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HOMOGENEOUS BETA-TYPE FUNCTIONS

MARTIN HIMMEL AND JANUSZ MATKOWSKI

Abstract. All beta-type functions, i.e. the functions By : (0,e<:)2 — (0,0) of the form

Fx)f)
flx+y)

for some f: (0,00) — (0,0), which are p-homogeneous, are determined. Applying this result,
we show that a beta-type function is a homogeneous mean iff it is the harmonic one. A refor-
mulation of a result due to Heuvers in terms of a Cauchy difference and the harmonic mean is
given.

Bf (x7y) =

1. Introduction
For a given f: (0,00) — (0,0), the function By : (0,0)* — (0,00) defined by

f)fB)
flx+y)’

is called the beta-type function, and f is called its generator ([7]). The notion the
beta-type function arises from the well-known relation between the Euler Beta function
B: (0,00)> — (0,0) and the Euler Gamma function I': (0,e0) — (0, o)

T Q)
m, x7y>0.

By (x,y) = x,y >0,

B(xvy) =

Given p € R, we examine when the beta-type function By is p-homogeneous, i.e.
when
By (tx,ty) =t"By (x,y), x,y>0.

Theorem 1, the main result, says that, under some regularity assumptions of the gen-
erator f, the beta-type function is p-homogeneous if, and only if, there exist a,b > 0
such that f (x) = bxa* for all x > 0. As a corollary we obtain that a beta-type function
is a homogeneous pre-mean if, and only if, there exists @ > 0 such that f (x) = 2xa"
for all x > 0, or, equivalently, that By is the harmonic mean, that is By = H, where

2xy

H(xvy):m7 X,y>0~
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A related companion of the beta-type function is the Cauchy difference Cy : (0, <><>)2 —
R defined by

Ce(x,y) =glx+y)—g(x)—g)
for a function g : (0,00) — R. The relationship
By = expo (—Ciogor)

allows to reformulate Theorem 1 in terms of logarithmical homogeneity of the Cauchy
difference (Corollary 3).

At the end we remark that Heuvers result [4] on a characterization of logarith-
mic functions can be reformulated in terms of the Cauchy difference and the harmonic
mean.

2. Main result

THEOREM 1. Let a function f: (0,00) — (0,00) be continuous or Lebesgue mea-
surable. Then the following conditions are equivalent:
(i) the beta-type function By is p-homogeneous, i.e.

By (tx,ty) =t"Bs (x,y),  x,y,1>0;
(ii) there exist a,b € (0,e0) such that
f(x)=bxa*, x>0
and

p
xy
Brxy)=b(-2) ., xy>o.
7 (x,) (x y) X,y

Proof. Assume (i) holds. Hence, by the definition of By, we have

) f@y) _ pfr0) v, 0 2.1)

ft(x+y)) flty)’

which can be written in the form

flxty) _ fx) f(y)

i) ey o
For every fixed 7 > 0 define ¢, : (0,00) — (0,°0) by
A
o (x):= PF0) x>0.

Thus, from (2.2), for arbitrary fixed # > 0, it holds

o(xty)=o e (y), xy>0,
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stating that ¢, is an exponential function. Hence (see, for instance, [1] p. 39), for every
t > 0, there exists a unique additive function ¢; : R — R such that

o (x)=e*™ x>0
From the definition of ¢, we have
GO f(x) = f(tx), x>0,
Since the right hand side is symmetric in x and ¢, so is the left hand side; thus
e F(1) = f(xt) = f(tx) = %P f(x),  x,0>0.
Setting here r = 1 gives
M) =f(x) = e Wap (1), x>0,
and as, by assumption, f is positive, it follows that
o (x)=0, x>0.

and, consequently,
F@) =f(1)xPexD x>0,

Putting, for convenience, A : (0,00) — R,
Ax):=o(l), x>0,

we have
fx) =f0)xP, x>0 (2.3)

Inserting this into (2.1), we obtain,

ﬂUO)MWVwap“”_tﬂUﬂe F(1)yrett)
F) [ (x4y)P et 7 f (1) (x+y)P ety 7

x,y,t >0,
that reduces to
A FA) =21 (Hy) = AWFAG)=ALHY) 3 45 0,

whence

Ax)+A(y) = A(t(x+y) =A(x)+A () = A (x+y), x>0
Writing this in the form

Al(x+y) =A(r+y) =2 () =A ()] +[A(ty) =2 ()], x>0,

we conclude that, for any ¢ > 0, the function ® = @ : (0,00) — R, defined by

ox):=A(tx)—A(x), x>0, (2.4)
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is additive. From (2.3) and the assumed regularity of f we get that ® is continuous or
Lebesgue measurable. Thus, @, being additive and continuous or measurable, is of the
form ([6], p. 129, see also [1])

and hence, by (2.4),
Ax)=A(x)=A@)—A(1))x, x>0,
whence
Atx)=A(x)+(A(r)—A(1)x, x,0>0.
The symmetry in ¢ and x of the left hand side implies that
AX)+A@E)=A(1)x=A1)+ (A (x)—A (1)1, x,t >0,

whence
AX)=6)+A(1)t=A@)(1—x)+A(1)x, x,t > 0.
Subtracting A (1) from both sides yields
AX)A=0)+A(M)t—A () =A)1—x)+A(1)x—A(1), x,t >0,
whence
Ax)A=0)—A()(1=)=2)(1—x)—A(1)(1=x), x>0,
and, consequently,

A)—A) A —A()

x>0, x#1#y.

l—x 1—¢t
It follows that there exists ¢ € R such that
Alx)—2(1)

=—c, x>0,x#1,
1—x

whence,
AX)=cx=1)+A(1), x>0,
and we obtain
Alx)=cx+d, x>0,
where d := A (1) — c. Inserting this function A into (2.3), we obtain

F)=f1)ela? (), x>0,

whence, setting

we get
fx)=bxPa*, x>0,

w \?
Br(x,y)=b|— ) , x,y>0,
7 (x,y) (x y) y

which proves (ii). The implication (ii) = (i) is obvious.

and
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3. Applications to pre-means
DEFINITION 1. Let I C R be an interval and M : I? — R. The M is reflexive, if
M(x,x)=x, x€lI;

M is called a pre-mean in I ([8]), if it is reflexive and M (12) clI,
M is called a mean in I, if

min (x,y) <M (x,y) < max(x,y), x,y€l.

REMARK 1. If M : I> — R is reflexive, then I C M (I?); so a reflexive function
is a pre-mean if, and only if, M (I*) =1.

REMARK 2. Obviously, every mean is a pre-mean, but, in general, not vice versa.
Indeed, the function M : (0,0)> — (0,e0) defined by

262 +y?

M (x,y) = T2y

is a pre-mean. Since M (2,1) =3 ¢ [2,1] the function is not a mean. So M is not
increasing in both variables because, otherwise, it would be a mean.

REMARK 3. If M : (O,<><>)2 — R is reflexive and, for some p € R, p-homogenous,
then p=1.

COROLLARY 1 Let f: (0,00) — (0,00) be a continuous function. Then the following
conditions are equivalent:

(i) the beta-type function By is a homogeneous pre-mean;

(ii) there exists a € (0,0) such that

f(x) =2xa*, x>0; (3.1

(iii) the beta-type function coincides with the harmonic mean, i.e.

2xy

Br(x,y) = ity x,y > 0.

Proof. Assume (i). By Theorem | and remark 3, its generator f is of the form
f(x)=bxa*, x>0,

for some a,b € (0,00). Since By is reflexive, that is By (x,x) = x for all x € (0,0).
Substituting here x = 2 and using Theorem 1 (ii), yields

f@Qf@) _b22_,
f2+2) 242 7

2=B(2,2) =



64 MARTIN HIMMEL AND JANUSZ MATKOWSKI

whence we get (3.1), which proves (ii).

Assume (ii). From (3.1) and the definition of B, we get (iii).

The implication (iii) = (i) is obvious.

Because every homogeneous quasi-arithmetic mean is a power mean ([2], p. 249),
our result implies the following

COROLLARY 2 A homogeneous beta-type function is a quasi-arithmetic mean if, and
only if, it is the harmonic mean.

For another result connecting harmonic mean and the Euler Gamma function see

[3].

4. Cauchy differences and a corollary

Applying our main result, we obtain the following

COROLLARY 3 Let g: (0,00) — R be an arbitrary continuous function and let p € R.
The following conditions are equivalent:
(i) the Cauchy difference is plogt-homogeneous, that is

Cg(txyt}’) :Cg (x7y)+p10gt7 xayat >O’ (41)
(ii) there exist ¢,d € R such that
glx)=cx+d—plogt, x>0

and

P
Cq (x,y) =log ()chyy) —d, x,y>0.

Proof. Setting f := expog, we observe that condition (i) is equivalent to
By (tx,ty) =t PBf(x,y), x,y,t>0,
since, using the definition of beta-type function, we have, for all x,y > 0,
e8(1)+8(1y)=g(t(x+y)) — ;=P p8(¥)+2(y)—glx+y)
Taking the logarithm of both sides, we indeed obtain
—Cy (tx,ty) =logt ™’ —C, (x,y), x,y>0,

and thus g satisfies (4.1).
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By Theorem 1, there exist a,b >0
fx)=bx"ta", x>0.
Thus, by the definition of f, we get, for all x > 0,
g (x) =logb+ plogx+xloga;
whence, putting ¢ := loga and d :=logb, we obtain,
g(x) =cx+d+plogx, x>0,
and consequently, for all x,y >0,

Co(x,y) =gx+y)—gx)—g)

P
= log (x_y) —d,
x+y

which proves the implication (i) = (if).

The second implication is easy to verify.

In connection with Cauchy differences and harmonic mean, let us note that Heuvers
result [4] (see also Kannappan [5], p. 31) can be reformulated as

REMARK 4. The Cauchy difference of a function f : (0,00) — R satisfies the
functional equation
2

m) 5 X,y > 0 (42)

Cr(x.9) =f(

if, and only if, f is a logarithmic function, i.e.

fy)=f@)+f0), xy>0.
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