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NEW RESULTS CONTAINING QUADRATIC HARMONIC NUMBERS
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Dedicated to Daniel Manca

Abstract. In this paper we give a combinatorial proof of the quadratic harmonic series ∑n�1
H2

n
n2q+1

in terms of zeta functions and then extend the result to express ∑n�1
H2

n

(n+r)2q+1 ,(q,r) ∈ N, in

closed form in terms of zeta functions.

1. Introduction and Preliminaries

Let C and R denote respectively the set of complex numbers and the set of real
numbers. The Riemann zeta function is defined, for s ∈ C with ℜ(s) > 1 by ζ (s) =
∑n�1

1
ns . For p ∈ N := {1,2,3, . . .} we define the generalized harmonic number of

order m as H(m)
p = ζp (m) = ∑p

j=1
1
jm . We define the nth harmonic number by

Hn = ζn (1) =
n

∑
j=1

1
j

=
∞

∑
j=1

n
j ( j +n)

=
∫ 1

0

1− xn

1− x
dx, H0 := 0. (1)

The Psi (or Digamma), ψ(z) function is defined by

ψ(z) :=
d
dz

{logΓ(z)} =
Γ′(z)
Γ(z)

where the Euler gamma function

Γ(z) =
∞∫

0

e−ttz−1dt, ℜ(z) > 0

and the Beta function

B(a,b) = B(b,a) =
Γ(a)Γ(b)
Γ(a+b)

=
1∫

0

ta−1 (1− t)b−1 dt,
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where ℜ(a) > 0,ℜ(b) > 0. The polygamma functions of order m ∈ N∪{0} ,

ψ(m)(z) :=
dm

dzm {ψ(z)} =
dm+1

dzm+1 {logΓ(z)}

and therefore we may connect the generalized harmonic numbers to the polygamma
functions, see [14] by,

H(m+1)
ρ = ζ (m+1)+

(−1)m

m!
ψ(m) (ρ +1)

where ρ ∈ R\ {−1,−2,−3, · · ·} ; m ∈ N and ζ (m+1) is the Riemann zeta function.
The Lerch transcendent Φ(z,t,a) = ∑∞

m=0
zm

(m+a)t
is defined for |z| < 1, ℜ(a) > 0 and

satisfies the recurrence

Φ(z,t,a) = zΦ(z,t,a+1)+a−t.

In the case when z = 1, we have the Hurwitz zeta function

Φ(1,t,a) = ζ (t,a) =
∞

∑
m=0

1

(m+a)t
.

In this paper we will develop identities, new families of closed form representations of
quadratic harmonic numbers and reciprocal powers of n , series of the form:

T (q) = 3
∞

∑
n=1

H2
n

n2q+1 , (2)

and

X (q,r) =
∞

∑
n=1

H2
n

(n+ r)2q+1 (3)

for q ∈ N and r ∈ N, in terms of zeta functions.
Some results regarding quadratic harmonic number sums related to (2) exist in

the current literature. The classical result, conjectured by Au-Yeung and proved by

Borwein et. al., see [16] and [15] is ∑∞
n=1

H2
n

n2 = 17
4 ζ (4) . Flajolet and Salvy [4] give

some specific results for ∑∞
n=1

H2
n

nm when m = 2,3,4,5,7, and a complete representation
for m an odd integer was originally given by Euler [3] and later proved by Borwein et.
al., see [1] and [2]. The result,

∞

∑
n=1

H2
n(

n+ k
k

) =
k

(k−1)

(
ζ (2)+

2

(k−1)2
−H(2)

k−1

)
, k � 2

was given in [6], see also [10] and generalized further to

∞

∑
n=1

H2
n

n

(
n+ k

k

)m , for m = 1 and 2,
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see [13]. An identity for

∞

∑
n=1

(
H2

n +H(2)
n

)
(k+2n)

n2

(
n+ k

k

)2 ,

was given in [9]. The finite case

3
n

∑
j=1

HjHj−1

j
= H3

n −H(3)
n

was given by [5], and for (x,b) ∈ N

n

∑
j=1

j
(
H2

j +H(2)
j

)
+2( j +b)xHjH

(x)
j+b−1

j( j +b)x = H(x)
n+b

(
H2

n +H(2)
n

)

was proved in [7].
The following known results listed below will be useful in the development of the

main theorems. Euler [3], obtained the following result

LEMMA 1. For m ∈ N\ {1} . Then:

B(m) =
∞

∑
n=1

Hn

nm

=
(
1+

m
2

)
ζ (m+1)− 1

2

m−2

∑
j=1

ζ ( j +1)ζ (m− j) . (4)

The proof of the following lemma is detailed in [12].

LEMMA 2. For x > 0 and m∈N\{1} , in terms of polygamma functions, ψ(m)(z)
we have,

S (m,x) =
∞

∑
n=1

Hn

(n+ x)2m+1

=
(−1)m

(m−1)!

⎡
⎢⎢⎣

(γ + ψ(x))ψ(m−1)(x)− 1
2 ψ(m)(x)

+∑m−2
j=1

(
m−2

j

)
ψ( j)(x)ψ(m−1− j)(x)

⎤
⎥⎥⎦ , (5)

where γ = .5772 . . . is the Euler-Mascheroni constant. For x = 0, then (5) reduces to
(4).

The following result is deduced from the work of Flajolet and Salvy [4].
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LEMMA 3. For m ∈ N then

A(m) :=
∞

∑
n=1

H(2)
n

n2m+1

= (2m+1)ζ (2)ζ (2m+1)− 1
2

(m+2)(2m+1)ζ (2m+3)

+2
m−1

∑
j=1

jζ (2 j +1)ζ (2m+2−2 j). (6)

2. Closed form and integral identities

The next two theorems relate the main results of this investigation, namely the
closed form and integral representation of (2) and (3).

THEOREM 1. Let q ∈ N , then we have,

T (q) = 3
∞

∑
n=1

H2
n

n2q+1

= 2B(2q+2)−A(q)

+2
2q−1

∑
j=1

(−1) j+1 ζ ( j +1)(B(2q+1− j)− ζ (2q+2− j)) , (7)

where A(q) is given by (6) and B(2q+2) is given by (4).

Proof. We begin with the known generating function

ln2 (1− x) = 2 ∑
j�1

x j+1Hj

j +1
, x ∈ [−1,1)

and from [8] ∫ 1

0
xk−1 ln2 (1− x)dx =

H2
k +H(2)

k

k
.

Now

∞

∑
n=1

1
n2q

(
H2

n +H(2)
n

n

)
=

∞

∑
k=1

1
k2q

∫ 1

0
xk−1 ln2 (1− x)dx

= 2
∞

∑
k=1

1
k2q

∞

∑
n=1

Hn

n+1

∫ 1

0
xk+ndx

= 2
∞

∑
n=1

Hn

n+1

∞

∑
k=1

1
k2q (k+n+1)

. (8)
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By a partial fraction decomposition of (8), we can write

∞

∑
n=1

1
n2q

(
H2

n +H(2)
n

n

)
= 2

∞

∑
n=1

Hn

n+1

∞

∑
k=1

⎡
⎢⎢⎣

− 1
(n+1)2q−1k(k+n+1)

+∑2q−1
j=1

(−1) j+1

(n+1)2q− jk j+1

⎤
⎥⎥⎦

= 2
∞

∑
n=1

Hn

n+1

[
− Hn+1

(n+1)2q +
2q−1

∑
j=1

(−1) j+1

(n+1)2q− j ζ ( j +1)

]

= −2
∞

∑
n=1

Hn+1Hn

(n+1)2q+1 +2
2q−1

∑
j=1

(−1) j+1 ζ ( j+1)
∞

∑
n=1

Hn

(n+1)2q+1− j

and making a change of summation index, we have

∞

∑
n=1

1
n2q

(
H2

n +H(2)
n

n

)
= 2

∞

∑
n=1

Hn

n2q+2 −
∞

∑
n=1

H2
n

n2q+1

+2
2q−1

∑
j=1

(−1) j+1 ζ ( j+1)

{
∞

∑
n=1

Hn

(n+1)2q+1− j −ζ (2q+2− j)

}
.

By rearrangement

3
∞

∑
n=1

H2
n

n2q+1 = 2
∞

∑
n=1

Hn

n2q+2 −
∞

∑
n=1

H(2)
n

n2q+1

+2
2q−1

∑
j=1

(−1) j+1 ζ ( j +1)

{
∞

∑
n=1

Hn

(n+1)2q+1− j − ζ (2q+2− j)

}

= T (q) . �

It is possible to represent T (q) in integral form and this relationship is given in
the next lemma

LEMMA 4. The integral identity

T (q) = 3
∞

∑
n=1

H2
n

n2q+1 = 3

1∫
0

1∫
0

ln(1− x) ln(1− y)Li2q−1 (xy)
xy

dxdy

where

Lim (z) :=
∞

∑
n=1

zn

nm , m ∈ C when |z| < 1; ℜ(m) > 1 when |z| = 1

is the Polylogarithm, or de Jonquière’s function.
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Proof. From [11] we have the general representation

(−1)m
Hm

n

nm =
1∫

0

· · ·
1∫

0

(
m

∏
j=1

x j

)n−1 m

∏
j=1

ln(1− x j)dx j

where
1∫
0
· · ·

1∫
0

is a m- fold integration procedure, for m = 2,

H2
n

n2 =
1∫

0

1∫
0

(x1x2)
n−1 ln(1− x1) ln(1− x2)dx1dx2.

Hence

∞

∑
n=1

H2
n

n2q+1 =
1∫

0

1∫
0

ln(1− x)ln(1− y)
∞

∑
n=1

(xy)n−1

n2q−1 dxdy

=
1∫

0

1∫
0

ln(1− x)ln(1− y)Li2q−1 (xy)
xy

dxdy. �

EXAMPLE 1. For q = 3,

∞

∑
n=1

H2
n

n7 =
1∫

0

1∫
0

ln(1− x)ln(1− y)Li5 (xy)
xy

dxdy

=
55
6

ζ (9)− ζ (2)ζ (7)− 5
2

ζ (4)ζ (5)+
1
3

(ζ (3))3 − 7
2

ζ (3)ζ (6) .

THEOREM 2. For r ∈ N and q ∈ N , we have,

X (q,r) =
∞

∑
n=1

H2
n

(n+ r)2q+1 = X (q,0)−2B(2q+2)+ ζ (2q+3)

−ζ (2)H(2q+1)
r−1 −

r−1

∑
k=1

(
(2q+1)Hk

k2q+2 +
H2

k−1 +H(2)
k−1

k2q+1

)

+
2q

∑
j=1

r−1

∑
k=1

1
k j

{
j
k

(
ζ (2q+2− j)−H(2q+2− j)

k

)
+S (2q+2− j,k)

}
(9)

where S (m,r) is given by (5) and B(m) is given by (4). In the case of r = 0,X (q,0) =
1
3T (q) .
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Proof. Consider X (q,r) = ∑∞
n=1

H2
n

(n+r)2q+1 then by a change of summation index

X (q,r) =
∞

∑
n=1

H2
n−1

(n+ r−1)2q+1

= X (q,r−1)−2
∞

∑
n=1

Hn

n(n+ r−1)2q+1 +
∞

∑
n=1

1

n2 (n+ r−1)2q+1

= X (q,r−1)−2
∞

∑
n=1

⎛
⎜⎝

Hn

(r−1)2qn(n+r−1)

−∑2q
j=1

Hn

(r−1) j(n+r−1)2q+2− j

⎞
⎟⎠

+
∞

∑
n=1

⎛
⎜⎝

1
(r−1)2q+1n2 − 2q+1

(r−1)2q+1n(n+r−1)

+∑2q
j=1

j
(r−1) j+1(n+r−1)2q+2− j

⎞
⎟⎠

= X (q,r−1)− ζ (2)

(r−1)2q+1 −
(2q+1)Hr−1

(r−1)2q+2 − H2
r−2 +H(2)

r−2

(r−1)2q+1

+
2q

∑
j=1

j

(r−1) j+1

(
ζ (2q+2− j)−H(2q+2− j)

r−1

)

+
2q

∑
j=1

1

(r−1) j S (2q+2− j,r−1),

and this is the recurrence relation for X (q,r) , which may be solved by the subsequent
reduction of the X (q,r) ,X (q,r−1) , . . . ,X (q,2) ,X (q,1) terms finally arriving at the
relation (9). �

It is also possible to represent X (q,r) in integral form as follows.

PROPOSITION 1. Let {q,r} ∈ N,

X (q,r) =
∞

∑
n=1

H2
n

(n+ r)2q+1

=
1∫

0

1∫
0

ln(1− x)ln(1− y)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Φ(xy,2q−1,r+1)

−2rΦ(xy,2q,r+1)

+r2Φ(xy,2q+1,r+1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

dxdy, (10)

where Φ(z, t,a) is the Lerch transcendent.
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Proof. We consider, for { j,k} ∈ R+ and |t| � 1,

∞

∑
n=1

tn

(n+ r)2q+1
(

n+ j
j

)(
n+ k

k

)

=
∞

∑
n=1

tnn2Γ(n)Γ( j +1)Γ(n)Γ(k+1)

(n+ r)2q+1 Γ(n+ j +1)Γ(n+ k+1)

=
∞

∑
n=1

tnn2B( j +1,n)B(k+1,n)

(n+ r)2q+1

where B(·, ·) is the Beta function. Then

∞

∑
n=1

tnn2B( j +1,n)B(k+1,n)
(n+ r)2q+1

=
1∫

0

1∫
0

(1− x) j (1− y)k

xy

∞

∑
n=1

n2 (txy)n

(n+ r)2q+1 dxdy

=
1∫

0

1∫
0

(1− x) j (1− y)k

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Φ(xy,2q−1,r+1)

−2rΦ(xy,2q,r+1)

+r2Φ(xy,2q+1,r+1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

dxdy.

Now the procedure is to differentiate both sides with respect to j and k respectively
and then put j and k to zero with t = 1 so that (10) follows. The case of r = 0 reduces
to (6). �

EXAMPLE 2. In the case q = 2, r = 3 :

X (2,3) =
∞

∑
n=1

H2
n

(n+3)5

= −3081
128

+
159
32

ζ (2)+
113
16

ζ (3)+
69
16

ζ (4)+
29
4

ζ (5)− 3
2

ζ 2 (3)

+
189
84

ζ (6)− ζ (7)− 5
2

ζ (2)ζ (3)− 1
2

ζ (4)ζ (3)+ ζ (2)ζ (5) .

= lim
(ε,δ )→0

1∫
ε

1∫
δ

ln(1− x)ln(1− y)
x4y4

⎛
⎝9Li5 (xy)−6Li4 (xy)+Li3 (xy)

− y2x2

32 −4yx

⎞
⎠dxdy.
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[12] A. SOFO AND D. CVIJOVIĆ,Extensions of Euler harmonic sums, Appl. Anal. Discrete Math. 6 (2012),

317–328.
[13] A. SOFO AND M. HASSANI, Quadratic harmonic number sums, Appl. Math. E-Notes. 12 (2012),

110–117.
[14] H. M. SRIVASTAVA AND J. CHOI, Series Associated with the Zeta and Related Functions, Kluwer

Academic Publishers, London, 2001.
[15] C. VALEAN, A new proof for a classical quadratic harmonic series, J. Class. Anal. 8 (2016), 155–161.
[16] C. VALEAN AND O. FURDUI, Reviving the quadratic series of Au-Yeung, J. Class. Anal. 6 (2015),

113–118.

(Received May 11, 2016) Anthony Sofo
Victoria University

P. O. Box 14428, Melbourne City, Victoria 8001, Australia
e-mail: Anthony.Sofo@vu.edu.au

Journal of Classical Analysis
www.ele-math.com
jca@ele-math.com


