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WEIGHTED SHARING OF NON–LINEAR

DIFFERENTIAL POLYNOMIALS SHARING SMALL

FUNCTION WITH REGARD TO MULTIPLICITY

HARINA P. WAGHAMORE AND S. RAJESHWARI

Abstract. With the notion of weighted sharing values we study the uniqueness of meromorphic
functions when certain non-zero differential polynomial share a small function with regard to
multiplicity. The result of the paper improve and extend some recent result due to Abhijith
Banerjee and Pulak Sahoo [3].

1. Introduction

In this paper by meromorphic functions we will always mean meromorphic func-
tions in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and g share a CM, provided that f − a and g− a
have the same zeros with the same multiplicities. Similarly, we say that f and g share
a IM, provided that f − a and g− a have the same zeros ignoring multiplicities. In
addition we say that f and g share ∞ CM, if 1

f and 1
g share 0 CM, and we say that f

and g share ∞ IM, if 1
f and 1

g share 0 IM.
We adopt the standard notations of value distribution theory (see [8]). We denote

by T (r) the maximum of T (r, f ) and T (r,g) . The notation S(r) denotes any quantity
satisfying S(r) = o(T (r)) as r →∞ , outside of a possible exceptional set of finite linear
measure.

Throughout this paper, we need the following definition.

Θ(a; f ) = 1− lim
r→∞

sup
N(r,a; f )
T (r, f )

,

where a is a value in the extended complex plane.
In 1959, Hayman [7] proved the following result.

THEOREM A. Let f be a transcendental entire function, and let n(� 1) be an
integer. Then f n f ′ = 1 has infinitely many zeros.

In 2002, Fang and Fang [6] proved the following result.
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THEOREM B. Let f and g be two non-constant entire functions, and let n(� 8)
be an integer. If f n( f −1) f ′ and gn(g−1)g′ share 1 CM, then f ≡ g.

In the same year Fang [5] investigated the value sharing of more general non-
linear differential polynomial than that was considered in Theorem B and obtained the
following result.

THEOREM C. Let f and g be two non-constant entire functions, and let n,k be
two positive integers with n � 2k+8. If [ f n( f −1)](k) and [gn(g−1)](k) share 1 CM,
then f ≡ g.

In 2004, Lin and Yi [14] considered the case of meromorphic function in Theorem
B and obtained the following.

THEOREM D. Let f and g be two non-constant meromorphic functions with
Θ(∞, f ) > 2

n+1 , and let n(� 12) be an integer. If f n( f −1) f ′ and gn(g−1)g′ share 1
CM, then f ≡ g.

Natural inquisition would be to investigate the situation for meromorphic function
in Theorem C. In this direction in 2008, Zhang [20] proved the following result.

THEOREM E. Suppose that f is a transcendental meromorphic function with fi-
nite number of poles, g is a transcendental entire function, and let n,k be two positive
integers with n � 2k+6. If [ f n( f −1)](k) and [gn(g−1)](k) share 1 CM, then f ≡ g.

To proceed further we require the following definition known as weighted sharing
of values introduced by I. Lahiri [9] which measure how close a shared value is to being
shared CM or to being shared IM.

DEFINITION 1. Let k be a non negative integer or infinity. For a ∈ C
⋃{∞} we

denote by Ek(a; f ) the set of all a -points of f where an a -point of multiplicity m is
counted m times if m � k and k+1 times if m > k. If Ek(a; f ) = Ek(a;g), we say that
f ,g share the value a with weight k.

The definition implies that if f ,g share a value a with weight k, then z0 is an a -
point of f with multiplicity m(� k) if and only if it is an a -point of g with multiplicity
m(� k) and z0 is an a -point of f with multiplicity m(> k) if and only if it is an a -point
of g with multiplicity n(> k), where m is not necessarily equal to n.

We write f ,g share (a,k) to mean that f ,g share the value a with weight k.
Clearly if f ,g share (a,k) then f ,g share (a, p) for any integer p, 0 � p < k. Also
we note that f ,g share a IM or CM if and only if f ,g share (a,0) or (a,∞) respectively.

In 2009, using the notion of weighted sharing of values, Xu, Yi and Cao [15]
proved the following result.

THEOREM F. Let f and g be two non-constant meromorphic functions, and n(�
1) , k(� 1) and l(� 0) be three integers such that Θ(∞, f ) + Θ(∞,g) > 4

n . Suppose
[ f n( f −1)](k) and [gn(g−1)](k) share (1, l). If l � 2 and n > 5k+11 or if l = 1 and
n > 7k+ 23

2 , then f = g.

Recently, Li [13] proved the following result which rectify and at the same time
improve Theorem F.
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THEOREM G. Let f and g be two non-constant meromorphic functions, and n(�
1) , k(� 1) and l(� 0) be three integers such that Θ(∞, f ) + Θ(∞,g) > 4

n . Suppose
[ f n( f −1)](k) and [gn(g−1)](k) share (1, l). If l � 2 and n > 3k+11 or if l = 1 and
n > 5k+14, then f = g or [ f n( f −1)](k)[gn(g−1)](k) = 1.

In this direction recently Abhijith Banerjee [1] proved the following results first
one of which improves Theorem G.

THEOREM H. Let f and g be two transcendental meromorphic functions and
n(� 1) , k(� 1) , l(� 0) be three integers such that Θ(∞, f )+ Θ(∞,g) > 4

n . Suppose
for two nonzero constants a and b, [ f n(a f +b)](k) and [gn(ag+b)](k) share (1, l). If
l � 2 and n � 3k+9 or if l = 1 and n� 4k+10, or if l = 0 and n� 9k+18, then f = g
or [ f n(a f +b)](k)[gn(ag+b)](k) = 1. The possibility [ f n(a f +b)](k)[gn(ag+b)](k) = 1
does not occur for k = 1.

THEOREM I. Let f and g be two transcendental entire functions, and let n(�
1) , k(� 1) , l(� 0) be three integers. Suppose for two nonzero constants a and b,
[ f n(a f +b)](k) and [gn(ag+b)](k) share (1, l). If l � 2 and n � 2k+6 or if l = 1 and
n � 5k

2 +7, or if l = 0 and n � 5k+12, then f = g.

In 2015, Abhijith Banerjee and Pulak Sahoo [3] obtained the following result.

THEOREM J. Let f and g be two non-entire transcendental meromorphic func-
tions, and let n(� 1) , k(� 1) , l(� 0) be three integers such that Θ(∞, f )+ Θ(∞,g) >
4
n . Suppose for two nonzero constants a and b, [ f n(a f + b)](k) − P and [gn(ag +
b)](k) − P share (0, l) where P(�≡ 0) is a polynomial. If l � 2 and n � 3k + 9 or
if l = 1 and n � 4k+10 or if l = 0 and n � 9k+18, then f = g.

THEOREM K. Let f and g be two transcendental entire functions, and let n(�
1) , k(� 1) , l(� 0) be three integers. Suppose for two nonzero constants a and b,
[ f n(a f +b)](k)−P and [gn(ag+b)](k)−P share (0, l) where P(�≡ 0) is a polynomial.
If l � 2 and n � 2k +6 or if l = 1 and n � 5k

2 +7 or if l = 0 and n � 5k +12, then
f = g.

With the notion of weighted sharing values we study the uniqueness of meromor-
phic function with certain non-zero differential polynomial share a small function with
regard to multiplicity.

We now state our main result.

THEOREM 1. Let f and g be two non-entire transcendental meromorphic func-
tions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer.
Let n(� 1) , k(� 1) , l(� 0) be three integers such that Θ(∞, f )+ Θ(∞,g) > 4

n . Sup-
pose for two nonzero constants a and b, [ f n(a f m +b)](k)−P and [gn(agm +b)](k)−P
share (0, l), where P(�= 0) is a polynomial. If l � 2 and n � 3k+8

s +m, or if l = 1 and
n � 4k+9

s + 3m
2 or if l = 0 and n � 9k+14

s +4m then f = g.

THEOREM 2. Let f and g be two transcendental entire functions, whose zeros
and poles are of multiplicities atleast s, where s is a positive integer. Let n(� 1) , k(�
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1) , l(� 0) be three integers such that Θ(∞, f )+Θ(∞,g) > 4
n . Suppose for two nonzero

constants a and b, [ f n(a f m +b)](k) −P and [gn(agm +b)](k) −P share (0, l), where
P(�= 0) is a polynomial. If l � 2 and n � 2k+5

s +m, or if l = 1 and n � 5k+10
2s +4m or

if l = 0 and n � 5k+8
s +4m then f = g.

REMARK 1. 1. If we put m = 1 and s = 1 in Theorem 1, then Theorem 1 reduces
to Theorem J.

2. If we put m = 1 and s = 1 in Theorem 2, then Theorem 2 reduces to Theorem
K.

Though the standard definitions and notations of the value distribution theory are
available in [8], we explain some definitions and notations which are used in the paper.

DEFINITION 2. [10] For a ∈ C
⋃{∞} we denote by N(r,a; f | = 1) the counting

function of simple a -points of f . For a positive integer p we denote by N(r,a; f | �
p) the counting function of those a -points of f (counted with multiplicities) whose
multiplicities are not greater then p. By N(r,a; f | � p) we denote the corresponding
reduced counting function.

In an analogous manner we define N(r,a; f | � p) and N(r,a; f | � p).

DEFINITION 3. [9] Let k be a positive integer or infinity. We denote by Nk(r,a; f )
the counting function of a -points of f , where an a -point of multiplicity m is counted
m times if m � k and k times if m > k. Then

Nk(r,a; f ) = N(r,a; f )+N(r,a; f | � 2)+ . . .+N(r,a; f | � k).

2. Some lemmas

In this section we present some lemmas which will be needed in the sequel. Let F
and G be two non-constant meromorphic functions defined in C. We shall denote by
H the following function:

H =
(

F ′′

F ′ −
2F ′

F −1

)
−

(
G′′

G′ −
2G′

G−1

)
.

LEMMA 1. [16] Let f be a transcendental meromorphic function, and let Pn( f )
be a differential polynomial in f of the form

Pn( f ) = an f n(z)+an−1 f n−1(z)+ . . .+a1 f (z)+a0.

where an(�= 0) , an−1 . . .a1,a0 are complex numbers. Then

T (r,Pn( f )) = nT (r, f )+O(1).
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LEMMA 2. [21] Let f be a nonconstant meromorphic function, and p,k be pos-
itive integers. Then

Np(r,0; f (k)) � T (r, f (k))−T(r, f )+Np+k(r,0; f )+S(r, f ), (1)

Np(r,0; f (k)) � kN(r,∞; f )+Np+k(r,0; f )+S(r, f ). (2)

LEMMA 3. [9] Let F and G be two non-constant meromorphic functions sharing
(1,2). Then one of the following cases holds:

(i) T (r) � N2(r,0;F)+N2(r,0;G)+N2(r,∞;F)+N2(r,∞;G)+S(r),
(ii) F = G,
(iii) FG = 1,

where T (r) denotes the maximum of T (r,F) and T (r,G) and S(r) = o{T (r)} as r →
∞, possibly outside a set of finite linear measure.

LEMMA 4. [2] Let F and G be two non-constant meromorphic functions sharing
(1,1) and H �≡ 0. Then

T (r,F) � N2(r,0;F)+N2(r,0;G)+N2(r,∞;F)+N2(r,∞;G)

+
1
2
N(r,0;F)+

1
2
N(r,∞;F)+S(r,F)+S(r,G)

LEMMA 5. [2] Let F and G be two non-constant meromorphic functions sharing
(1,0) and H �≡ 0. Then

T (r,F) � N2(r,0;F)+N2(r,0;G)+N2(r,∞;F)+N2(r,∞;G)

+2N(r,0;F)+N(r,0;G)+2N(r,∞;F)

+N(r,∞;G)+S(r,F)+S(r,G).

LEMMA 6. [12] If N(r,0; f (k) | f �= 0) denote the counting function of those zeros
of f (k) which are not the zeros of f , where a zero of f (k) is counted according to its
multiplicity, then

N(r,0; f (k) | f �= 0) � kN(r,∞; f )+N(r,0; f |< k)+ kN(r,0; f |� k)+S(r, f ).

LEMMA 7. [8], [17] Let f be a transcendental meromorphic function, and let
a1(z),a2(z) be two distinct meromorphic functions such that T (r,ai(z)) = S(r, f ) , i =
1,2. Then

T (r, f ) � N(r,∞; f )+N(r,a1; f )+N(r,a2; f )+S(r, f ).

LEMMA 8. [21] Let f and g be two non-entire transcendental meromorphic
functions such that either the zeros and poles of f and g are of multiplicities atleast s,
where s is a positive integer or they have no zeros and poles. Let n,k be two positive
integers and let P be a nonconstant polynomial. If n � 2k+3

s +2m, then

[ f n(a f m +b)](k)[gn(agm +b)](k) �= P2,

where a,b are any two nonzero constants.
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Proof. If possible, let

[ f n(a f m +b)](k)[gn(agm +b)](k) = P2. (3)

Let z1 /∈ (z : P(z) = 0) be a zero of f with multiplicity p1(� 1). Then it follows from
(3) that z1 is a pole of g. Suppose that z1 is a pole of g of order q1(� 1). Then we
have

np1− k = (n+m)q1 + k (4)

from (4) we obtain np1 = (n+m)s+2k, and so

p1 � (n+m)s−2k.

Let z2 /∈ (z : P(z) = 0) be a zero of a f m +b with multiplicity p2(� k+1). Then from
(3) it follows that z2 is a pole of g. Suppose that z2 is a pole of g of order q2(� 1).
Then we have p2− k = (n+m)q2 + k, i.e.,

p2 � (n+m)s+2k.

Let z3 /∈ (z : P(z) = 0) is a zero of a f m + b with multiplicity p3(� k), then from (3)
it follows that z3 may be a zero of [ f n(a f m + b)](k) and if it happens then it will be
a pole of g with multiplicity (n+m)s+ k. Suppose that z4 /∈ (z : P(z) = 0) be a pole
of f . Then from (3) it is clear that z4 is either a zero of gn(agm + b) or a zero of
[gn(agm +b)](k). Therefore

N(r,∞; f ) � N(r,0;g)+N(r,0;agm +b |� k)+N(r,0;agm +b |� k+1)

+N(r,0;h(k) | h �= 0)+S(r,g),
(5)

where N(r,0;h(k) | h �= 0 denotes the reduced counting function of those zeros of h(k)

that are not the zeros of h and h = gn(agm +b).
By Lemma 6 we have

N(r,0;h(k) | h �= 0) � 1
(n+m)s+ k

[N(r,0;h(k) | h �= 0]

� 1
(n+m)s+ k

[kN(r,∞;h)+N(r,0;h |< k)+ kN(r,0;h |� k)]

� 1
(n+m)s+ k

[kN(r,∞;h)+Nk(r,0;h)]

� k
(n+m)s+ k

[N(r,∞;g)+N(r,0;g)+N(r,0;agm +b)]

� k
(n+m)s+ k

[N(r,∞;g)+N(r,0;g)+N(r,0;agm +b |� k)

+N(r,0;agm +b |� k+1)].
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So from (5) we obtain

N(r,∞; f ) �
(

1+
k

(n+m)s+ k

)
[N(r,0;g)+N(r,0;agm +b |� k)

+N(r,0;agm +b |� k+1)]+
k

(n+m)s+ k
N(r,∞;g)+S(r,g)

� (n+m)s+2k
(n+m)s+ k

[
1

(n+m)s−2k
+

1
(n+m)s+ k

+
1

(n+m)s+2k

]
T (r,g)

+
k

(n+m)s+ k
T (r,g)+S(r,g)

�
[

(n+m)s+2k
[(n+m)s+ k][(n+m)s−2k]

+
(n+m)s+2k
[(n+m)s+ k]2

+
k+1

[(n+m)s+ k][(n+m)s+2k]

]
T (r,g)+S(r,g).

Using the second fundamental theorem of Nevanlinna we get

T (r, f ) � N(r,∞; f )+N(r,0; f )+N(r,0;a f m +b)+S(r, f )

� N(r,∞; f )+N(r,0; f )+N(r,0;a f m +b |� k)

+N(r,0;a f m +b |� k+1)+S(r,g)

�
[

(n+m)s+2k
[(n+m)s+ k][(n+m)s−2k]

+
(n+m)s+2k
[(n+m)s+ k]2

+
k+1

[(n+m)s+ k][(n+m)s+2k]

]
T (r,g)

+
[

1
(n+m)s+2k

+
1

(n+m)s+ k
+

1
(n+m)s+2k

]
T (r, f )+S(r, f )+S(r,g).

(6)

Similarly

T (r,g) �
[

(n+m)s+2k
[(n+m)s+ k][(n+m)s−2k]

+
(n+m)s+2k
[(n+m)s+ k]2

+
k+1

[(n+m)s+ k][(n+m)s+2k]

]
T (r, f )

+
[

1
(n+m)s+2k

+
1

(n+m)s+ k
+

1
(n+m)s+2k

]
T (r,g)+S(r, f )+S(r,g).

(7)
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Adding (6) and (7) we obtain

[T (r, f )+T (r,g)] �
[

2[(n+m)s+2k]
[(n+m)s+ k][(n+m)s−2k]

+
2[(n+m)s+2k]
[(n+m)s+ k]2

+
2[k+1]

[(n+m)s+ k][(n+m)s+2k]
+

2
(n+m)s+2k

+
2

(n+m)s+ k
+

2
(n+m)s+2k

][T (r, f )+T (r,g)
]

+S(r, f )+S(r,g).

which is a contradiction. Thus Lemma 8 is proved. �

LEMMA 9. Let f and g be two transcendental entire function, let n,k are any
two positive integers and let P be a non-constant polynomial. Then

[ f n(a f m +b)](k)[gn(agm +b)](k) �= P2,

where a,b are any two nonzero constants.

Proof. Suppose that

[ f n(a f m +b)](k)[gn(agm +b)](k) = P2.

Let z0 be a zero of f with multiplicity p. Then clearly z0 is a zero of P. Since P is
a polynomial, f has a finite number of zeros. So we put f (z) = P1eα where α is a
non-constant entire function and P1 is a polynomial. Now

(a f n+m)(k) = t1(α ′,α ′′, . . . ,α(k),P1)e(n+m)α , (8)

(b f n)(k) = t0(α ′,α ′′, . . . ,α(k),P1)enα , (9)

where ti(α ′,α ′′, . . . ,α(k),P1) (i = 0,1,2, . . .m) are differential polynomials in α ′,α ′′,
. . . ,α(k) with coefficients which are rational functions in P1 or its derivatives. Obvi-
ously

ti(α ′,α ′′, . . . ,α(k),P1) �= 0

for i = 0,1,2, . . .m and
[ f n(a f m +b)]k �= 0.

From (8) and (9) we have

t1(α ′,α ′′, . . . ,α(k),P1)eα(z) + t0(α ′,α ′′, . . . ,α(k),P1) �= 0. (10)

Since α(z) is an entire function, we obtain T (r,α( j)) = S(r, f ) for j = 1,2, . . . ,k. Thus
T (r,ti) = S(r, f ) for i = 0,1,2 . . . ,m. So from (10), Lemma 1 and Lemma 7 we obtain

mT (r, f ) = T (r, tmemα + tm−1e
(m−1)α + . . .+ t1e

α)+S(r, f )

� N(r.0;tmemα + tm−1e
m−1α + . . .+ t1e

α)+N(r,0;tmemα + . . .+ t0)+S(r, f )

� (m−1)
s

T (r, f )+S(r, f ),

which is a contradiction. This completes the proof of the lemma. �
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LEMMA 10. Let f and g be two transcendental meromorphic (entire) functions
such that either the zeros and poles of f and g are of multiplicities atleast s, where
s is a positive integer or they have no zeros and poles and let n(� 1) , k(� 1), be

two integers. Suppose that F = [ f n(a fm+b)](k)

P(z) and G = [gn(agm+b)](k)

P(z) . If there exists

two nonzero constants c1 and c2 such that N(r,c1;F) = N(r,0;G) and N(r,c2;G) =
N(r,0;F), then n � 3k+3

s +m (n � 2k+2
s +m).

Proof. We prove the theorem for two transcendental meromorphic functions. By
the second fundamental theorem of Nevanlinna we have

T (r,F) � N(r,0;F)+N(r,∞;F)+N(r,c1;F)+S(r,F)

� N(r,0;F)+N(r,0;G)+N(r,∞;F)+S(r,F).
(11)

By (1), (2), (11) and Lemma 1 we obtain

(n+m)T(r, f ) � T (r,F)−N(r,0;F)+Nk+1(r,0; f n(a f m +b))+O{logr}+S(r, f )

� N(r,0;G)+Nk+1(r,0; f n(a f m +b))+N(r,∞; f )+O{logr}+S(r, f )

� Nk+1(r,0; f n(a f m +b))+Nk+1(r,0;gn(agm +b))+N(r,∞; f )

+ kN(r,∞;g)+O{logr}+S(r, f )+S(r,g)

�
(k+2

s
+m

)
T (r, f )+

(2k+1
s

+m
)
T (r,g)+O{logr}+S(r, f )+S(r,g).

(12)

Similarly we obtain

(n+m)T (r,g)�
(k+2

s
+m

)
T (r,g)+

(2k+1
s

+m
)
T (r, f )+O{logr}+S(r, f )+S(r,g).

(13)
Combining (12), (13) and noting that O{logr}= O{T(r, f )} and O{logr}= O{T(r,g)}
we get (

n− 3k+3
s

−m
)
{T (r, f )+T (r,g)} � S(r, f )+S(r,g)

which gives n � 3k+3
s +m. This completes the proof of the Lemma 10. �

LEMMA 11. Let f and g be two nonconstant meromorphic functions such that

Θ(∞, f )+ Θ(∞,g) >
4
n
,

where n(� 3) is an integer. Then

f n(a f +b) = gn(ag+b)

implies f = g, where a,b are two nonzero constants.

Proof. We omit the proof since it can be carried out in the line of Lemma 6
[11]. �
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3. Proof of Theorem 1

Proof. Let F(z) and G(z) be given as in Lemma 10. Then F(z),G(z) are non-
entire transcendental meromorphic functions that share (1, l) except the zeros of the
polynomial P(z). So from (1) we obtain

N2(r,0;F) � N2(r,0; [ f n(a f m +b)](k) +S(r, f )

� T (r, [ f n(a f m +b)](k)− (n+m)T(r, f )+Nk+2(r,0; f n(a f m +b))+S(r, f )
� T (r,F)− (n+m)T(r, f )+Nk+2(r,0; f n(a f m +b))+O{logr}+S(r, f ).

(14)

Again by (2) we have

N2(r,0;G) � kN(r,∞; f )+Nk+2(r,0;gn(agm +b))+S(r,g). (15)

From (14) we get

(n+m)T (r, f ) � T (r,F)+Nk+2(r,0; f n(a f m +b))−N2(r,0;F)+O{logr}+S(r, f ).
(16)

Now, we consider the following three cases.
Case 1. Let l � 2. Let (i) of Lemma 3 holds. Then using (15) we obtain from

(16)

(n+m)T(r, f ) � N2(r,0;G)+N2(r,∞;F)+N2(r,∞;G)+Nk+2(r,0; f n(a f m +b))
+O{logr}+S(r, f )+S(r,g)

� Nk+2(r,0; f n(a f m +b))+Nk+2(r,0;gn(agm +b))+2N(r,∞; f )

+ (k+2)N(r,∞;g)+O{logr}+S(r, f )+S(r,g)

� (k+m+2){T(r, f )+T (r,g)}+2N(r,∞; f )+ (k+2)N(r,∞;g)
+O{logr}+S(r, f )+S(r,g)

�
[(k+4

s
+m

)
−2Θ(∞; f )+ ε

]
T (r, f )

+
[(2k+4

s
+m

)
−

(k+2
s

)
Θ(∞,g)+ ε

]
T (r,g)+S(r, f )+S(r,g)

�
[(3k+8

s
+2m

)
−2Θ(∞, f )−2Θ(∞,g)

− kmin{Θ(∞, f ),Θ(∞,g)}+2ε
]
T (r)+S(r).

(17)

In a similar way we can obtain

(n+m)T(r,g) �
[(3k+8

s
+2m

)
−2Θ(∞, f )−2Θ(∞,g)

− kmin{Θ(∞, f ),Θ(∞,g)}+2ε
]
T (r)+S(r).

(18)

From (17) and (18) we obtain[
n−

(3k+8
s

)
−m+2Θ(∞, f )+2Θ(∞,g)+ kmin{Θ(∞, f )Θ(∞,g)}−2ε

]
T (r) � S(r)
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contradictingwith the fact that n� 3k+8
s +m, for m = 1 we have Θ(∞, f )+Θ(∞,g) > 4

n
and ε > 0 be arbitrary. So by Lemma 3 either FG ≡ 1 or F = G. Let FG = 1. Then

[ f n(a f m +b)](k)[gn(agm +b)](k) = P2,

a contradiction by Lemma 8. So we have F = G. That is

[ f n(a f m +b)](k) = [gn(agm +b)](k).

Integrating we get

[ f n(a f m +b)](k−1) = [gn(agm +b)](k−1) +Ck−1,

where Ck−1 is a constant. If Ck−1 �= 0, from Lemma 10 we obtain n � 3k+3
s + m, a

contradiction. Hence Ck−1 = 0. Repeating k times and substituting m = 1, we obtain

f n(a f m +b) = gn(agm +b). (19)

Now the result follows from Lemma 11.
Case 2. Let l = 1 and H �≡ 0. Using Lemma 4 and (15) we obtain from (16),

(n+m)T(r, f ) � N2(r,0;G)+N2(r,∞;F)+N2(r,∞;G)+
1
2
N(r,0;F)

+
1
2
N(r,∞;F)+Nk+2(r,0; f n(a f m +b))+O{logr}+S(r, f )+S(r,g)

� Nk+2(r,0; f n(a f m +b))+Nk+2(r,0;gn(agm +b))

+
1
2
Nk+1(r,0; f n(a f m +b))+

k+5
2

N(r,∞; f )

+ (k+2)N(r,∞;g)+O{logr}+S(r, f )+S(r,g)

� (k+m+2){T(r, f )+T (r,g)}+
k+m+1

2
T (r, f )+

k+5
2

N(r,∞; f )

+ (k+2)N(r,∞;g)+O{logr}+S(r, f )+S(r,g)

�
[2k+5

s
+

3m
2

−
( k

2
+3

)
Θ(∞, f )− 1

2
Θ(∞, f )+ ε

]
T (r, f )

+
[(2k+5

s
+m

)
−

(k
2

+2
)

Θ(∞,g)− k
2

Θ(∞, f )+ ε
]
T (r,g)

+O{logr}+S(r, f )+S(r,g)

�
[4k+9

s
+

5m
2

−
(k+5

2

)
(Θ(∞, f )+ Θ(∞,g))+2ε

]
T (r)+S(r).

(20)

Similarly

(n+m)T(r,g) �
[4k+9

s
+

5m
2

− k+5
2

(Θ(∞, f )+ Θ(∞,g))+2ε
]
T (r)+S(r). (21)

combining (20) and (21) we obtain
[
n− 4k+9

s
− 5m

2
+m+

k+5
2

(Θ(∞, f )+ Θ(∞,g))+2ε
]
T (r) � S(r),



12 H. P. WAGHAMORE AND S. RAJESHWARI

a contradiction. Since n � 4k+9
s + 3m

2 , for m = 1 we have Θ(∞, f )+ Θ(∞,g) > 4
n and

ε > 0 be arbitrary. We now assume that H ≡ 0. That is(
F”
F ′ −

2F ′

F −1

)
−

(
G”
G′ −

2G′

G−1

)
= 0.

Integrating both sides of the above equality twice we get

1
F −1

=
A

G−1
+B, (22)

where A(�= 0) and B are constants. From (22) it is clear that F,G share the value 1 CM
and so they share 1 with weight two. Hence we have n � 3k+8

s +m. Now we discuss
the following three subcases.

Subcase 1. Let B �= 0 and A = B. Then from (22) we get

1
F −1

=
BG

G−1
. (23)

If B = −1, then from (23) we obtain

FG = 1,

a contradiction by Lemma 8.
If B �= −1, from (23), we have 1

F = BG
(1+B)G−1 and so N(r, 1

1+B ;G) = N(r,0;F).
Now from the second fundamental theorem of Nevanlinna, we get

T (r,G) � N(r,0;G)+N

(
r,

1
1+B

;G

)
+N(r,∞;G)+S(r,G)

� N(r,0;F)+N(r,0;G)+N(r,∞;G)+S(r,G).

Using (1) and (2) we obtain from above inequality

T (r,G) � Nk+1(r,0; f n(a f m +b))+ kN(r,∞; f )+T (r,G)

+Nk+1(r,0;gn(agm +b))− (n+m)T(r,g)+N(r,∞;g)
+O{logr}+S(r,g).

Hence

(n+m)T(r,g) �
(2k+1

s
+m

)
T (r, f )+

(k+2
a

+m
)
T (r,g)+S(r,g).

Thus we obtain(
n− 3k+3

s
−2m+m

)
{T (r, f )+T (r,g)} � S(r, f )+S(r,g),

(
n− 3k+3

s
−m

)
{T (r, f )+T (r,g)} � S(r, f )+S(r,g),

which contradicts as n � 3k+3
s +m.

Subcase 2. Let B �= 0 and A �= B. Then from (22) we get F = (B+1)G−(B−A+1)
BG+(A−B) and

so N(r, B−A+1
B+1 ) ; G = N(r,0;F). Proceeding as in Subcase 1 we obtain a contradiction.
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Subcase 3. Let B = 0 and A �= B. Then from (22) N(r, A−1
A ;F) = N(r,0;G) and

N(r,1−A;G) = N(r,0;F). So by Lemma 10 we have n � 3k+3
s +m, a contradiction.

Thus A = 1 and hence F ≡ G. Now using the same technique as used in case 1 we can
obtain (19) which by Lemma 11 gives f = g.

Case 3. Let l = 0 and H �≡ 0, using Lemma 5 and (15) we obtain from (16)

(n+m)T (r, f ) � N2(r,0;G)+N2(r,∞;F)+N2(r,∞;G)+2N(r,0;F)

+N(r,0;G)+Nk+2(r,0; f nP( f ))+2N(r,∞;F)+N(r,∞;G)
+O{logr}+S(r, f )+S(r,g)

� Nk+2(r,0; f nP( f ))+Nk+2(r,0;gnP(g))+2Nk+2(r,0; f nP( f ))

+Nk+1(r,0;gnP(g))+ (2k+4)N(r,∞; f )+ (2k+3)N(r,∞;g)
+O{logr}+S(r, f )+S(r,g)

�
[(5k+8

s
+3m

)
− (2k+4)Θ(∞; f )− ε

]
T (r, f )

+
[(4k+6

s
+2m

)
− (2k+3)Θ(∞;g)− ε

]
T (r,g)+O{logr}

+S(r, f )+S(r,g)

+
[(9k+14

s
+5m

)
− (2k+3)[Θ(∞; f )+ Θ(∞,g)]

−min{Θ(∞, f )Θ(∞;g)}+2ε
]
T (r)+S(r).

(24)

Similarly

(n+m)T(r,g) �
[(9k+14

s
+5m

)
− (2k+3)[Θ(∞; f )+ Θ(∞,g)]

−min{Θ(∞, f )Θ(∞;g)}+2ε
]
T (r)+S(r).

(25)

From (24) and (25) we get
[(

n− 9k+14
s

−5m+m
)

+(2k+3)(Θ(∞, f )+ Θ(∞;g))

+min{Θ(∞; f )Θ(∞;g)}−2ε
]
T (r) � S(r),

contradicts with the facts that n � 9k+14
s +4m, for m = 1 we have Θ(∞, f )+Θ(∞,g) >

4
n and ε > 0 be arbitrary. we now assume that H ≡ 0. Then proceeding in a similar
manner as in case 2 we obtain f = g. This completes the proof of the Theorem 1. �

4. Proof of Theorem 2

Proof. Noting that N(r,∞; f ) = 0, N(r,∞;g) = 0 and using Lemma 9 instead of
Lemma 8 and proceeding in the like manner as the proof of Theorem 1 we obtain the
result of the Theorem 2. �
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