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NEW RESULTS CONTAINING QUADRATIC HARMONIC NUMBERS

ANTHONY SOFO

Dedicated to Daniel Manca
2
Abstract. In this paper we give a combinatorial proof of the quadratic harmonic series ¥, > %

in terms of zeta functions and then extend the result to express ¥, %, (g,r) €N, in
)1

closed form in terms of zeta functions.

1. Introduction and Preliminaries

Let C and R denote respectively the set of complex numbers and the set of real
numbers. The Riemann zeta function is defined, for s € C with R(s) > 1 by { (s) =
pI n% For p e N:={1,2, 3 } we define the generalized harmonic number of

order m as H, ' = {,(m) = , | - We define the n'" harmonic number by
- n T1—x"
Hy=6(1)=) -=) — =/ dx, Hy:=0. (1)
(1) Z‘lj SJG+n)  Jo 1-x
The Psi (or Digamma), y(z) function is defined by
d I(2)
= —{logI’ = —=
Y(z) = - {logl'(2)} ©

where the Euler gamma function

oo

() = / e, R(z) >0
0

and the Beta function

1
B(a,b) = B(b,a) = =L 0 _ /z“ H—nLar,
Ia + b
0
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where R (a) > 0,%R(b) > 0. The polygamma functions of order m € NU {0},
am derl
2 v(2)} = PR {logI'(z) }

and therefore we may connect the generalized harmonic numbers to the polygamma
functions, see [14] by,

v (o) =

(_mlfm v (p+1)

H ™V = Cm+ 1)+

where p e R\ {-1,-2,-3,---}; meN and C(m+ 1) is the Riemann zeta function.
The Lerch transcendent ® (z,¢,a) = - is defined for |z| <1, R (a) > 0 and

satisfies the recurrence

mO( +a)

D(z,t,a) = 7@ (z,t,a+1)+a".
In the case when z = 1, we have the Hurwitz zeta function
- 1
m=0 (m + a)t .

®(1,t,a) = (t,a) =

In this paper we will develop identities, new families of closed form representations of
quadratic harmonic numbers and reciprocal powers of 7, series of the form:

T(q)=3 2T (2)
n=
and )
— H
X (q,r) = Z m 3)

for g € N and r € N, in terms of zeta functions.
Some results regarding quadratic harmonic number sums related to (2) exist in
the current literature. The classical result, conjectured by Au-Yeung and proved by

2
Borwein et. al., see [16] and [15] is X, ; % = 17¢ (4). Flajolet and Salvy [4] give
2
some specific results for ¥~ I:,’; when m = 2,3,4,5,7, and a complete representation

for m an odd integer was originally given by Euler [3] and later proved by Borwein et.
al., see [1] and [2]. The result,

i k 2 @)
2)+ — —H, , k=2
,Z’ n+k (k—l) (C( ) (k—1)> &I
k
was given in [6], see also [10] and generalized further to
oo H2
2 for m=1and 2,

=1, n+k
k
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see [13]. An identity for
(an +H,§2)) (k+2n)

2
(")

HHJI_

)

n=1
was given in [9]. The finite case

32

g

was given by [5], and for (x,b) € N

n j(H2+HP ) +20+ 0y HH,
g’ JG+by

) 2 (2)
5, ()
was proved in [7].
The following known results listed below will be useful in the development of the

main theorems. Euler [3], obtained the following result

LEMMA 1. For m € N\ {1}. Then:

Bm) =3
n=1
m 172 .
:0+5)am+m—2;;u+wcm—n. o)

The proof of the following lemma is detailed in [12].

LEMMA 2. For x>0 and m € N\ {1}, in terms of polygamma functions, y" (z)
we have,

—1)y"
= Q , (3)

(m—1)! 2m 2 (mJ 2) W(j)(x)w(m—l—j)(x)

where y = .5772... is the Euler-Mascheroni constant. For x =0, then (5) reduces to

(4).

The following result is deduced from the work of Flajolet and Salvy [4].
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LEMMA 3. For m € N then

w  1(2)
A(m) = 2‘1711;1:'—‘“
- (2m—|—I)C(Z)C(Zm—l-1)—%(m—|—2)(2m—|—1)§(2m—|—3)
m—1
+2 Y jC2j+1) ¢ (2m+2-2j). (6)
j=1

2. Closed form and integral identities

The next two theorems relate the main results of this investigation, namely the
closed form and integral representation of (2) and (3).

THEOREM 1. Let g € N, then we have,

oo Hr%
T(q) =3 2 241

n=1

=2B(29+2)—A(q)
2g—1 )
+2 3 ()G (BRe+ 1=~ Cq+2-7). (D)
=1
where A(q) is given by (6) and B (2g+2) is given by (4).

Proof. We begin with the known generating function

J+lg.
m2(1-x)=2¥ " xel-1,1)
st
and from [8]
1 ]12 }1@)
/xk_llnz(l—x)dxz k—; k
0

Now

H, & 1
: 8
+1k§‘1k2’1(k—|—n+1) ®)
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By a partial fraction decomposition of (8), we can write

3

k=1 +22q 1

N Hn+l
(n+1)
2g—1

Hn+1Hn
2
n=1 (n+l) ot j=1

and making a change of summation index, we have

- 1 - H
2 ()L
n=1 n=1

2
H2+H
2q+2 2q+1
q al n=4
2g—1
By rearrangement

n

+2 3 (1) g (1) {

> H2 > H jars
3 -2 -y
ngl n2q+l ngl n2q+2 = n2q+l
2g—1 ) oo
23 ()G Y
j=1 n=1
=T(q). O

B (n+1)%~

2 2 ( 1)]+1

(n 1)t

1
Ue(krnt1)

1)]+l

n+1 2= fj+1
2g—1

a2

(_l)jJrl '
p 1 l)gq_jC(J+ 1)

C(j+1) i

H,
+1)2q+1 J

)y
n=1

(n+1) 2,1_;,_1 J C(2Q+2_j)}'

Hy —¢<2q+z—j>}

It is possible to represent T (g) in integral form and this relationship is given in

the next lemma

LEMMA 4. The integral identity

In(1—x)In(1—y)Lirg—1(xy)

where

b n

Liy (z) =Y, ;7, me C when |z <1;

n=1

is the Polylogarithm, or de Jonquiére’s function.

dxdy
Xy

R(m) > 1 when |z] =1
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Proof. From [11] we have the general representation
1 1 m n—1 m
:/~-~/<ij> [Tin(1—x;)dx;
o o VT =1

1 1

where [--- [ is a m- fold integration procedure, for m = 2,
0 0

11
://(xlxz)"flln(l—xl)ln(l—xz)dxldxg.
00

Hence
- 11 - n—1
Z qH://ln x)In(1—y 2 —dxdy
=1 - =1
:/lflln(l—x)ln(l—y)Lizql(xy)dxdy. .
00 v
EXAMPLE 1. For g =3,
11
//ln x)In(1 —y)Lis (xy)dxdy
00
55 5 1 7
=35(9)—5(2)4(7)—55(4)5(5)+§(C(3))3—55(3)5(6)-
THEOREM 2. For r € N and g € N, we have,
oo H2
X(qr) =Y, —"577 =X(,0) =2B(29+2)+{(2¢ +3)

r—1 2 (2)
(2g+1) (2q+1)H,  H_,+H”,
_C (2) Hr—l - Z ( k2q+2 + k2q+l

2q r—1 1 . .
N {i (¢g+2—p-nfr) +S<2q+2—j,k>} ©)
j=1k=lkj k

where S (m,r) is given by (5) and B (m) is given by (4). In the case of r =0,X (¢,0) =
1

37 (9)-

3
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2
Proof. Consider X (q,r) = Hi’gw then by a change of summation index

=1 Gt
o H2 |
X (q, i
(q,7) }Z,l(n+r 1)2q+1
o H, o 1
=X(q,r—1)—2 +
< ) Son(n+r—1)%t! ,Z’lnz(n—l—r—l)qu
Hy
oo (r—1)%n(n+r—1)
=X(qr—1)-2)
n=1 _22‘1 Hy .
J=1 (r— 1) (nr—1)247270
1 2q+1

i (=12 T2 (1) 2 I (ngr—1)

n=1

I
+2/ D=1 (npr—1)2027

£ atOH H,+H?
= (q7r_ )_ (r_ 1)2q+1 o (r_ 1)2q+2 (r_ 1>2q+1
2q .
J (2q+2 b
+ ) —— 2g+2— H~
2 oy (a2 )
2q
+> S(2g+2—j,r—1),

j=1 (V— 1)J

and this is the recurrence relation for X (¢,r), which may be solved by the subsequent
reduction of the X (¢,r),X (¢, r—1),...,X (¢,2),X (¢q,1) terms finally arriving at the
relation (9). [

It is also possible to represent X (¢,r) in integral form as follows.

PROPOSITION 1. Let {q,r} €N,

X(gr) =3 —th
) “~ (n+r) q+1
D (xy,2g—1,r+1)
11
//ln (I—x)In(1—y) —2r® (xy,2q,r+1) dxdy, (10)
00
+17® (xy,2q + 1,r+1)

where ®(z,t,a) is the Lerch transcendent.
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Proof. We consider, for {j,k} € R™ and |t| <1

5 .

— n+j n+k

St () (")

"?’T ()T (j+1)T ()T (k+1)

(n+r) T+ j+ )T (n+k+1)

n’B(j+1,n)B(k+1,n)
(n+r)%!

-z
8

where B(-,-) is the Beta function. Then

iz" n?B(j+1,n)B(k+1,n)
n=1 (n+r)2q+l

:/1/1<1—x>i§1—y>"§ 2
0 0 "

~ (n + r)2q+1

D (xy,2g—1,r+1)
11
= [[a-sP -3 —2@0n2q.r41) vy
00

+r2® (xy,2q+ 1,r+1)

Now the procedure is to differentiate both sides with respect to j and k respectively

and then put j and k to zero with 7 = 1 so that (10) follows. The case of r =0 reduces
to(6). O

EXAMPLE 2. Inthecase ¢g=2,r=3:

=

X(23) =) Hy

n=1 (n+3)5
3081 159 113 69 29 3
=~T® —C() C()+EC(4)+TC(5)—§CZ(3)
189

+gg 60~ C(7)——C(2)C(3)—%5(4)5(3)+C(2)C(5)~

I Lis (xy) — 6Li Li
- //m (1—x ln -y 9Lis (xy) — 6Lis (xy) + Liz (xy)

(8,6)—0

£ 5 —y—x—4yx

dxdy.
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