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ON AN INTEGRAL INEQUALITY OF M. A. MALIK

ABDULLAH MIR AND AJAZ WANI

Abstract. In this paper, we shall prove some L" inequalities for the polar derivative of a poly-
nomial having zeros in |z| < k < 1 and thereby obtain generalizations and refinements of an
integral inequality due to Malik [16]. Besides, we shall also provide an alternative proof of a
result due to Dewan et al. [9] which is independent of Laguerre’s theorem.

1. Introduction

Let P(z) be a polynomial of degree n and P'(z) be its derivative. Then according
to the well-known Bernstein’s inequality [6] on the derivative of a polynomial, we have

max|P'(z)| < nmax |P(z)|. (1.1
|z|=1 |z|=1

Equality holds in (1.1) if and only if P(z) has all its zeros at the origin.
For the class of polynomials P(z) having all zeros in |z| < 1, Turdn [20] proved
that
max |P(z)] > = max |P(z)]|. (1.2)
lz2]=1 2 |z|=1
Inequality (1.2) was refined by Aziz and Dawood [2] and they proved under the
same hypothesis that

max |P(2)| > 3 {max |P(2) |+ min P2} (1.3)

Both the inequalities (1.2) and (1.3) are best possible and become equality for
polynomials P(z) = az"+ 8 where |a| = |B].
As an extension of (1.2), it was shown by Malik [15] that if P(z) has all its zeros
in |z] <k, k<1, then
n
max |P'(z)| > —— max |P(z , 1.4
max |P'(2)| > 17 max P3| (14)
where as the corresponding extension of (1.3) and a refinement of (1.4) was given by
Govil [12], who under the same hypothesis proved that

n 1
POI> 7 P@)|+ oy min|P(2)] ¢ 15
P @l 1+k{2}a’f @)+ gy min| <z>|} (15)
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In the literature, there already exist some refinements and generalizations of all the
above inequalities, for example see Aziz and Shah [5], Dewan et al. [8], [10], Govil et
al. [13] etc.
As a generalization of (1.5) to Lucanary polynomials, Aziz and Shah [5] (see
also Dewan et al. [10]) proved that if P(z) = a,2"+ Y ap—07" Y, 1 <u<n,isa
v=p
polynomial of degree n having all zeros in |z| < k, k < 1, then

1
max ()] > {5z {max P& + i min ) (1)

For u =1, inequality (1.6) reduces to inequality (1.5).
Let Dy P(z) denotes the polar derivative of the polynomial P(z) of degree n with
respect to the point ¢. Then

Do P(z) =nP(z) + (e —2)P'(z).

The polynomial DyP(z) is of degree at most n— 1 and it generalizes the ordinary
derivative in the sense that
Dy P
lim {"‘7(2)} =P(2).
O —00 o

Aziz and Rather [4] extended (1.4) to the polar derivative of a polynomial and
proved that if all the zeros of P(z) lie in |z| <k, k < 1, then for every complex number
o with |o| >k,

lo| —k
max |DoP(z)| > max |P(z)]. 1.7
max |DoP(2)] > n( Tk )‘Zlg\ (2)] (1.7)

Recently, several papers where devoted by different authors to polynomials with
polar derivatives (for example see [7], [9], [11], [17], [21] etc). In fact in 2009, Dewan
etal.[9], extended (1.6) to the polar derivative of a polynomial and proved that if P(z) =

a, 7"+ Z an—7"" Y, 1 < u < n, is a polynomial of degree n having all its zeros in

lz| <k, k 1, and « is a complex number with |a| > k*, then

max|DaP(2)] > /n<|a‘—ku> l|= 1‘P( )| +n (%)m

lz|=1 1+ kM (I 4+kH)
K — Ay Ay —kH
Pu P L.
+"( 11kt m XIP@)] <k"(l+kﬂ)>m’ (18

where m = min||_ |P(z)| and

A n<|an - kﬂ">k2ﬂ + dan |kt 19)
u= : ’
n(janl = # ) K1+ ey
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Malik [16] obtained an L" analogue of (1.2) in the sense that the right-hand side of
(1.2) is replaced by a factor involving the integral mean of |P(z)| on |z] = 1. In fact,
he proved that if P(z) is a polynomial of degree n having all its zeros in |z] < 1, then
foreach r > 0,

1

2 % 2 H
n{/|P(ei9)’d9} < {/|1+ei9’d9} max |P/(3)|. (1.10)
na
0 0

The corresponding extension of (1.4), which is also a generalisation of (1.10) was ob-
tained by Aziz [1] who proved that if P(z) is a polynomial of degree n having all its
zeros in |z| < k where k < 1, then for each r > 0,

27 r % 27 %
n{/ de} < {/|l+kei9’d0} . (L11)
0 0

More recently Rather et al. [19] extended (1.11) to the polar derivative in the sense
that the ordinary derivative P’(z) is replaced by the polar derivative Dy P(z) of P(z).
More precisely they proved:

P(eie)

THEOREM A. If P(z) is a polynomial of degree n having all its zeros in |z] <k
where k < 1, then for every o € C with |o| > k, and each r > 0,

2r r % 2r
n(|a|—k){/ de} < {/1+kef9|’de} . (1.12)
0 0

The result is best possible and equality holds in (1.12) for P(z) = (z—k)".

P(ei(-)) v
Do P(ei?)

As a generalization of Theorem A they also proved the following result.

THEOREM B. If P(z) = apd"+ Y an—v2" %, 1 < u < n, is a polynomial of
V=

u
degree n having all its zeros in |z| <k, k < 1, then for oo € C with |ot| > k", and for

each r >0,
2 r
n(oc—k“){/ d@}

0
For u =1, Theorem B reduces to Theorem A.

1

2n m
< {/1+kﬂe""’de} NRE)
0

~ =

P('?)
Do P(ei?)

In the same paper Rather et al. [19] proved the following more general result.

n
THEOREM C. If P(z) = apd"+ Y an—v7" %, 1 < u < n, is a polynomial of
v=p
degree n having all its zeros in |z| < k, k< 1, then for o, B € C with |ot| > k*,
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|B| <1 and for each r > 0,

27
n(a—k“>{/
0

where m = min,_; |P(z)].

P(e) + B s

[DaP(e)] — 7

¥ 2 ¥
de} g{/1+k“eie|’d9} L (L14)
0

In this paper, we shall prove some L™ inequalities for polynomials with polar
derivative. We shall first prove a result that generalizes as well as refines Theorems
A and B. We shall also present a more general result which not only provides an al-
ternative proof of inequality (1.8) independent of Laguerre’s theorem but also yields a
refinement of it.

2. Main results

Firstly, we shall prove the following generalization and refinement of inequalities
(1.12) and (1.13).

THEOREM 1. If P(z) = a,7" + Z an—7"Y, 1 < u < n, is a polynomial of de-
gree n having all its zeros in |z| < k k 1, then for o € C with || > sy, and for

each r >0,
2n r % 2n %
n(a—su){/ dO} < {/l—l-sueie’de} , (2.1
0 0

P(ei(-))

where

lan k28 4 K
Hlan K+ g

Sy = (2.2)

REMARK 1. By Lemma 1, we have % a';—”‘ < k*, which shows s, < k*, there-

fore, Theorem 1 holds for every oo € C with |ot| > k* as well. Using this and the fact
that

T 2r
/\1+ue""\’de < /\1+ve""\’d9 2.3)
0 0
for 0 < u < v, it easily follows that (2.1) is a refinement of (1.13).

REMARK 2. For u =1, Theorem 1 provides a refinement of Theorem A.
Instead of proving Theorem 1, we prove the following more general result.
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n
THEOREM 2. If P(z) = ayZ"+ Y, an—v7" Y, 1 < u < n, is a polynomial of de-
v=p
gree n having all its zeros in |z| <k, k<1, then for o, B € C with |o| > Ay, |B] <1

and for each r > 0,
r % 2 %
de} < {/|1+Aueie|’d9} ;24

2r
n(a—Am{/
0 0

where m = miny_ |P(z)| and Ay is defined by (1.9).

P(e) + B

A
Do P(e®)] — =

Since for every a € C, we have |[DoP(e"?)| < max|,_; [DoP(z)], 0 < 6 <27,
the following result easily follows from Theorem 2.

COROLLARY 1. If P(z) = anz" + Z an—v7"7Y, 1 < u < n, is a polynomial of

degree n having all its zeros in |z| < k k 1, then for o, B € C with || > Ay,
|B| < 1 and for each r > 0,

2 %
n<|a|—Au>{/ P(e®)+ BTt de}
0
2 i A
< {/|1+Auei9’d9} {T?i)fwap( )| - “} 2.5)
0

where m = miny | _ |P(z)| and Ay is defined by (1.9).

If we let r — oo in (2.5) and choose argument of 3 with || = 1, we obtain the
following refinement of (1.8).

COROLLARY 2. If P(z) = apZ"+ Y ay—v7" %, 1 < u < n, is a polynomial of
v=u

degree n having all its zeros in |z| <k, k <1, then for every o € C with |a| > Ay,

lo| — Ay nAy [ 1+]o]
max |DyP(z)| > n| ———= | max|P(z)|+ —| ——— |m
max |DaP(2)] ( 114, max |P()+ 2 114,

which is equivalent to

n(|o| —kH) n(la|+1)
max |DoP(z)| > ———— max |P —
|z\a’f| P> = |z\i’1‘| (Z)|+k"*ﬂ(1+k“)m

P .~ - 7
+"< 1+ kM )E‘a’f| O i)™

n(k — Ay) (| — Ay) m
(1+kff)(1+A,J)u {E‘a’ﬂP(Z) __}’ (2.6)
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where m = miny_ |P(z)| and Ay is defined by (1.9). The result is best possible and
equality in (2.6) holds for P(z) = (Z* + k") i , where n is a multiple of L.

By Lemma 3, A, < k", therefore, Corollary 2 holds forevery a € C with |of| > k*
as well.

In fact, excepting the case when k=1 or & (Ilj"’:“,,l, ) = k", the bound obtained in

Corollary 2 is always sharper than the bound obtained in (1.8) and for this it needs to

show that
n(kt —Ap)(lof —Ay) m
(T+R) (1 5+A) {EE’;'P@' kn}>0- @7

In view of inequality (3.3) of Lemma 3, the the above inequality becomes equiva-
lent to

m
P(Z)| > —. 2.8
ﬁgl @)= 5 (2.8)

Now using (1.1) in the Lemma 2, we get

/ mnA
10 (2)] < Agnmax |P(z)] — 2 — nA,{ max |P(z)] — = b,
|z|=1 k" lz|=1 k"
and hence (2.8) holds.
The following interesting refinement of (1.6) is obtained from Corollary 2 by di-
viding both sides of (2.6) by |ct| and letting |ot| — oo,

n
COROLLARY 3. If P(z) = a7+ Y ay—v7"" Y, 1 < U < n, is a polynomial of
v=p
degree n having all its zeros in |z) <k, k< 1, then

n m n(k* —Ay) m
P(z)| > P u P\
e 1+"“{Iﬁi}f| (Z)Hk””}+(1+kﬂ>(1+Au>{lﬁi’f ) k"}

where m = miny_ |P(z)| and Ay is defined by (1.9). The result is best possible and
equality in (2.9) holds for P(z) = (Z* + k") i , where n is a multiple of L.

Several other interesting results easily follow from Theorem 2. Here, we mention
a few of these. If we take B = 0 in (2.4), we obtain the following result which gives
Theorem 1 as a special case.

n
COROLLARY 4. If P(z) = a7+ Y ay—v7"" Y, 1 < U < n, is a polynomial of
v=p
degree n having all its zeros in |z| < k, k < 1, then for every o€ C with |ot| > Ay and
foreach r > 0,

2n

n(|a|—Au){/

0

7

r % 2r
de} < {/1+Aﬂei9’d9} . (2.10)
0

P(ei(-))

D P(e)] — u
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where m = miny_ |P(z)| and Ay is defined by (1.9).

Taking § = 0 and dividing both sides of (2.5) by || then letting |o| — oo, we
obtain the following generalization and refinement of (1.10).

n
COROLLARY 5. If P(2) = ap?"+ Y ay—v7"" Y, 1 < U < n, is a polynomial of
v=p

degree n having all its zeros in \z| k, k <1, then for each r > 0,
1

{/|P 0 ’de} {/1+A el‘“de}r?@xw’( ), 2.11)

where Ay is defined by (1.9).

The result is best possible and equality in (2.11) holds for P(z) = (z* +k“)/%,
where n is a multiple of u .

3. Lemmas

We need the following lemmas to prove the theorems.

n
LEMMA 1. If P(z) = a7+ Y an—v7" Y, 1 < i < n, is a polynomial of degree

v=p
n having all its zeros in |z| <k, k< 1, and Q(z) = z"P(%), then on |z] =1
10/ (2)] < sulP'(2)], (3.1)
and
H | an— “‘ < kﬂ
n

where s, is defined by (2.2).

The above lemma is due to Aziz and Rather [3].

LEMMA 2. If P(z) = ayZ"+ Y, an—v7""", 1 < 1 < n, is a polynomial of degree

v=p

n having all its zeros in |z| <k, k<1, and Q(z) =z"P(%), then on |z| = 1
nmA

10'(2)] < AulP'(2)| = =5,

where m = miny_ |P(z)| and A, is defined by (1.9).

The above lemma is due to Mir et al. [18].

(3.2)

LEMMA 3. If P(z) = a, 7" + Z an—v7"V, 1 < u < n, is a polynomial of degree
n having all its zeros in |z| <k, k < 1 then
Ay <KH, (3.3)
where Ay is defined by (1.9).

The above Lemma is due to Dewan et al. [9].
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4. Proofs of theorems

Proof of Theorem 2. Since P(z) has all its zeros in |z| <k, k < 1, it follows from
Lemma 2 that for |z] =1,

mA
Q@)+ <AulP (). (.1)
Also Q(z) = @ then P(z) = z”Q(%) and it can be easily verified that for |z] =1,
Q'(2)] = InP(2) = 2P (z)] (4.2)
and
P'(2)] = nQ(2) =20/ (2)I- (4.3)
Using (4.3) in (4.1), we get for |z| =1
n—1
Q@)+ B | < /(o) +
< AulP'(2)]
= Au[nQ(z) —z0'(z)]- (4.4)

Now for every o € C with |a| > Ay, we have

IDoP(z)| = |od]|[P'(2)] - 1Q'(2)]
> |a]|P'(2)| = |nP(z) = 2P'(z)],

which on using (4.2) and Lemma 2 gives for |z| =1,
IDoP(2)] 2 ol |P'(z)] - 1Q'(2)]

mnA
> (Ja| —Ap) P ()| + —+,

IDaP(2)] — 2t > (jo = A) P (2)]. 4.5)

Since P(z) has all its zeros in |z] < k, k < 1, it follows by Gauss-Lucas theorem that
all the zeros of P'(z) also lie in |z| < k, k < 1. This implies that the polynomial

Zn—l@ =nQ(z) —z0'(2)

has all its zeros in |z]| > % > 1. Therefore, it follows from (4.4) and the Maximum
Modulus Principle that the function

Z(Q/(Z) _|_EmnA}i,nz"*1 )
Au(nQ(z) —20'(z))

W(z) =
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is analytic for |z] < 1 and [W(z)| <1 for |z| < 1. Furthermore, W(0) = 0 and so the
function 14 A,W(z) is subordinate to the function 1+ Az for |z| < 1. Hence by a
well-known property of sub-ordination [14], we have for each r > 0,

2 2r

/‘1+A,1W(eie)’rd6 </‘1+A“eie’rd6. 4.6)
0 0
Now
n(0()+B22)
AR = o0
and
P(2)| = z"*lp/(%)‘ — 1n0(z) — 20/(2)| for || = 1.

Therefore for |z| =1,

mA,JZ

1|0 + B | = 1+ AW @) IP (2).

Equivalently,

fop(L) 1B < 1 A 0)IP @)

This implies
n|P() W)IP(2)] for [ = 1. (47)

From (4.5) and (4.7), we deduce that for |o:| > Ay and r > 0,

(el /\ e
‘D Pe’e mnAu

2
6 < /’1+AﬂW(ei6)’rd9.
0

which gives by using (4.6) that

19 r 2 r
+ n 9|r
n(lo] —Ay) {/’ ) +h% ’;nnA rde} < {/|1+Aﬂel9; de} .
Do P(el®)| — = ;

This completes the proof of Theorem 2. [

REMARK 3. The proof of Theorem 1 follows along the lines of the proof of The-
orem 2, by applying inequality (3.1) of Lemma 1 instead of Lemma 2.
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