ,
π
n

)M (3)

holds.

Note that Theorems 1 and 2 in the Lebesgue spaces Lp(T), p � 1 were obtained
in [40] and [11] respectively.
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2. Proofs of the Results

Proof of Theorem 1. We consider the trigonometric polynomial

Tn(x) =
n

∑
ν=0

(αν cosνx+ βν sinνx).

The following inequality holds:

∥∥ f −Zn,k(·, f )
∥∥

LM(T) =

∥∥∥∥∥∥∥ f −
n

∑
ν=0

(1− νk

(n+1)k
)Aν(·, f )

∥∥∥∥∥∥∥
LM(T)

� ‖ f −Tn‖LM(T) +

∥∥∥∥∥Tn−
n

∑
ν=0

(
1− νk

(n+1)k

)
(αν cosνx+ βν sinνx)

∥∥∥∥∥
LM(T)

+

∥∥∥∥∥∥∥
n

∑
ν=0

(
1− νk

(n+1)k

)
Aν(·, f )−

n

∑
ν=0

(αν cosνx+ βν sinνx)

(
1− νk

(n+1)k

)∥∥∥∥∥∥∥
LM(T)

= ‖ f −Tn‖LM(T) +

∥∥∥∥∥Tn−
n

∑
ν=0

(
1− νk

(n+1)k

)
(αν cosνx+ βν sinνx)

∥∥∥∥∥
LM(T)

+

∥∥∥∥∥ 1
π

∫ 2π

0
{ f (x+ θ )−Tn(x+ θ}

{
1
2

+
n

∑
ν=1

(
1− νk

(n+1)k

)
cosνθ

}
dθ

∥∥∥∥∥
LM(T)

� ‖ f −Tn‖LM(T) +Kn ‖ f (·+h)−Tn(·+h)‖LM(T)

+

∥∥∥∥∥Tn −
n

∑
ν=0

(
1− νk

(n+1)k

)
(αν cosνx+ βν sinνx)

∥∥∥∥∥
LM(T)

� (1+Kn)‖ f −Tn‖LM(T) +Rn(Tn)M, (4)

where

Kn =
2
π

∫ π

0

∣∣∣∣∣12 +
n

∑
ν=1

λν(n)cosνθ

∣∣∣∣∣dθ ,

λν(n) = 1− νk

(n+1)k
, k = 1,2, ...

Rn(Tn)M =

∥∥∥∥∥Tn−
n

∑
ν=0

(
1− νk

(n+1)k

)
(αν cosνx+ βν sinνx)

∥∥∥∥∥
LM(T)

.

Let f ∈ LM(T) and let Tn ∈ Πn (n = 0,1,2, ...) be the polynomial of best approxima-
tion to f , i. e.

En( f )M = ‖ f −Tn‖LM(T) .
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Then using (4) we obtain∥∥ f −Zn,k(·, f )
∥∥

LM(T)

� (1+Kn)En( f )M +
1

(n+1)k

∥∥∥∥∥ n

∑
ν=1

νk(αν cosνx+ βν sinνx)

∥∥∥∥∥
LM(T)

(5)

Note that according to [20] Kn � c3. Then the inequality (5) we write the following
form: ∥∥ f −Zn,k(·, f )

∥∥
LM(T)

� c3En( f )M +
1

(n+1)k

∥∥∥∥∥ n

∑
ν=1

νk(αν cosνx+ βν sinνx)

∥∥∥∥∥
LM(T)

(6)

We suppose that k is even and the number m ∈ N satisfies condition 2m � n < 2m+1 .
Then we have ∥∥ f −Zn,k(·, f )

∥∥
LM(T)

� c4En( f )M +
1

(n+1)k

∥∥∥T (k)
n

∥∥∥
LM(T )

� c4En( f )M +
1

(n+1)k
{
∥∥∥T (k)

2 −T (k)
0

∥∥∥
LM(T)

+
m

∑
ν=1

∥∥∥T (k)
2ν+1 −T (k)

2ν

∥∥∥
LM(T)

+
∥∥∥T (k)

n −T (k)
2m+1

∥∥∥
LM(T)

}. (7)

Since Tn is the polynomial best approximation we obtain

‖T2ν+1 −T2ν‖LM(T)

� ‖T2ν+1 − f‖LM(T) +‖ f −T2ν‖LM(T)

� E2ν+1( f )M +E2ν ( f )M � 2E2ν ( f )M (8)

Using (8) and Bernstein inequality for trigonometric polynomial in the Orlicz spaces
[22], [14] we have∥∥∥T (k)

2ν+1 −T (k)
2ν

∥∥∥
LM(T)

� c52
(ν+1)k ‖T2ν+1 −T2ν‖LM(T)

� c62
(ν+1)kE2ν ( f )M . (9)

Consideration of (7)and (9) gives us∥∥ f −Zn,k(·, f )
∥∥

LM(T)

� c5En( f )M +
c7

(n+1)k
{‖T2−T0‖LM(T)

+
m

∑
ν=1

2(ν+1)kE2ν ( f )M +‖Tn −T2m+1‖LM(T)} (10)
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The inequality

2(ν+1)kE2ν ( f )M � 22k
2ν

∑
m=2ν−1+1

mk−1Em( f )M (11)

holds. Really,
2ν

∑
m=2ν−1+1

mk−1 �
(
2ν−1)k−1

2ν−1 = 2k(ν−1).

Since Em( f )M is monotonically decreasing, we conclude that

2(ν+1)kE2ν ( f )M � 22k
2ν

∑
m=2ν−1+1

mk−1Em( f )M .

Now, as done in [14], we use the inequality (11) in (10) to obtain∥∥ f −Zn,k(·, f )
∥∥

LM(T)

� c5En( f )M +
c8

(n+1)k
{E0( f )M +22k

m

∑
ν=1

(
2ν

∑
m=2ν−1+1

mk−1Em( f )M

)
}

� c9En( f )M +
c10

(n+1)k
{E0( f )M +22k

2m

∑
m=2

mk−1Em( f )M}

� c11

(n+1)k

n

∑
ν=0

(ν +1)k−1Eν( f )M .

Consequently, if k is even the inequality (2) is proved. Now let k � 3 be a odd.
Then

Rn(Tn)M

=
1

(n+1)k−1

∥∥∥∥∥T (k−1)
n −

n

∑
ν=0

(
1− ν

n+1

)
νk−1(αν cosνx+ βν sinνx)

∥∥∥∥∥
LM(T)

. (12)

According [18] we have

Rn(Tn)M � c12

(n+1)k
n−1

∑
ν=0

Eν(T (k−1)
n )M. (13)

Note that by [23] and [3] the inequality

En( f (k))M � c13

{
nkEn( f )M +

∞

∑
ν=n+1

νk−1Eν( f )M.

}
(14)
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holds. Using properties of sequence {En( f )M} and (14) we find that

n−1

∑
ν=0

Eν(T (k−1)
n )M

� c14

n−1

∑
ν=0

{
(ν +1)k−1 Eν(Tn)M +

n−1

∑
s=ν

(s+1)k−2 Es(Tn)M

}

� c15

n−1

∑
ν=0

(ν +1)k−1 Eν(Tn)M � c16

n−1

∑
ν=0

(ν +1)k−1 Eν( f )M . (15)

Use of (15), (13) and (6) gives us inequality (2). Theorem 1 is proved.
Proof of Theorem 2. Let f ∈ LM(T). Then the following inequality holds:∥∥ f −Zn,k(·, f )

∥∥
LM(T) � ‖ f −Sn(·, f )‖LM(T) + (n+1)−k

∥∥∥νkAν(·, f )
∥∥∥

LM(T)

= U1 +U (k)
2 . (16)

It is well known from [33], [14] that

U1 = ‖ f −Sn(·, f )‖LM(T) � c17(M)En( f )M . (17)

By [32] and [2] we have

En( f )M � c18(k,M)ωk( f ,
π
n

)M. (18)

Then by (17) and (18) we get

U1 = ‖ f −Sn(·, f )‖LM(T) � c19(k,M)ωk( f ,
π
n

)M. (19)

We note that if k is even

n

∑
ν=1

νkAν(x, f ) = (−1)k/2S(k)
n (x, f ),

if k is odd
n

∑
ν=1

νkAν(x, f ) = (−1)(k+3)/2S̃n
(k)

(x, f ),

where g̃(x) is the function that is trigonometricaly conjugate to g(x).Then

U (k)
2 =

⎧⎪⎨⎪⎩
(n+1)−k

∥∥∥S(k)
n (·, f )

∥∥∥
LM(T)

, k− even

(n+1)−k
∥∥∥S̃n

(k)
(·, f )

∥∥∥
LM(T)

, k−odd.
(20)
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If k is even, by inequalities (2.11), (3.1) of [4] and (20) we have

U (k)
2 = (n+1)−k

∥∥∥S(k)
n (·, f )

∥∥∥
LM(T)

� c20(n+1)−k2−kn−k
∥∥∥Δk

π/nSn(·, f )
∥∥∥

LM(T)

� 2−kc21

∥∥∥Δk
π/nSn(·, f )

∥∥∥
LM(T)

= 2−kc21

∥∥∥Δk
π/n(Sn(·, f )− f + f )

∥∥∥
LM(T)

� c22(M,k)
{
‖ f −Sn(·, f )‖LM(T) +

∥∥∥Δk
π/n( f )

∥∥∥
LM(T)

}
� c23(M,k)ωk( f ,

π
n

)M. (21)

Considering [33], [14] we have∥∥∥S̃n
(k)

(·, f )
∥∥∥

LM(T)
� c24

∥∥∥S(k)
n (·, f )

∥∥∥
LM(T)

. (22)

If k is odd, consideration of (20), (22) and (21) gives us

U (k)
2 = (n+1)−k

∥∥∥S̃n
(k)

(·, f )
∥∥∥

LM(T)

� c25(n+1)−k
∥∥∥S(k)

n (·, f )
∥∥∥

LM(T)
� c26(M,k)ωk( f ,

π
n

)M. (23)

Taking into account the realizations (6), (19), (21) and (23) we obtain the inequality
(3). Theorem 2 is completely proved.
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