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BOUNDS FOR EXTREME ZEROS OF

QUASI–ORTHOGONAL ULTRASPHERICAL POLYNOMIALS

KATHY DRIVER AND MARTIN E. MULDOON

Abstract. We discuss and compare upper and lower bounds obtained by two different methods

for the positive zero of the ultraspherical polynomial C(λ)
n that is greater than 1 when −3/2 <

λ <−1/2. Our first approach uses mixed three term recurrence relations and interlacing of zeros
while the second approach uses a method going back to Euler and Rayleigh and already applied
to Bessel functions and Laguerre and q -Laguerre polynomials. We use the bounds obtained by

the second method to simplify the proof of the known interlacing of the zeros of (1− x2)C(λ)
n

and C(λ)
n+1 , for −3/2 < λ < −1/2.

1. Introduction

For λ > −1/2, the sequence of ultraspherical polynomials {C(λ )
n }∞

n=0 is orthog-
onal on [−1,1] with respect to the positive measure (1− x2)λ−1/2 and all the zeros

of C(λ )
n lie in (−1,1). As the parameter λ decreases, the zeros of C(λ )

n depart from
the interval (−1,1) in pairs through the endpoints as λ decreases through the val-
ues −1/2,−3/2, . . .,−�n/2�+ 1/2. Here, we pay particular attention to the case
−3/2 < λ < −1/2, where λ is fixed and it is known [1, Cor. 2] that the positive
zeros, listed in decreasing order, satisfy

0 < x�n/2�,n(λ ) < · · · < x2,n(λ ) < 1 < x1,n(λ ). (1)

We apply two methods to investigate upper and lower bounds for the extreme zero

x1,n(λ ) of C(λ )
n , λ fixed, −3/2 < λ < −1/2. One method emanates from a suitably

chosen mixed three-term recurrence relation and the other from the Euler-Rayleigh
technique discussed in [13] where it is used to derive bounds for the smallest real zero
of a power series or polynomial, with exclusively real zeros, in terms of the coefficients
of the series or polynomial.

Since the first approach involves interlacing properties of zeros of polynomials,
we recall the definition:

DEFINITION 1. Let {pn}∞
n=0 be a sequence of polynomials and suppose the zeros

of pn are real and simple for each n ∈ N. Denoting the zeros of pn in decreasing order
by xn,n < .. . < x2,n < x1,n, the zeros of pn and pn−1 are interlacing if, for each n ∈ N,

xn,n < xn−1,n−1 < .. . < x2,n < x1,n−1 < x1,n. (2)
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The interlacing of the zeros of orthogonal polynomials of consecutive degree pn and
pn−1 is a well known classical result [19, §3.3].

Quasi-orthogonal polynomials arise in a natural way in the context of classical
orthogonal polynomials that depend on one or more parameters. The concept of quasi-
orthogonality of order 1 of a sequence of polynomials was introduced by Riesz [17]
in connection with the moment problem. Fejér [10] considered quasi-orthogonality
of order 2 and the general case was studied by Shohat [18] and many other authors
including Chihara [2], Dickinson [3], Draux [5] and Maroni [14, 15, 16]. The definition
of quasi-orthogonality of a sequence of polynomials is the following:

DEFINITION 2. Let {qn}∞
n=0 be a sequence of polynomials with degree qn = n

for each n ∈ N . For a positive integer r < n, the sequence {qn}∞
n=0 is quasi-orthogonal

of order r with respect to a positive Borel measure μ if

∫
xkqn(x)dμ(x) = 0 for k = 0, . . . ,n−1− r. (3)

If (3) holds for r = 0, the sequence {qn}∞
n=0 is orthogonal with respect to the measure

μ .

The sequence of ultraspherical polynomials {C(λ )
n }∞

n=0, is orthogonal on (−1,1)
with respect to the weight function (1− x2)λ−1/2 when λ > −1/2. As λ decreases

below −1/2, the zeros of C(λ )
n leave the interval of orthogonality (−1,1) in pairs,

through the endpoints, as described in our opening paragraph. A full description of the
trajectories of the zeros can be found in [7]. For the range −3/2 < λ < −1/2, it is

shown in [1, Theorem 6] that the sequence {C(λ )
n }∞

n=0 is quasi-orthogonal of order 2

with respect to the weight function (1−x2)λ+1/2 . Also. the polynomial C(λ )
n has n−2

real, distinct zeros in the interval (−1,1) ; its smallest zero is < −1, its largest zero is

> 1 and, for each n ∈ N , the zeros of C(λ )
n interlace with the zeros of the (orthogonal)

polynomial C(λ+1)
n−1 [1, Corollary 2].

In this paper, we derive upper and lower bounds for the two (symmetric about the

origin) zeros of C(λ )
n that lie outside (−1,1) using two different methods.

We use the notation xk,n(λ ) for the k th zero, in decreasing order, of C(λ )
n (x).

This differs from the notation xn,k(λ ) used in [4], and from other papers where the

zeros are listed in increasing order. It follows from [19, (4.7.30)] that C(λ ∗)
n (x) ≡ 0, for

λ ∗ = 0,−1, . . . ,−�(n−1)/2� , and the concept of “k th zero” becomes meaningless. In
this paper, we define xk,n(λ ∗) by

xk,n(λ ∗) = lim
λ→λ ∗ xk,n(λ ).

In [8], we considered some properties of quasi-orthogonal Laguerre polynomials

{L(α)
n (x)} , in the case −2 < α < −1.
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2. Bounds for the largest zero of C(λ )
n , −3/2 < λ < −1/2 . An approach using

mixed three-term recurrence relations.

The co-primality of two polynomials is an important concept when considering
interlacing properties of their zeros. Conversely, inequalities satisfied by zeros of poly-
nomials that are interlacing may provide information about the co-primality of the poly-
nomials. The interplay between the co-primality of two polynomials and the interlacing
of their (real) zeros facilitates information about upper and lower bounds of the extreme

zeros of C(λ )
n , −3/2 < λ < −1/2.

THEOREM 1. Suppose that {C(λ )
n }∞

n=0 is the sequence of ultraspherical polyno-
mials where λ is fixed and lies in the range −3/2 < λ < −1/2. For each n = 2,3, . . . ,

the largest zero, x1,n(λ ), of C(λ )
n (x) , satisfies

1 < x1,n(λ ) <
(
1+

2λ +1
n−1

)−1/2
=

( n−1
2λ +n

)1/2
. (4)

Proof. From [6, (16)], we have

4λ (λ +1)(1− x2)
2
C(λ+2)

n−2 (x) =

(2λ +n)[x2(n+2λ +1)−n]C(λ )
n (x)− (2λ +1)(n+1)xC(λ )

n+1(x). (5)

Evaluating (5) at the largest two zeros x1,n+1 > 1 > x2,n+1 of C(λ )
n+1, we have

16λ 2(λ +1)2(1− x2
1,n+1)

2(1− x2
2,n+1)

2C(λ+2)
n−2 (x1,n+1)C

(λ+2)
n−2 (x2,n+1) =

(2λ +n)2(2λ +n+1)2C(λ )
n (x1,n+1)C

(λ )
n (x2,n+1) (6)

×
[
x2
1,n+1−

n
n+2λ +1

][
x2
2,n+1−

n
n+2λ +1

]
.

We know from [9, Theorem 3.1(i)], with n replaced by n + 1, that C(λ )
n does not

change sign between the two largest zeros of C(λ )
n+1. Further, from (5), since C(λ )

n and

C(λ )
n+1 are co-prime for each n ∈ N, λ ∈ R (also from [9, Theorem 3.1(i)]), the only

possible common zeros of C(λ+2)
n−2 (x) and C(λ )

n+1(x) are at the values x2 = n/(n+2λ +
1) = 1− (2λ +1)/(n+2λ +1) which have absolute value > 1 for each λ satisfying

−3/2 < λ < −1/2 and n � 3. Since, because of orthogonality, all the zeros of C(λ+2)
n−2

lie in (−1,1) we deduce that C(λ+2)
n−2 and C(λ )

n+1 are co-prime for each n ∈ N, and each
λ satisfying −3/2 < λ < −1/2.

From [9, Theorem 3.5(ii)] with n replaced by n + 1, we know that the zeros of

(1− x2)C(λ+2)
n−2 (x) and C(λ )

n+1(x) are interlacing. Since the point 1 lies between the
two zeros x1,n+1 and x2,n+1, we see that in (6), both the left-hand side and the prod-
uct of the first four factors on the right are positive and therefore

√
n/(2λ +n+1) /∈

(x2,n+1,x1,n+1). Also,
√

n/(2λ +n+1) > 1 so that x1,n+1 <
√

n/(2λ +n+1). Fi-
nally, replacing n by n−1, we have the stated result. �
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THEOREM 2. Suppose that {C(λ )
n }∞

n=0 is the sequence of ultraspherical polyno-
mials where λ is fixed and lies in the range −3/2 < λ < −1/2. For each n = 2,3, . . . ,

the largest zero, x1,n(λ ) of C(λ )
n (x) satisfies

x1,n(λ ) >
(
1+

(2λ +1)(2λ +3)
(n−1)(n+2λ +1)

)−1/2
> 1. (7)

Proof. From [6, (18)], we have

8λ (λ +1)(λ +2)(1− x2)
3
C(λ+3)

n−2 (x) = (8)

(2λ +n)[x2[n(n+2λ +2)+ (2λ +1)(2λ +3)]−n(n+2λ +2)]C(λ )
n (x)−g(x)C(λ )

n+1(x),

where g(x) is a polynomial in x . Evaluating (8) at the largest two zeros x2,n+1 < 1 <

x1,n+1 of C(λ )
n+1 , we get

64λ 2(λ +1)2(λ +2)2(1− x2
1,n+1)

3(1− x2
2,n+1)

3C(λ+3)
n−2 (x1,n+1)C

(λ+3)
n−2 (x2,n+1) =

f (n,λ )
[
x2
1,n+1−

n(n+2λ +2)
n(n+2λ +2)+ (2λ +1)(2λ +3)

]
(9)

×
[
x2
2,n+1−

n(n+2λ +2)
n(n+2λ +2)+ (2λ +1)(2λ +3)

]
C(λ )

n (x1,n+1)C
(λ )
n (x2,n+1),

where

f (n,λ ) = (2λ +n)2(n(n+2λ +2)+ (2λ +1)(2λ +3))2.

As in the proof of Theorem 1, we know from [9, Theorem 3.1(i)] that C(λ )
n does not

change sign between the two largest zeros of C(λ )
n+1 and, in addition, C(λ )

n and C(λ )
n+1 are

co-prime. Therefore, the only possible common zeros of C(λ+3)
n−2 (x) and C(λ )

n+1(x) are at
the values

x2 =
[
1+

(2λ +1)(2λ +3)
n(n+2λ +2)

]−1

which have absolute value > 1 for each λ satisfying −3/2 < λ < −1/2 and n � 2.

On the other hand, all the zeros of C(λ+3)
n−2 (x) are in (−1,1) so C(λ+3)

n−2 (x) and C(λ )
n+1(x)

have no common zeros. Thus the left-hand side of (9) is negative and, since the product
of the last two terms on the right-hand side is positive, we see that the product of the
square-bracketed terms is negative and, in particular,

x2
1,n+1 >

n(n+2λ +2)
n(n+2λ +2)+ (2λ +1)(2λ +3)

. (10)

Finally, replacing n by n−1, we have the stated result. �
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3. The Euler-Rayleigh method

A method described in [20, pp. 500-501], developed further in [13], and applied
to Laguerre and q -Laguerre polynomials in [11], may be applied to prove bounds for

the largest zero of C(λ )
n , λ fixed, −3/2 < λ < −1/2. It can also be applied to finding

bounds for the largest zero of C(λ )
n in the orthogonal cases when λ > −1/2.

The idea is as follows. If a polynomial f (t) = ∑n
k=0 antn has all its zeros real at

the points
t1 < t2 < · · · < tn, (11)

and we use the notation

S j =
n

∑
k=1

t− j
k ,

then the sums S j can be expressed in terms of the coefficients by S1 = −a1, S2 =
−2a2 +a2

1, and, in general

S j = −nan−
j−1

∑
i=1

aiS j−i.

Two special cases can be considered.

LEMMA 1. If 0 < t1 < t2 < · · · < tn, then Sm > 0, m = 1,2, . . . , and

S−1/m
m < t1 < Sm/Sm+1, m = 1,2, . . .

where the lower limits increase and the upper limits decrease with increasing m.

This is [13, Lemma 3.2].

LEMMA 2. If t1 < 0 < t2 < · · · < tn, and a1 > 0 , then Sm < 0 for odd m,

−|S2m−1|−1/(2m−1) < t1 < −S−1/(2m)
2m < S2m−1/S2m, m = 1,2, . . . , (12)

and
S2m/S2m+1 < t1, m = 1,2, . . . , . (13)

This is [13, Lemma 3.3] with the addition of the the remark at the end of [13, §3].
We apply Lemma 2 in the special case m = 1 to the representation [19, (4.7.6)]

C(λ )
n (x) =

(
n+2λ −1

n

)
2F1 (−n, n+2λ ; λ +1/2; t) , t =

1− x
2

. (14)

Since we are assuming that −3/2 < λ < −1/2 with λ fixed, it follows from [1, Cor.
2] that xn < −1 < xn−1 < · · · < x2 < 1 < x1 so the corresponding t -zeros satisfy t1 <
0 < t2 < .. . < tn . With f (t) = 2F1 (−n,n+2λ ;λ +1/2;t), we have
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S1 =
n(n+2λ )
λ +1/2

, S2 = −S1

[
2(n−1)(n+2λ +1)

2λ +3
−S1

]
.

Applying the case m = 1 of (12), leads to

−|S1|−1 < t1 < −S−1/2
2 < S1/S2.

When converted to inequalities for x1 = 1−2t1 , these inequalities give

1−2S1/S2 < 1+2S−1/2
2 < x1,n(λ ) < 1+2/|S1|,

or equivalently:

THEOREM 3. For each fixed λ , −3/2< λ <−1/2 , let x1,n(λ ) denote the largest

x -zero of C(λ )
n (x) . Then

[
1+

(2λ +1)(2λ +3)
2(n−1)(n+2λ +1)

]−1

< 1− 2(2λ +1)
√

2λ +3√
n(2λ +n)(4λ 2 +4nλ +2n2 +4λ +1)

< x1,n(λ ) < 1− 2λ +1
n(n+2λ )

. (15)

Remark. Although the situation is not as simple as that indicated in Lemma 1, it is
likely that some of the bounds in Lemma 2 (and its application to Theorem 3) improve,
although they become more complicated, with increasing m .

4. Comparison of bounds

It is of interest to compare the bounds in Sections 2 and 3, as well as to compare
them with similar bounds valid for λ > −1/2.

For n � 6, the upper bound in (15) is sharper than that given by Theorem 1. That
is

1− 2λ +1
n(n+2λ )

<

√
(n−1)

(2λ +n)
, −3

2
� λ < −1

2
, n � 6, (16)

with equality for λ = −1/2. The required inequality can be written f (λ ) > 0 where

f (λ ) = n2(n+2λ )(n−1)− (n2+2λn−2λ −1)2,

f ′(λ ) = 2(n−1)(−n2−4λn+4λ +2), f ′′(λ ) = −8(n−1)2 < 0.

Thus f ′(λ ) is decreasing, and since f ′(−3/2) = −2(n−1)((n−3)2−5) < 0 we find
that f (λ ) is decreasing on (−3/2,−1/2) . Finally since f (−1/2) = 0, we see that
f (λ ) > 0 for −3/2 < λ < −1/2.



ZEROS OF QUASI-ORTHOGONAL ULTRASPHERICAL POLYNOMIALS 75

For n � 2, the lower bound given by Theorem 2 is sharper than the smaller lower
bound in (15). This statement is equivalent to the inequality

1+
(2λ +1)(2λ +3)

2(n−1)(n+2λ +1)
<

[
1+

(2λ +1)(2λ +3)
(n−1)(n+2λ +1)

]−1/2

(17)

The number a = [(2λ + 1)(2λ + 3)]/[(n− 1)(n + 2λ + 1)] satisfies −1 < a < 0 for
the values of n and λ concerned and it is a simple matter to show that, in this case,
1+a/2 < 1/

√
1+a .

We can use the case m = 1 of Lemma 1 to show that the first and last expressions
in (15) continue to provide lower and upper bounds for x1,n(λ ) for λ > −1/2. Thus
we have [

1+
(2λ +1)(2λ +3)

2(n−1)(n+2λ +1)

]−1

< x1,n(λ ) < 1− 2λ +1
n(n+2λ )

(18)

for λ > −3/2, λ 
= −1/2. Both inequalities become equalities for λ = −1/2.

5. A continuity-based proof of an interlacing property

In [9, Theorem 3.1(i)], we showed that for −3/2< λ <−1/2, the zeros of C(λ )
n (x)

interlace with the zeros of (1− x2)C(λ )
n−1(x) . The same result holds for λ > −1/2 as

can be seen by adding the two points ±1 to the well-known interlacing of the zeros (all

in (−1,1)) of C(λ )
n−1(x) and C(λ )

n (x) . Here we show how the interlacing for λ > −1/2
may be used to get the interlacing for −3/2 < λ < −1/2.

The proof is based on the idea that interlacing between the zeros of C(λ )
n (x) and

C(λ )
n+1(x) can break down or change only when these two functions have a common zero.

First of all, we prove some lemmas.

LEMMA 3. The only common zeros of C(λ )
n (x) and C(λ )

n+1(x) occur where |x| = 1
and λ = −1/2,−3/2, . . .,−�n/2�+1/2 .

Proof. Because of parity considerations, the polynomials cannot have a common
zero at 0. Let λ = λ0 be fixed. The recurrence relation [19, (4.7.17)]

nC(λ )
n (x) = 2(n+ λ −1)xC(λ )

n−1(x)− (n+2λ −2)C(λ )
n−2(x), n = 2,3,4, . . . (19)

shows that, if C(λ0)
n (x) and C(λ0)

n−1(x) had a common zero x0 for a value of x satisfying

0 < |x| 
= 1, then x0 would also be a zero of C(λ0)
n−2(x) . Repeating this argument, we

would find that C(λ0)
n−3(x0) = 0, and, eventually,C(λ0)

1 (x0) = 0, which is impossible.

Thus the only possible common zeros of C(λ )
n (x) and C(λ )

n+1(x) occur for x = ±1.

From [12, Ch. 5] the zeros of C(λ )
n are continuous functions of λ and, as λ varies,

the only values of λ for which interlacing breaks down are where C(λ )
n (x) and C(λ )

n+1(x)
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Figure 1: Largest zeros of C(λ )
8 (x) (solid curves) and C(λ )

9 (x) (dashed curves), as func-
tions of λ , −3/2 < λ < 0.

have common zeros. Now [19, (4.7.6)], C(λ )
n (x) is a multiple of 2F1(−n,n+ 2λ ;λ +

1/2;(1− x)/2) . It vanishes at x = 1 only for λ = −1/2,−3/2, . . .,−�n/2�+1/2 and

C(λ )
n+1(x) vanishes at x = 1 only for λ = −1/2,−3/2, . . . ,−�(n + 1)/2�+ 1/2. The

statement of the Lemma follows. �

LEMMA 4. If x1,n(λ ) is the largest zero of C(λ )
n (x) , then

x′1,n(−1/2) = −2/(n2−n).

In particular, x′1,n(−1/2) increases with n, n = 2,3, . . . .

Proof. The functions giving upper and lower bounds in (18) both have derivatives
equal to −2/(n2−n) at the point λ = −1/2. Then (18) implies that x′1,n(−1/2) must
have the same value. �

We are now ready to show how to extend the property of the interlacing of real

zeros of (1− x2)C(λ )
n (x) and C(λ )

n+1(x) from the case λ > −1/2 to the case −3/2 <
λ < −1/2. To keep things simple we consider positive zeros only.

We write the zeros in decreasing order. For λ > −1/2, we have

1 > x1,n(λ ) > x2,n(λ ) > x3,n(λ ) > .. . , (20)
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and the interlacing property

1 > x1,n+1(λ ) > x1,n(λ ) > x2,n+1(λ ) > x2,n(λ ) > .. . . (21)

From Lemma 2, the slope of x1,n(λ ) , for λ = −1/2, is a negative increasing function
of n and so the functions 1,x1,n+1(λ ) and x1,n(λ ) have their order reversed in the
inequality (21) as λ passes through the value −1/2. Thus, for −3/2 < λ < −1/2, we
find that the order of the first three terms in (21) are reversed, that is

x1,n(λ ) > x1,n+1(λ ) > 1 > x2,n+1(λ ) > x2,n(λ ) > .. . , (22)

with the other inequalities remaining the same, since the values λ = −1/2 and x = 1
constitute the only double zero within the range considered. Thus the interlacing of the

zeros of (1− x2)C(λ )
n (x) and C(λ )

n+1(x) persists for −3/2 < λ < −1/2.
Figure 1, produced using Maple, illustrates the change of order of x1,n(λ ),x1,n+1(λ )

and 1 as lambda passes through −1/2 in the case n = 8.
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