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COMPLETE (p,q)–ELLIPTIC INTEGRALS

WITH APPLICATION TO A FAMILY OF MEANS
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Abstract. The complete elliptic integrals are generalized by using the generalized trigonometric
functions with two parameters. As an application of the integrals, an alternative proof of a
result for a family of means by Bhatia and Li, which involves the logarithmic mean and the
arithmetic-geometric mean, is given. Moreover, it is shown that a particular relation holds for
the generalized integrals.

1. Introduction

In this paper, we deal with a complete (p,q)-elliptic integral of the first kind

Kp,q(k) :=
∫ πp,q/2

0

dθ
(1− kq sinq

p,q θ )1−1/p
=
∫ 1

0

dt

(1− tq)1/p(1− kqtq)1−1/p
,

where sinp,q θ is the generalized (p,q)-trigonometric function and πp,q denotes the
half-period of sinp,q θ . The function sinp,q θ and the number πp,q play important roles
to express the solutions (λ ,u) of inhomogeneous eigenvalue problem of p -Laplacian
−(|u′|p−2u′)′ = λ |u|q−2u with a boundary condition. See Section 2 for the definition
of sinp,q θ and πp,q ; also [5, 6, 7, 9, 10] for details. For p = q = 2, it is easy to
see that sinp,q θ , πp,q and Kp,q(k) are identical to the classical sinθ , π and K (k) ,
respectively, where K (k) is the complete elliptic integral of the first kind

K (k) :=
∫ π/2

0

dθ√
1− k2 sin2 θ

=
∫ 1

0

dt√
(1− t2)(1− k2t2)

.

Moreover, Kp,q(k) for p = q has been already studied in [11].
In this paper we will apply the complete (p,q)-elliptic integral Kp,q(k) to study

a family of means defined by Bhatia and Li [2] and to give an alternative proof of their
theorem.
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For a while, we will describe a part of the study in [2]. Let a and b be positive
numbers. The logarithmic mean L(a,b) of a and b is defined by

L(a,b) :=

⎧⎨
⎩

a−b
loga− logb

(a �= b),

a (a = b).

The arithmetic-geometric mean AG(a,b) of a and b is defined as follows: Let us
consider the sequences {an} and {bn} satisfying

an+1 =
an +bn

2
, bn+1 =

√
anbn, n = 0,1,2, . . .

with a0 = a and b0 = b . The sequences {an} and {bn} converge to a common limit,
and

AG(a,b) := lim
n→∞

an = lim
n→∞

bn.

It is known that L(a,b) and AG(a,b) have integral expressions as

1
L(a,b)

=
∫ ∞

0

dt
(t +a)(t +b)

,

1
AG(a,b)

=
2
π

∫ ∞

0

dt√
(t2 +a2)(t2 +b2)

.

Indeed, the first one follows from direct calculation of the right-hand side and the sec-
ond one is a celebrated result of Gauss (e.g., [1, Theorem 3.2.3] and [4, Theorem 1.1]
with setting b tanθ = t ).

Motivated by these expressions, Bhatia and Li introduced an interpolating family
of means Mp(a,b) by

1
Mp(a,b)

:= cp

∫ ∞

0

dt

((t p +ap)(t p +bp))1/p
, p ∈ (0,∞),

where cp is defined to satisfy Mp(a,a) = a , hence,

1
cp

:=
∫ ∞

0

dt

(1+ t p)2/p
.

Moreover, M0 is defined by taking limit:

M0(a,b) = lim
p→+0

Mp(a,b) =
√

ab.

Clealy, M1(a,b) = L(a,b) and M2(a,b) = AG(a,b) , thus Mp(a,b) is a generalization
of L(a,b) and AG(a,b) . It is easily seen that Mp(a,b) is a binary symmetric mean of
positive numbers a and b , that is

(i) min{a,b} � Mp(a,b) � max{a,b}
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(ii) Mp(a,b) = Mp(b,a)

(iii) Mp(αa,αb) = αMp(a,b) for all α > 0

(iv) Mp(a,b) is non-decreasing in a and b .

They studied relation between Mp(a,b) and Kp(a,b) , the power difference mean
of a and b . This is defined for any p ∈ R and a, b > 0 by

Kp(a,b) :=

⎧⎨
⎩

p−1
p

ap−bp

ap−1−bp−1 (a �= b),

a (a = b),

where it is understood that

K0(a,b) := lim
p→0

Kp(a,b) =
ab

L(a,b)
,

K1(a,b) := lim
p→1

Kp(a,b) = L(a,b).

For more details of Kp(a,b) , see [2, 8] and the references given there.
These two means are related in the following sense. It is easy to check that

1/Mp(a,b) can be written as (t p +ap = aps−1)

1
Mp(a,b)

=

∫ 1

0

s1/p−1(1− s)1/p−1

(ap(1− s)+bps)1/p
ds

∫ 1

0
s1/p−1(1− s)1/p−1ds

and 1/Kp(a,b) also admits the following integral expression:

1
Kp(a,b)

=
∫ 1

0

ds

(ap(1− s)+bps)1/p
. (1.1)

Thus 1/Mp(a,b) and 1/Kp(a,b) are the weighted means with the beta distribution
and with the continuous uniform distribution, respectively, of the function (ap(1− s)+
bps)−1/p .

Bhatia and Li concluded the following theorem with easy but technical calculation.
But, it is hard to say that these calculations are natural.

Theorem 1.1. ([2]) Given a, b > 0 and a �= b, we have

(i) Mp(a,b) > Kp(a,b) if 0 � p < 1

(ii) M1(a,b) = K1(a,b)

(iii) Mp(a,b) < Kp(a,b) if p > 1 .
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In this paper, we will give an alternative proof of Theorem 1.1. Using the com-
plete (p,q)-elliptic integral, we can easily give a hypergeometric representation (1.2) in
Theorem 1.2 below for 1/Mp(a,b) . Applying a formula of hypergeometric function to
(1.2) and (1.4), we have (1.3) and (1.5). We emphasize that Theorem 1.1 of Bhatia and
Li follows immediately from Theorem 1.2 with comparing only the third parameters of
(1.3) and (1.5).

Theorem 1.2. Let p ∈ P := (0,1)∪ (1,∞) and x ∈ (0,1] . Then

1
Mp(1,x)

=
2

πp∗,p
Kp∗,p((1− xp)1/p)

= F

(
1
p
,
1
p
;
2
p
;1− xp

)
, (1.2)

=
(

2
1+ xp

)1/p

F

(
1
2p

,
1
2p

+
1
2
;
1
p

+
1
2
;

(
1− xp

1+ xp

)2
)

, (1.3)

1
Kp(1,x)

= F

(
1,

1
p
;2;1− xp

)
, (1.4)

=
(

2
1+ xp

)1/p

F

(
1
2p

,
1
2p

+
1
2
;
3
2
;

(
1− xp

1+ xp

)2
)

. (1.5)

Therefore, Theorem 1.1 immediately follows.

Moreover, we define a complete (p,q)-elliptic integral of the second kind

Ep,q(k) :=
∫ πp,q/2

0
(1− kq sinq

p,q θ )1/p dθ =
∫ 1

0

(
1− kqtq

1− tq

)1/p

dt.

It is clear that E2,2(k) is identical to the complete elliptic integral of the second kind

E (k) =
∫ π/2

0

√
1− k2 sin2 θ dθ =

∫ 1

0

√
1− k2t2

1− t2
dt.

Then, we can show the following relation for p �= q .

Theorem 1.3. Let p, q ∈ (1,∞) and k ∈ [0,1) . Then

pEp,q(k1/q)Kq,p(k1/p)−qKp,q(k1/q)Eq,p(k1/p) =
(p−q)πp,qπq,p

4
. (1.6)

This paper is organized as follows. In Section 2 we prepare properties of the
complete (p,q)-elliptic integrals and show Theorem 1.3. Section 3 is devoted to give a
proof of Theorem 1.2 and an alternative proof of Theorem 1.1.

REMARK 1.4. Kp,q(k) and Ep,q(k) have been studied in [10] and in [3, 13],
respectively. For the particular case p = q , we refer the reader to [11]. See also Remark
2.2 for other generalized complete elliptic integrals.
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2. Complete (p,q)-elliptic integrals

Let p and q be real numbers satisfying p∗ := p/(p−1) > 0 and q > 0 (note that
p is allowed to be negative). The (p,q)-trigonometric function sinp,q x is the inverse
function of

sin−1
p,q x :=

∫ x

0

dt

(1− tq)1/p
, x ∈ [0,1].

Clearly, sinp,q x is increasing function from [0,πp,q/2] onto [0,1] , where

πp,q := 2sin−1
p,q 1 = 2

∫ 1

0

dt

(1− tq)1/p
=

2
q
B

(
1
p∗

,
1
q

)
,

where B denotes the beta function.
For x ∈ (0,πp,q/2) , we also define

cosp,q x :=
d
dx

(sinp,q x),

These functions satisfy, for x ∈ (0,πp,q/2) ,

cosp
p,q x+ sinq

p,q x = 1,
d
dx

(sinp,q x) = cosp,q x,

d
dx

(cosp,q x) = − q
p

sinq−1
p,q xcos2−p

p,q x,

d
dx

(cosp−1
p,q x) = − q

p∗
sinq−1

p,q x.

Now, for any k ∈ [0,1) we define the complete (p,q)-elliptic integral of the first
kind and of the second kind as follows.

Kp,q(k) :=
∫ πp,q/2

0

dθ
(1− kq sinq

p,q θ )1/p∗ =
∫ 1

0

dt

(1− tq)1/p(1− kqtq)1/p∗ ,

Ep,q(k) :=
∫ πp,q/2

0
(1− kq sinq

p,q θ )1/pdθ =
∫ 1

0

(
1− kqtq

1− tq

)1/p

dt.

It is easy to see that Kp,q(k) is increasing on [0,1) and

Kp,q(0) =
πp,q

2
, lim

k→1−0
Kp,q(k) = ∞,

and Ep,q(k) is decreasing on [0,1) and

Ep,q(0) =
πp,q

2
, lim

k→1−0
Ep,q(k) = 1,

The functions Kp,q(k) and Ep,q(k) satisfy a system of differential equations.
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Proposition 2.1.

dEp,q

dk
=

q(Ep,q−Kp,q)
pk

,
dKp,q

dk
=

Ep,q− (1− kq)Kp,q

k(1− kq)
.

Proof. Differentiating Ep,q(k) we have

dEp,q

dk
=
∫ πp,q/2

0

d
dk

(1− kq sinq
p,q θ )1/p dθ

=
q
p

∫ πp,q/2

0

−kq−1 sinq
p,q θ

(1− kq sinq
p,q θ )1/p∗ dθ

=
q
pk

(∫ πp,q/2

0

1− kq sinq
p,q θ

(1− kq sinq
p,q θ )1/p∗ dθ −

∫ πp,q/2

0

dθ
(1− kq sinq

p,q θ )1/p∗

)

=
q
pk

(Ep,q−Kp,q).

Next, for Kp,q(k)

dKp,q

dk
=

q
p∗

∫ πp,q/2

0

kq−1 sinq
p,q θ

(1− kq sinq
p,q θ )1+1/p∗ dθ . (2.1)

Here we see that

d
dθ

(
−cosp−1

p,q θ
(1− kq sinq

p,q θ )1/p∗

)
=

q(1− kq)sinq−1
p,q θ

p∗(1− kq sinq
p,q θ )1+1/p∗ ,

lim
θ→πp,q/2

cosp−1
p,q θ = lim

θ→πp,q/2
(1− sinq

p,q θ )1/p∗ = 0;

so that we use integration by parts as

dKp,q

dk
=
∫ πp,q/2

0

kq−1

1− kq

d
dθ

(
−cosp−1

p,q θ
(1− kq sinq

p,q θ )1/p∗

)
sinp,q θ dθ

=
kq−1

1− kq

[
−cosp−1

p,q θ sinp,q θ
(1− kq sinq

p,q θ )1/p∗

]πp,q/2

0

+
kq−1

1− kq

∫ πp,q/2

0

cosp
p,q θ

(1− kq sinq
p,q θ )1/p∗ dθ

=
kq−1

1− kq

∫ πp,q/2

0

1
kq ·

1− kq sinq
p,q θ − (1− kq)

(1− kq sinq
p,q θ )1/p∗ dθ

=
1

k(1− kq)
(Ep,q− (1− kq)Kp,q).

This completes the proof. �

Proposition 2.1 now yields Theorem 1.3.
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Proof of Theorem 1.3. We will differentiate the left-hand side of (1.6) and apply
Proposition 2.1. A direct computation shows that

d
dk

(pEp,q(k1/q)Kq,p(k1/p)−qKp,q(k1/q)Eq,p(k1/p))

= p · 1
pk

(Ep,q(k1/q)−Kp,q(k1/q)) ·Kq,p(k1/p)

+ pEp,q(k1/q) · 1
pk(1− k)

(Eq,p(k1/p)− (1− k)Kq,p(k1/p))

−q · 1
qk(1− k)

(Ep,q(k1/q)− (1− k)Kp,q(k1/q)) ·Eq,p(k1/p)

−qKp,q(k1/q) · 1
qk

(Eq,p(k1/p)−Kq,p(k1/p))

= 0.

Therefore the left-hand side of (1.6) is a constant C . Letting k = 0, we obtain

C = p
πp,q

2
πq,p

2
−q

πp,q

2
πq,p

2
=

(p−q)πp,qπq,p

4
,

and the proof is complete. �

REMARK 2.2. For the other type of generalized complete elliptic integrals

Kp,q(k) :=
∫ πp,q/2

0

dθ
(1− kq sinq

p,q θ )1/q∗ =
∫ 1

0

dt

(1− tq)1/p(1− kqtq)1/q∗ ,

Ep,q(k) :=
∫ πp,q/2

0
(1− kq sinq

p,q θ )1/q dθ =
∫ 1

0

(1− kqtq)1/q

(1− tq)1/p
dt,

it is possible to show

Ep,q(k)Kp,q(k′)+Kp,q(k)Ep,q(k′)−Kp,q(k)Kp,q(k′) =
πp,qπs,q

4
, (2.2)

where k′ := (1− kq)1/q and 1/s = 1/p−1/q (πs,q := 2 if p = q ). In case p = q = 2,
this is reduced to Legendre’s relation (cf. [1, Theorem 3.2.7] and [4, Theorem 1.6])

E (k)K (k′)+K (k)E (k′)−K (k)K (k′) =
π
2

.

For generalization of Legendre’s relation including (2.2), see [12] and the references
given there.

For a real number a and a natural number n , we define

(a)n :=
Γ(a+n)

Γ(a)
= a(a+1) · · ·(a+n−2)(a+n−1),
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where Γ denotes the gamma function. We adopt the convention that (a)0 := 1. For
|x| < 1 the series

F(a,b;c;x) :=
∞

∑
n=0

(a)n(b)n

(c)n

xn

n!

is called a Gaussian hypergeometric series. See [1] for more details.

Lemma 2.3. For n = 0,1,2, . . .∫ πp,q/2

0
sinqn

p,q θ dθ =
πp,q

2
(1/q)n

(1/p∗ +1/q)n
.

Proof. Letting sinq
p,q θ = t , we have∫ πp,q/2

0
sinqn

p,q θ dθ =
1
q

∫ 1

0
tn+1/q−1(1− t)−1/pdt =

1
q
B

(
n+

1
q
,

1
p∗

)
.

Moreover,

1
q
B

(
n+

1
q
,

1
p∗

)
=

1
q
B

(
1
q
,

1
p∗

)
B(n+1/q,1/p∗)

B(1/q,1/p∗)

=
πp,q

2
Γ(n+1/q)Γ(1/q+1/p∗)
Γ(1/q)Γ(n+1/q+1/p∗)

=
πp,q

2
(1/q)n

(1/p∗+1/q)n
,

and the lemma follows. �

Proposition 2.4.

Kp,q(k) =
πp,q

2
F

(
1
p∗

,
1
q
;

1
p∗

+
1
q
;kq
)

,

Ep,q(k) =
πp,q

2
F

(
− 1

p
,
1
q
;

1
p∗

+
1
q
;kq
)

.

Proof. Binomial series expansion gives

Kp,q(k) =
∫ πp,q/2

0
(1− kq sinq

p,q θ )−1/p∗ dθ

=
∞

∑
n=0

(−1)n
(−1/p∗

n

)
kqn
∫ πp,q/2

0
sinqn

p,q θ dθ .

Here, using Lemma 2.3 and the fact

(−1)n
(−1/p∗

n

)
=

(1/p∗)n

n!
,

we see that

Kp,q(k) =
πp,q

2

∞

∑
n=0

(1/p∗)n(1/q)n

(1/p∗+1/q)n

kqn

n!
=

πp,q

2
F

(
1
p∗

,
1
q
;

1
p∗

+
1
q
;kq
)

.

The proof of Ep,q(k) is similar, so that we omit it. �
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3. Proof of Theorem 1.2

By properties (ii) and (iii) of binary symmetric mean in the introduction, we may
assume that a � b > 0 and it is enough to consider Mp(1,x) for any x ∈ (0,1] instead
of Mp(a,b) .

The following is a fundamental quadratic transformation of hypergeometric func-
tions. For the proof, see for instance [1, Theorem 3.1.3].

Lemma 3.1. For all x where the series converge

F(a,b;2a;x) =
(
1− x

2

)−b
F

(
b
2
,
b+1

2
;a+

1
2
;

(
x

2− x

)2
)

.

Now we are in a position to prove Theorem 1.2. Let p ∈ P . Then, (p∗)∗ = p > 0
and sinp∗,p θ is defined. Setting

t = x
sinp∗,p θ
cosp∗−1

p∗,p θ

in the right-hand side of

1
Mp(1,x)

= cp

∫ ∞

0

dt

((t p +1)(t p + xp))1/p
,

we have (note that cosp∗−1
p∗,p θ = (1− sinp

p∗,p θ )1/p → 0 as θ → πp∗,p/2 even if p∗ < 1)

1
Mp(1,x)

= cp

∫ πp∗,p/2

0

xcos2(1−p∗)
p∗,p θ dθ(

xp
sinp

p∗,p θ

cosp∗
p∗,p θ

+1

)1/p(
xp

sinp
p∗,p θ

cosp∗
p∗,p θ

+ xp

)1/p

= cp

∫ πp∗,p/2

0

dθ
(xp sinp

p∗,p θ + cosp∗
p∗,p θ )1/p

= cp

∫ πp∗,p/2

0

dθ
(1− (1− xp)sinp

p∗,p θ )1/p

= cpKp∗,p((1− xp)1/p),

where
1
cp

=
∫ ∞

0

dt

(1+ t p)2/p
= Kp∗,p(0) =

πp∗,p
2

.

Thus, Proposition 2.4 yields (1.2), i.e.,

1
Mp(1,x)

= F

(
1
p
,
1
p
;
2
p
;1− xp

)
.
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Applying Lemma 3.1 with a = b = 1/p and x replaced by 1− xp to (1.2), we have
(1.3), i.e.,

1
Mp(1,x)

=
(

2
1+ xp

)1/p

F

(
1
2p

,
1
2p

+
1
2
;
1
p

+
1
2
;

(
1− xp

1+ xp

)2
)

.

Next, recall that 1/Kp(1,x) can be written as (1.1). As in the proof of Proposition
2.4, we obtain

1
Kp(1,x)

=
∫ 1

0
(1− (1− xp)s)−1/p ds

=
∞

∑
n=0

(−1)n
(−1/p

n

)
(1− xp)n

∫ 1

0
sn ds

=
∞

∑
n=0

(1/p)n

(n+1)!
(1− xp)n

= F

(
1,

1
p
;2;1− xp

)
,

which implies (1.4). Applying Lemma 3.1 with a = 1, b = 1/p and x replaced by
1− xp to the last series, we have (1.5), i.e.,

1
Kp(1,x)

=
(

2
1+ xp

)1/p

F

(
1
2p

,
1
2p

+
1
2
;
3
2
;

(
1− xp

1+ xp

)2
)

.

Therefore, we accomplished the proof of Theorem 1.2.

Theorem 1.1 immediately follows from Theorem 1.2. Indeed, we assume p ∈ P .
Comparing the third parameters of (1.3) and (1.5), we can see that

1
Mp(1,x)

≷ 1
Kp(1,x)

⇔ 1
p

+
1
2

≶ 3
2
,

hence
Mp(1,x) ≷ Kp(1,x) ⇔ p ≶ 1.

We leave it to the reader to verify that M1(1,x) = K1(1,x) and M0(1,x) > K0(1,x) .

REMARK 3.2. Motivated by the expression in [2]:

1
Mp(a,b)

=
1

max{a,b}
∞

∑
k=0

k−1

∏
i=0

(1/p+ i)2

2/p+ i
1
k!

[
1−
(

min{a,b}
max{a,b}

)p]k

, (3.1)

Nakamura [8, Remark 3.9] also indicates that 1/Mp(1,x) is nothing but (1.2). On the
other hand, our proof gives (1.2) without deducing (3.1).

REMARK 3.3. Each mean of L(a,b), AG(a,b) and Kp(a,b) has the other char-
acterization than the integral expression. It is of interest to characterize Bhatia-Li’s
mean Mp(a,b) with no use of integral, but we have not been able to do this.
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