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ON STATISTICAL CONVERGENCE OF SEQUENCES
OF FUNCTIONS IN 2-NORMED SPACES

SEVIM YEGUL AND ERDINC DUNDAR

Abstract. Statistical convergence and statistical Cauchy sequence in 2-normed space were stud-
ied by Giirdal and Pehlivan [M. Giirdal, S. Pehlivan, Statistical convergence in 2-normed spaces,
Southeast Asian Bulletin of Mathematics, (33) (2009), 257-264]. In this paper, we get analogous
results of statistical convergence and statistical Cauchy sequence of functions and investigate
some properties and relationships between them in 2-normed spaces.

1. Introduction

Throughout the paper, N denotes the set of all positive integers, R the set of all
real numbers. The concept of convergence of a sequence of real numbers has been
extended to statistical convergence independently by Fast [7] and Schoenberg [23].
Gokhan et al. [12] introduced the concepts of pointwise statistical convergence and
statistical Cauchy sequence of real-valued functions. Balcerzak et al. [2] studied sta-
tistical convergence and ideal convergence for sequence of functions. Baldz et al. [1]
investigated .# -convergence and .# -continuity of real functions. Gezer and Karakug
[11] investigated .# -pointwise and uniform convergence and .#*-pointwise and uni-
form convergence of function sequences and then they examined the relation between
them. Gokhan et al. [13] introduced the notion of pointwise and uniform statistical
convergence of double sequences of real-valued functions. Diindar and Altay [4, 5]
studied the concepts of pointwise and uniformly .# -convergence and .#*-convergence
of double sequences of functions and investigated some properties about them. Further-
more, Diindar [6] investigated some results of .%, -convergence of double sequences of
functions.

The concept of 2-normed spaces was initially introduced by Géhler [9, 10] in the
1960’s. Giirdal and Pehlivan [16] studied statistical convergence, statistical Cauchy se-
quence and investigated some properties of statistical convergence in 2-normed spaces.
Sharma and Kumar [24] introduced statistical convergence, statistical Cauchy sequence,
statistical limit points and statistical cluster points in probabilistic 2-normed space.
Savag and Giirdal [22] concerned with .# -convergence of sequences of functions in
random 2-normed spaces and introduce the concepts of ideal uniform convergence
and ideal pointwise convergence in the topology induced by random 2-normed spaces.
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Sarabadan and Talebi [21] presented various kinds of statistical convergence and .# -
convergence for sequences of functions with values in 2-normed spaces and also de-
fined the notion of .# -equistatistically convergence and study .# -equistatistically con-
vergence of sequences of functions. Sahiner et al. [25] and Giirdal [18] studied .7 -
convergence in 2-normed spaces. Giirdal and Acik [17] investigated .# -Cauchy and
#*-Cauchy sequences in 2-normed spaces. Furthermore, a lot of development have
been made in this area (see [3, 14, 15, 19, 20]).

2. Definitions and notations

Now, we recall the concept of density, statistical convergence, 2-normed space and
some fundamental definitions and notations (See [2, 8, 10, 11, 12, 14, 15, 16, 21, 24]).

If K C N, then K, denotes the set {k € K: k <n} and |K,| denotes the cardinality
of K, . The natural density of K is given by 6(K) = r}grolj |K,|, if it exists.

Clearly, finite subsets have natural density zero and §(K°) = 1 — 8(K) where
K¢=N\K,i.e., the complementof K. If K; C K, and K and K, have natural densities
then 8(K;) < 6(K3). Moreover, if §(K;) = 0(K,) =1, then §(K; NK;y) = 1.

The number sequence x = (xi) is statistically convergent to L provided that for
every € > 0 the set

K=K(e):={keN:|x—L| > ¢}

has natural density zero; in this case, we write st — limx = L.
We note following theorem which is useful in establishing our results.

THEOREM 1. [8] The following statements are equivalent:

(i) x is statistically convergent sequence;

(ii) x is statistically Cauchy sequence;

(iii) x is sequence for which there is a convergent sequence y such that x, = yp,
fora.a. n.

Let X be a real vector space of dimension d, where 2 < d < eo. A 2-norm on X
is a function ||-,-|| : X x X — R which satisfies the following statements:

() |lx,y|| = 0 if and only if x and y are linearly dependent.

(i) [lx, vl = [ly,x[] -

(iii) [lox, yl| = ol [|x, ¥l , o € R.

@iv) [Jx,y +zll < [leyll + [lx. 2]l -

The pair (X,]|-,||) is then called a 2-normed space. As an example of a 2-normed
space we may take X = R? being equipped with the 2-norm ||x,y|| := the area of
the parallelogram based on the vectors x and y which may be given explicitly by the
formula

x,9]| = [xiya —xay1]; x = (x1,%2),y = (y1,¥2) € R%.

In this study, we suppose X to be a 2-normed space having dimension d; where
2<d < oo,
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Let (X,]|.,.]|) be a finite dimensional 2-normed space and u = {uy,---,u,} be a
basis of X . We can define the norm ||.|| on X by

||x]|ee = max{|jx,u;|| : i =1,...,d}.

Associated to the derived norm ||.|l., we can define the (closed) balls B, (x,¢€)
centered at x having radius € by

Bu(x,&) = {y: [lx—yl- <e},

where |[x — y[lo = max{|x —y,u;l[,j=1,...,d}.
Let X be a 2-normed space. A sequence (x,) in X is said to be convergent to
L € X, if for every nonzero z € X,

lim [Jx, — L,z]| = 0.
n—oo

In this case, we write limx, = L and call L the limit of (x,).

Let {x,} be a sequence in 2-normed space (X, |.,.||). The sequence (x,) is said
to be statistically convergent to L, if for every € > 0, the set
{(neN: [l —Lyzl| > e}

has natural density zero for each nonzero z in X, in other words (x,) statistically
converges to L in 2-normed space (X, ||.,.||) if

1
lim —|{n: ||x, — L,z|| > €}| =0,
n—oo g

for each nonzero z in X. It means that for each z € X,

|lxa—L,z|| < €, aa. n.

In this case we write st — lim ||x, z|| = ||L,z|.
N—o0
A sequence (x,) in 2-normed space (X,||.,.]|) is said to be statistically Cauchy

sequence in X, if for every € > 0 and every nonzero z € X there exists a number
N = N(g,z) such that

5({n eN: ||x, —xn,z|| = 8}) =0,
i.e., for each nonzero z € X,
|, —xn,z]| < €, aa. n.

Let X and Y be two 2-normed spaces and assume that functions f,, : X — Y and
f:X —Y are given. The sequence of functions {f; },en is said to be convergentto f
if fu(x) -l f(x) for each x € X. We write f, -l /. This can be expressed by the
formula

My eY)(Vx € X)(Ve > 0)(Ing € N)(Vn = ng)|| fu(x) — f(x),y]| < €.
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3. Main results

In this paper, we study concepts of convergence, statistical convergence and sta-
tistical Cauchy sequence of functions and investigate some properties and relationships
between them in 2-normed spaces.

Throughout the paper, we let X and Y be two 2-normed spaces, {f,}nen and
{gn}nen be two sequences of functions and f,g be two functions from X to Y.

DEFINITION 1. The sequence {f;,}.en is said to be (pointwise) statistical con-
vergent to f, if for every € >0,

lim | {n € N: [ fu() — £(2),2] > €} =

for each x € X and each nonzero z € Y. It means that for each x € X and each nonzero
zeY,
[ fu(x) = f(x),2]| <&, aa n

In this case, we write
st = lim || (), 2]l = £ ()2l or fu =l g
REMARK 1. {f}nen is any sequence of functions and f is any function from X
to Y, then set
{neN:|fulx)—f(x),z]| =€, for each x € X and each z€ Y} =0,

since if z= 0 (0 vektor), I fn(x) — f(x),z]] =0 % € so the above set is empty.

THEOREM 1. Iffor each x € X and each nonzero z €Y,
st = lim || (x), 2| = 1/ ()2l and st = lim [ f(x),z]] = [lg(x),z]),

then || fu(x),z|| = ||gn(x),2|| (i.e., f=g), for each x € X and each nonzero 7 €Y.

Proof. Assume f # g. Then f—g# 6>, so there exists a z € Y such that f, g and
z are linearly independent (such a z exists since d > 2). Therefore, for each x € X and
each nonzero z € Y,
If (x) — g(x),z]| = 2¢&, with &> 0.

Now, for each x € X and each nonzero z € Y, we get
2e = |f(x) —g(x),2ll = [[(f(x) = fu(x)) + (fu(x) —g(x)) 2
< [ x) = g (), 2l + (| fu ) = f (%), 2]
and so
{n:1fulx) —g(x),2ll <&} S {n: | fulx) = flx),2] > €}
But, for each x € X and each nonzero z €Y, d({n: || fu(x) —g(x),z|| < €}) =0, then
contradicting the fact that f,, — I Hys, g. U
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THEOREM 2. [If {g,,}(,,eN) is a convergent sequence of functions such that f, = g,
a.a. n, then { fu}(newy is statistically convergent.

Proof. Suppose that for each x € X and each nonzero z €Y,
S({neN: fulx) #gn(x)}) =0 and lim [|g,(x),z]| = [ f(x), 2|,
then for every € > 0,

{neN:|fulx)— f(x),z]| > €} C {neN:|g.(x) - f(x),z]| > €}
U{n e N: fo(x) # gn(x)}.
Therefore,
({n € N: [ fu(x) = f(x).2l| > €}) < 8({n € N: lgux) = f().2] = €}) (D)
+8({n eN: f,(x) # gn(x)})

Since limy,—w [|gn(x),z|| = || f(x),z]|, for each x € X and each nonzero z € Y. The set
{neN:|gn(x)— f(x),z]| > €} contain finite number of integers and so

6({n e N: |[lgn(x) = f(x),2l| > €}) =0.
Using inequality (1) we get for every € > 0

({neN:|fulx) = f(x),z] > €}) =0,

for each x € X and each nonzero z € Y and so consequently

st = lim || fu(x), 2] = [/ (x), 2| O

THEOREM 3. Let o € R. Iffor each x € X and each nonzero z €Y,

st = Tim || £ (x), 2] = [/ (x),zl| and st = lim [[g,(x), 2]} = [[¢(x). ],
then
(i) st = i || £, (x) + gn(x), 2| = [/ (x) + (x), 2] and
(it) st — lim [0t fo (x), 2| = [|ef (x), 2]

Proof. (i) Suppose that
st = lim [[fu(x),z]| = [1f(x),2l| and st = lim |ga(x),zl| = [|g(x),2]]

for each x € X and each nonzero z € Y. Then, 6(K;) =0 and 6(K;) = 0 where

Ki=Ki(e,2): {neN: |Ifu(v) —£(0).2] > 5 }

and
€
Ko =Ka(e,2): {n e N: [lga() —g().2] > 5 |

for every € > 0, each x € X and each nonzero z€ Y. Let

K=K(e,2) = {n e N: [[(/a(x) + 8a(x)) = (f(x) + 8(x)),2l| > €}
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To prove that 6(K) = 0, it suffices to show that K C K; UK,. Let ng € K then, for
each x € X and each nonzero z €Y,

[(Fg (%) + &1 (x)) = (f (x) + g(x)), 2]l > & 2)

Suppose to the contrary, that ng & Ky UK, . Then, ng & K; and ng € K, . If ny € K, and
ny € K then, for each x € X and each nonzero z € Y,

o () = £(0),2]) < 5 and. [gny () — (), < 5.

2
Then, we get
([ (S () + 8o () = (£ (x) +8(x)) 2l| < ] fag (%) — £ (%), 2]l + [l gy (x) — 8(x), 2]
< g + ; —¢

for each x € X and each nonzero z € Y, which contradicts (2). Hence ny € K1 UK, and
so KCKUK,.
(i) Let o € R (& # 0) and for each x € X and each nonzero z € Y,

st = Tim || £u(x),2l| = [1f (), 2]

5({nemilnm-rmalz 5 1) -0

Therefore, for each x € X and each nonzero z € Y, we have
{neN:{lofu(x) —af(x),zl| > e} = {neN:|a|||fu(x) — f(x),2]| > €}
€
—{nemine -2 > 5 -

Hence, the right hand side of above equality equals 0. Therefore, for each x € X and
each nonzero z € Y, we have

st Tim [lofu(x). 2l = eef ).l O

Then, we get

Now, we give the concept of statistical Cauchy sequence and investigate rela-
tionships between statistical Cauchy sequence and statistical convergence in 2-normed
space.

DEFINITION 2. The sequences of functions { f,} is said to be statistically Cauchy
sequence, if for every € > 0 and each nonzero z € Y, there exist a number k = k(¢,z2)
such that

S({neN:|fux) = filx),zl| = €})=0
foreach x € X i.e.,

1fn(x) = fi(x),2l| <&, aa. n.

THEOREM 4. Let {fy}n>1 be a statistically Cauchy sequence of functions in a
finite dimensional 2 -normed space (X, ||.,.||). Then, there exists a convergent sequence
of functions {gn}tn=>1 in (X,||.,.||) such that f,, = gn, for a.a. n.
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Proof. First note that {f,},>; is a statistically Cauchy sequence of functions in
(X, ||ll=). Choose a natural number k(1) such that the closed ball B} = By (f(1)(x),1)
contains f,(x) fora.a. n and for each x € X . Then, choose a natural number k(2) such
that the closed ball By = By(fi(1) (%), 1) contains f,(x) for a.a. n and for each x € X .

Note that B2 = B. N B, also contains f,(x) for a.a. n and for each x € X. Thus, by
continuing of this process, we can obtain a sequence {B'},,>; of nested closed balls
such that diam (B!") < %m Therefore,

N B2 = ()},
m=1

where £ is a function from X to Y. Since each B! contains f;(x) for a.a. n and for
each x € X, we can choose a sequence of strictly increasing natural numbers {S,, },>1
such that foreach x € X,

1 1
;|{nEN:fn(x) ZB'} < — if n>S,.

Put Ry ={neN:n>S,, fu(x) & BI'} foreach x € X, forall m>1 and R =
Uim—1 Rm- Now, for each x € X, define the sequence of functions {g,},>; as following

[ h(x), if neRrR
gn(x) = { fa(x),  otherwise.

Note that, limg,(x) = h(x), for each x € X. In fact, for each € > 0 and for each
Nn—oo
x € X, choose a natural number m such that € > % > 0. Then, for each n > S, and for
each x € X, g,(x) = h(x) or g,(x) = f,(x) € B" and so in each case

) 1
gn(x) = h(x)ll < diam(By) < 5= -

Since, foreach x € X, {n € N: g,(x) # fu(x)} C{n e N: f,(x) € BI'}, we have

Cn e N g(x) £ fi} < Hn €N L) ¢ BIY <

and so
5({1’1 eN: gn(x) 7é fn(x)}) =0.

Thus, g,(x) = f,(x) fora.a. n and foreach x € X in (X, ||.||). Suppose that {uy,...,us}
is a basis for (X,]|.,.||). Since, for each x € X,

1im [g,(x) = h(x)[|leo = 0 and [|gn(x) = h(x),uil| < [lgn(x) = A(x)]|=
forall 1 <i<d,then we have
Jim [[gn(x) = h(x), zl|. = O,

for each x € X and each nonzero z € X. This completes the proof. [

THEOREM 5. The sequence {f,} is statistically convergent if and only if {f,} is
a statistically Cauchy sequence of functions.
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Proof. Assume that f be function from X to Y and
st _r}i_l};lo”fn(x)vZH = Hf(x)vZH»

for each x € X and each nonzero z € Y and € > 0. Then, for each x € X and each
nonzero z € Y, we have

a.a. n.

) = £0),2]) < 5.

If k = k(e,z) is chosen so that for each x € X and each nonzero z €Y,

1fie(x) = (%), 2]| <

€
5 )
and so we have

170 () = fie),2ll < M fn(x) = £ ()2l + 117 () = frlx) 2]l < ;Jr

€

5 =g, a.a. n.

Hence, {f,} is statistically Cauchy sequence of functions.

Now, assume that {f,} is statistically Cauchy sequence of function. By Theorem
4, there exists a convergent sequence {gy },en from X to Y such that f, = g, for a.a.
n. By Theorem 2, we have

st —lim || f,,(x),z]| = || £(x),z]|

for each x € X and eachnonzeroz €Y. U
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