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ON A"-STRONG CONVERGENCE OF
NUMERICAL SEQUENCES AND FOURIER SERIES

P. KORUS

Abstract. We prove theorems of interest about the recently given A”-strong convergence. The
main goal is to extend the results of F. Méricz regarding the A -strong convergence of numerical
sequences and Fourier series.

1. Introduction

Throughout this paper let A = {A;: k=0,1,...} be a non-decreasing sequence of
positive numbers tending to eo. The concept of A-strong convergence was introduced
in [2]. We say, that a sequence S = {s; : k=0,1,...} of complex numbers converges
A-strongly to a complex number s if

n

1
lim T N k(e — ) = M (se—1 — )| =0

n—oeo A, =0

with the agreement A_; =51 =0.

It is useful to note that A-strong convergence is an intermediate notion between
bounded variation and ordinary convergence.

The following generalization was suggested recently in [1]. Throughout this paper,
we assume that r > 2 is an integer. A sequence S = {s;} of complex numbers is said
to converge A" -strongly to a complex number s if

n

.1
lim T N k(s — ) = My (sk—r — 5)| =0

n—o0 n k:O
with the agreement A_=...=A_,=s5s_;=...=s5_,=0.
It was seen that these A”-convergence notions are intermediate notions between

A-strong convergence and ordinary convergence. The following two basic results were
introduced in [1] as Propositions 1 and 2, synthesized from [1, Lemmas 1 and 2].

LEMMA 1. A sequence S converges N -strongly to a number s if and only if

(1) S converges to s in the ordinary sense, and
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1 n
(i) lim — Y A p[se — sp—r| = 0.
n—oo A’}’Z i—r

LEMMA 2. A sequence S converges A" -strongly to a number s if and only if
1
Oy = A,_ Z (Ak _Akfr)sk

n0<k<n
rln—k

converges to s in the ordinary sense and condition (i1) is satisfied.

2. Results on numerical sequences

Denote by ¢"(A) the class of A”-strong convergent sequences S = {sz} of com-
plex numbers. Obviously, ¢"(A) is a linear space. Let

1 n
[S]er(a) := sup T > sk — A=
n=0 " —q
and consider the well-known norms
8]l :=suplsl,  [ISllov := Y, Isk — sk—1]-
k=0 k=0

Itis easy to see that [|.[[or(5) is also a norm on ¢"(A).
Moreover, one can easily obtain the inequality

n

n
N ks = My <7 Y | Ak — Ak—15e—t

k=0 k=0
and the equality
1
se== 3 (Mask — Ae—rSir)-
n0<k<n
rln—k

These together imply the following result.
PROPOSITION 1. For every sequence S = {si} of complex numbers we have
150 < ISleray < 7lISTle(ay < 2r(IS][py-
As a consequence, bv C ¢(A) C ¢"(A) C c.

It was seen in [2] that c¢(A) endowed with the norm |.|[(4) is a Banach space. A
similar results holds for ¢"(A).

THEOREM 1. The class c"(A) endowed with the norm ||.|(») is a Banach space.
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Proof. With an analogous argument to the proof of [2, Theorem 1], we can get the
required completeness of ¢’ (A). The only needed modifications are

1 & 1 &
2 A (sor = 51) = Aa—r(Sep—r — Sk—r)| <S¢ = Slloo— D (M + Ma—r) < €
M S M 55

and

l n
Z M'k Sjk — sk A'k—r(stc—r - sk—r)‘
" k=0

1 n
A,_ 2 sz s]k - S(k szfr(sj,kfr - S/f,kfr)‘
+ o= Z Ak (sex — sk) — Ar(Sek—r — Sk—r)|
M (S
<|Sj—Sellern) +& < 2¢
for large enough ¢ and j. [J

Now that we saw that ¢"(A) is a Banach space, we show that it has a Schauder
basis. In fact, putting

J Jjtr Jj+2r
~ =~ ~ =~ ~ =~
F(,) = (0707 707 l 70707' 707 l 70707 707 l b )7

j=0,1,..., clearly each FU/) € ¢"(A).
THEOREM 2. {FU):j=0,1,...} is a basis in c"(A).

Proof. Existence. We will show that if S = {s;} is a A"-strongly convergent
sequence, then

Tim [|s— 2 55 =51 FY | rn) = 0. )
Since
= (s~ ;- )FY
j=0
m m+1 m+ar+b
AN ——

= (ana"'a 0 asm-‘rl_Sm—r+lasm+2_sm—r+27---:sm+ar+b_sm7r+h7---)a
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where 0 < a, 1 < b < r, by definition,

|S— 'Z()(sj —5;-r)FD || a)
Jj=

= sup 1 < Z A'm-‘rb|(sm+b — Sm—r+b
n=l ffmtn N <pgy
b<n
[2/1]
+ 2 2 M'm-&-ar-&-b(sm-&-ar-&-b_Sm—r+b)
a=1 1<b<r

ar+b<n

- Am-‘rar—r+b (sm+ar—r+b - sm—r+b) |>

[n/1]
< sup 2 < Z Z (A'm-‘rar-‘rb - 2fm+ar—r-‘rb)|~5'm-',-ar-&-b - Sm—r+b|
nzl Ym+n o 1<h<r
ar+b<n
[2/1]
+ Z Z 2fm+ar—r-‘,—b|~5'm-'rar-'rb _sm+ar—r+b‘>

a=0 1<b<r
ar+b<n

1 n
<7 osup |[sj—s[+ sup . > Mplsk— il
Jk>m—r nzm+1 7 j—p 1|

Applying Proposition 1 and Lemma 1, respectively, results in (1) to be proved.
Uniqueness. It can be proved in basically the same way as it was seen in the proof
of [2, Theorem 2]. [

3. Results on Fourier series: C-metric

Denote by C the Banach space of the 27 periodic complex-valued continuous
functions endowed with the norm || f||c := max, |f(¢)|. Let

N =

a0+i(ak(f)coskt—i-bk(f)sinkt) (2)
k=1

be the Fourier series of a function f € C with the usual notation s (f) = s¢(f,?) for the
kth partial sum of the series (2). Denote by U, A, and S(A), respectively, the classes
of functions f € C whose Fourier series converges uniformly, converges absolutely and
converges uniformly A-strongly on [0,27), endowed with the usual norms, see [2].

A function f € C belongs to S(A”) if

=0.
c

lim

n—oo

3 ek ()~ )~ a5t () )]

m k=0
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Set the norm

2 s (f) = Mi—rsi—r (f)]

"kO

||fHS Ar) = Sup
n=0

)

c
which is finite for every for S(A”") since
£ llsar) < Hf||c+SliP Z | A (s (f — M—r(sk—r(f) = f)]

The norm inequalities corresponding to the ones in Proposition 1 are formulated
below.

PROPOSITION 2. For every function [ € C we have

£l < 1A Iscary < 7l fllseay < 271 f]la-
As a consequence, A C S(A) C S(A") C U.

The following results are the counterparts to Lemmas | and 2 and Theorems 1 and
2, respectively. We omit the details of the analogous proofs, except for Theorem 4.

LEMMA 3. A function f belongsto S(A") if and only if

(i) Jim [5¢() ~ fllc = 0, and

=0.
c

Zlk r|5k —Sk r( )|

(iv) lim
e n k=r

LEMMA 4. A function f belongsto S(A") if and only if
(ii") lim 0n(f) — fllc=0
and condition (iv) is satisfied, where

6(f) = aulfit)i= 1 ¥, (uha)sfr),
" O0<k<n
rln—k

THEOREM 3. The set S(A") endowed with the norm ||.||s(xry is a Banach space.

THEOREM 4. If f € S(A"), then

Wlll_r}}o”sm(f) _fHS(A’) =0. 3
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Proof. Since the sequence of partial sums of the Fourier series of the difference

f_sm(f) is
m m+1

0.0, 0 5wt () — 5D msa () — sm(f)..).

then

[[sm () = £l scar)

= sup 1 2 Aonib| (b (f) = sm(f)]
nzl Zimtn |l 1 <h<r
b<n
[n/r]
+ z z Mferarer(SerurJrh(f) - Sm(f))
a=1 1<b<r
ar+b<n
- m+ur7r+b(5m+ur7r+b (f) —Sm (f))‘
C
Ll
< sup 2 Z (Afm+ar+b - )Lm-&-ar—r+b)|sm+ar+b (f) —Sm (f)‘
nzl fmAn |l =0 1<b<r
ar+b<n
[n/r]
+ z 2 )Lm-&-ar—r+b‘sm+ar+b (f) — Sm+ar—r+b (f)|
a=0 1<b<r C
ar+b<n

<r osup |ls;(f) —se(f)llc+ sup

Jk>m—r nzm+1

b

C

% i Mie—rlsk () = sk—r ()]

N k=m+1

where 0 < a, 1 <b < r. Applying Proposition 2 and Lemma 3, respectively, results in
(3) to be proved. [

In the following, our goal is to extend the well-known Denjoy-Luzin theorem
presented below (see [3, p. 232]).

THEOREM 5. (Theorem of Denjoy-Luzin) If

Y (axcoskt + bysinkt) 4)
k=1

converges absolutely for t belonging to a set A of positive measure, then  (|ax| + |bx|)

k=1
converges.

This theorem was extended for A-strongly convergent trigonometric series by
Moéricz in [2].
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THEOREM 6. Ifthe nth partial sums sy(t) of the series (4) converge A-strongly
for t belonging to a set A of positive measure or of second category, then

.
lim — > A1 (|ag| 4 |bx]) = 0. (5)
Nn—soo An =l

Consequently, if f € C and the nth partial sums s,(f,t) of the Fourier series (2)
converge uniformly A-strongly to f(t) everywhere, then coefficients a, = ay(f) and

by = b (f) satisfy (5).

First, we extend Theorem 5 for single sine and cosine series.

THEOREM 7. If

2 \an,l cos (Zk — l)t + apicos 2kt| and 2 \an,l sin (Zk — l)t + ayy sin 2kt|
k=1 k=1

converge for t belonging to a set A of positive measure, then 2 |ax| converges.
k=1

Proof. We follow the proof of the Denjoy—Luzin theorem as in [3, pp. 232] with
necessary modifications. We calculate

anp—1¢0s (2k — 1)t + ayy cos 2kt
= (agp_1 + agrcost) cos (2k — 1)t — (agsint) sin (2k — 1)z

and
anp—1 sin (2k — 1)t + apy sin 2kt
= (agk—1 + agrcost)sin (2k — 1)1+ (agsint) cos (2k — 1)z,

whence

ang—1¢08 (2k — 1)t + aprcos 2kt = py(t)cos ((2k — L)t + fi(2))
and

ang—1 8in (2k — 1)t + agg sin 2kt = pi (1) sin ((2k — 1)z + fi (¢))
where

pk(l) = \/a%kq + a%k + 2a,_1as cost
and f;(¢) is from

arj—1 + aricost . ar sint
cos fi (1) = %, sin fi (1) = ZT

Now, we need that

pi(t) = C(lazk—1] + |ax]) (6)
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is satisfied on a set E C A of positive measure where the constant C is independent of
k and ¢. Inequality (6) can be obtained from

(1= C?)(ay_y +a3;) = 2lag—1ax|(C* + | cost]), (7
since it implies
PL(t) = a3y + a3, — 2laz—1axcost| > C*(|az—1| + |ax])*.
Hence we just need to define C small enough so that the set E C A on which
|cost| < 1—2C?

and consequently (7) and (6) hold is of positive measure. We set C and thereby E that
way. Since E C A, there is a set F' C E of positive measure such that

Y ou(t) = Y (|ask—1 cos (2k — 1) 4 ay.cos 2kt | + |az—y sin (2k — 1)1 + az sin 2kt|)
is bounded on F, say by bound M. Hence we obtain the required estimation
Y (|az—1] + |ax]) < Z/Pk
k=1

_z/m.cm«%—m+ﬂoymm«%—m+ﬁo»

Q

< X [ PHo)(os (26— Dt A+ sin 2k~ e+ Ao

zﬁwmmgzm.m
k=1

Q

al-

Second, we extend Theorem 7 for A?-strong convergent sine or cosine series.

THEOREM 8. If

n n
= arcoskt and sy(t) =Y agsinkt (8)
k=1 k=1

converge A*-strongly for t belonging to a set A of positive measure, then

hm——ZAkmm—O 9)

n—>o<)

1 - < .
Consequently, if f,g € C has single Fourier series an + 2 aycoskt and 2 ay sinkt,
k=1 k=1
respectively, which partial sums converge uniformly A*-strongly to f(t) and g(t) ev-
erywhere, then coefficients a;. satisfy (9).
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Proof. By Lemma 1 (in the second case Lemma 3 is used), A”-strong convergence
implies for example, in the cosine case that

11m — Zlk 2|5k—5k ol = hm — Z)Lk 2lax_1cos(k— 1)t + aycoskt| =
= A (5 n k=2

and the proof is analogous to the one of the previous theorem, Theorem 7. [

4. Results on Fourier series: I” -metric

The results of Section 3 can be reformulated if we substitute L?”-metric for C-
metric. Here and in the sequel 1 < p < co. Along with the usual notations let us call a
function f € L? to be in SP(A”) if

n

=3 el ~ 1)~ Ml () - 1)

n k=0

lim

n—00

:0’
p

and introduce the norm

Z | ik (f) — A—rSi—r ()]

Hf”sp Ar) ‘= Sup
n=0

)

p

which is finite for every for SP(A”).
The norm inequalities corresponding to the ones in Proposition 2 are the following.

PROPOSITION 3. For every function f € LP and r > 2 integer we have
[ fllor < [ fllseary < 7llfllspeay < 27 fla-
As a consequence, A C SP(A) C SP(A") C UP.

The next results are analogous to Lemmas 3 and 4 and Theorems 3 and 4, respec-
tively.

LEMMA 5. A function f belongsto SP(A") if and only if
) lim [5x(f) ~ /1l =0, and

=0.
P

(vi) r}gn Zlk rIs(f) = sk—r(f)]

”kr

LEMMA 6. A function f belongsto SP(A") if and only if
) Tim [[6,(f) = fllp =0

and condition (Vi) is satisfied.
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THEOREM 9. The set SP(A") endowed with the norm ||.||sp(ary is a Banach space.
THEOREM 10. If f € SP(A"), then

Wlll_lgoHsm(f) — flisp(ary =0.
Finally, we obtain the L” -metric version of Theorem 8.

THEOREM 11. Ifthe sums in (8) converge A*-strongly in the L -metric restricted
to a set of positive measure, then (9) holds true.

1 o
Consequently, if f,g € LP, 1 < p <o, has single Fourier series an—|— z aycoskt
k=1

and 2 agsinkt , respectively, then the partial sums of both series converge A? -strongly
k=1
to f(t) and g(t) in the LP -metric if and only if coefficients ay satisfy (9).

Proof. The first statement and the necessity part of the second statement is ob-
tained in the same way as in the proof of Theorem 7.

The sufficiency part of the second statement follows from two facts. First, by the
theorem of M. Riesz [3, p. 266], (v) in Lemma 5 holds. Second, (vi) is also satisfied
since

. 1 & 1 E
lim || — 2 )Lk_z‘sk(f) —Sk_g(f)‘ <2 lim — 2 ?Lk_1|ak\ =0. O
n—o0 A,n k=2 » n—o0 A’n k:l

PROBLEM. Can we prove similar statements to the above proved theorems about
the A”-strong convergence in the case r > 2 as well?
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