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ON AN INTEGRAL INEQUALITY OF M. A. MALIK

ABDULLAH MIR AND AJAZ WANI

Abstract. In this paper, we shall prove some Lr inequalities for the polar derivative of a poly-
nomial having zeros in |z| � k � 1 and thereby obtain generalizations and refinements of an
integral inequality due to Malik [16]. Besides, we shall also provide an alternative proof of a
result due to Dewan et al. [9] which is independent of Laguerre’s theorem.

1. Introduction

Let P(z) be a polynomial of degree n and P′(z) be its derivative. Then according
to the well-known Bernstein’s inequality [6] on the derivative of a polynomial, we have

max
|z|=1

|P′(z)| � nmax
|z|=1

|P(z)|. (1.1)

Equality holds in (1.1) if and only if P(z) has all its zeros at the origin.
For the class of polynomials P(z) having all zeros in |z| � 1, Turán [20] proved

that
max
|z|=1

|P′(z)| � n
2

max
|z|=1

|P(z)|. (1.2)

Inequality (1.2) was refined by Aziz and Dawood [2] and they proved under the
same hypothesis that

max
|z|=1

|P′(z)| � n
2

{
max
|z|=1

|P(z)|+ min
|z|=1

|P(z)|}. (1.3)

Both the inequalities (1.2) and (1.3) are best possible and become equality for
polynomials P(z) = αzn + β where |α| = |β | .

As an extension of (1.2), it was shown by Malik [15] that if P(z) has all its zeros
in |z| � k , k � 1, then

max
|z|=1

|P′(z)| � n
1+ k

max
|z|=1

|P(z)|, (1.4)

where as the corresponding extension of (1.3) and a refinement of (1.4) was given by
Govil [12], who under the same hypothesis proved that

max
|z|=1

|P′(z)| � n
1+ k

{
max
|z|=1

|P(z)|+ 1
kn−1 min

|z|=k
|P(z)|

}
. (1.5)
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In the literature, there already exist some refinements and generalizations of all the
above inequalities, for example see Aziz and Shah [5], Dewan et al. [8], [10], Govil et
al. [13] etc.

As a generalization of (1.5) to Lucanary polynomials, Aziz and Shah [5] (see

also Dewan et al. [10]) proved that if P(z) = anzn +
n
∑

υ=μ
an−υzn−υ , 1 � μ � n , is a

polynomial of degree n having all zeros in |z| � k , k � 1, then

max
|z|=1

|P′(z)| � n
1+ kμ

{
max
|z|=1

|P(z)|+ 1
kn−μ min

|z|=k
|P(z)|

}
. (1.6)

For μ = 1, inequality (1.6) reduces to inequality (1.5).
Let DαP(z) denotes the polar derivative of the polynomial P(z) of degree n with

respect to the point α . Then

DαP(z) = nP(z)+ (α − z)P′(z).

The polynomial DαP(z) is of degree at most n− 1 and it generalizes the ordinary
derivative in the sense that

lim
α→∞

{
DαP(z)

α

}
= P′(z).

Aziz and Rather [4] extended (1.4) to the polar derivative of a polynomial and
proved that if all the zeros of P(z) lie in |z| � k , k � 1, then for every complex number
α with |α| � k ,

max
|z|=1

|DαP(z)| � n
( |α|− k

1+ k

)
max
|z|=1

|P(z)|. (1.7)

Recently, several papers where devoted by different authors to polynomials with
polar derivatives (for example see [7], [9], [11], [17], [21] etc). In fact in 2009, Dewan
et al.[9], extended (1.6) to the polar derivative of a polynomial and proved that if P(z) =

anzn +
n
∑

υ=μ
an−υzn−υ , 1 � μ � n , is a polynomial of degree n having all its zeros in

|z| � k , k � 1, and α is a complex number with |α| � kμ , then

max
|z|=1

|DαP(z)| � n
( |α|− kμ

1+ kμ

)
max
|z|=1

|P(z)|+n
( |α|+1

kn−μ(1+ kμ)

)
m

+n
(kμ −Aμ

1+ kμ

)
max
|z|=1

|P(z)|+n
( Aμ − kμ

kn(1+ kμ)

)
m, (1.8)

where m = min|z|=k |P(z)| and

Aμ =
n
(
|an|− m

kn

)
k2μ + μ |an−μ|kμ−1

n
(
|an|− m

kn

)
kμ−1 + μ |an−μ|

. (1.9)
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Malik [16] obtained an Lr analogue of (1.2) in the sense that the right-hand side of
(1.2) is replaced by a factor involving the integral mean of |P(z)| on |z| = 1. In fact,
he proved that if P(z) is a polynomial of degree n having all its zeros in |z| � 1, then
for each r > 0,

n

{ 2π∫
0

|P(eiθ )|rdθ

} 1
r

�
{ 2π∫

0

|1+ eiθ |rdθ

} 1
r

max
|z|=1

|P′(z)|. (1.10)

The corresponding extension of (1.4), which is also a generalisation of (1.10) was ob-
tained by Aziz [1] who proved that if P(z) is a polynomial of degree n having all its
zeros in |z| � k where k � 1, then for each r > 0,

n

{ 2π∫
0

∣∣∣∣∣ P(eiθ )
P′(eiθ )

∣∣∣∣∣
r

dθ

} 1
r

�
{ 2π∫

0

|1+ keiθ |rdθ

} 1
r

. (1.11)

More recently Rather et al. [19] extended (1.11) to the polar derivative in the sense
that the ordinary derivative P′(z) is replaced by the polar derivative DαP(z) of P(z) .
More precisely they proved:

THEOREM A. If P(z) is a polynomial of degree n having all its zeros in |z| � k
where k � 1 , then for every α ∈ C with |α| � k , and each r > 0 ,

n(|α|− k)

{ 2π∫
0

∣∣∣∣∣ P(eiθ )
DαP(eiθ )

∣∣∣∣∣
r

dθ

} 1
r

�
{ 2π∫

0

|1+ keiθ |rdθ

} 1
r

. (1.12)

The result is best possible and equality holds in (1.12) for P(z) = (z− k)n .

As a generalization of Theorem A they also proved the following result.

THEOREM B. If P(z) = anzn +
n
∑

υ=μ
an−υzn−υ , 1 � μ � n, is a polynomial of

degree n having all its zeros in |z| � k , k � 1 , then for α ∈ C with |α| � kμ , and for
each r > 0 ,

n(|α|− kμ)

{ 2π∫
0

∣∣∣∣∣ P(eiθ )
DαP(eiθ )

∣∣∣∣∣
r

dθ

} 1
r

�
{ 2π∫

0

|1+ kμeiθ |rdθ

} 1
r

. (1.13)

For μ = 1 , Theorem B reduces to Theorem A.

In the same paper Rather et al. [19] proved the following more general result.

THEOREM C. If P(z) = anzn +
n
∑

υ=μ
an−υzn−υ , 1 � μ � n, is a polynomial of

degree n having all its zeros in |z| � k , k � 1 , then for α, β ∈ C with |α| � kμ ,
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|β | � 1 and for each r > 0 ,

n(|α|− kμ)

{ 2π∫
0

∣∣∣∣∣ P(eiθ )+ β m
kn−μ

|DαP(eiθ )|− mn
kn−μ

∣∣∣∣∣
r

dθ

} 1
r

�
{ 2π∫

0

|1+ kμeiθ |rdθ

} 1
r

, (1.14)

where m = min|z|=k |P(z)| .
In this paper, we shall prove some Lr inequalities for polynomials with polar

derivative. We shall first prove a result that generalizes as well as refines Theorems
A and B. We shall also present a more general result which not only provides an al-
ternative proof of inequality (1.8) independent of Laguerre’s theorem but also yields a
refinement of it.

2. Main results

Firstly, we shall prove the following generalization and refinement of inequalities
(1.12) and (1.13).

THEOREM 1. If P(z) = anzn +
n
∑

υ=μ
an−υzn−υ , 1 � μ � n, is a polynomial of de-

gree n having all its zeros in |z| � k , k � 1 , then for α ∈ C with |α| � sμ , and for
each r > 0 ,

n(|α|− sμ)

{ 2π∫
0

∣∣∣∣∣ P(eiθ )
DαP(eiθ )

∣∣∣∣∣
r

dθ

} 1
r

�
{ 2π∫

0

|1+ sμeiθ |rdθ

} 1
r

, (2.1)

where

sμ =
n|an|k2μ + μ |an−μ|kμ−1

n|an|kμ−1 + μ |an−μ| . (2.2)

REMARK 1. By Lemma 1, we have μ
n

∣∣∣ an−μ
an

∣∣∣� kμ , which shows sμ � kμ , there-

fore, Theorem 1 holds for every α ∈ C with |α| � kμ as well. Using this and the fact
that

2π∫
0

|1+ μeiθ |rdθ �
2π∫
0

|1+ veiθ |rdθ (2.3)

for 0 � μ � v , it easily follows that (2.1) is a refinement of (1.13).

REMARK 2. For μ = 1, Theorem 1 provides a refinement of Theorem A.
Instead of proving Theorem 1, we prove the following more general result.
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THEOREM 2. If P(z) = anzn +
n
∑

υ=μ
an−υzn−υ , 1 � μ � n, is a polynomial of de-

gree n having all its zeros in |z| � k , k � 1 , then for α, β ∈ C with |α| � Aμ , |β |� 1
and for each r > 0 ,

n(|α|−Aμ)

{ 2π∫
0

∣∣∣∣∣ P(eiθ )+ β mAμ
kn

|DαP(eiθ )|− mnAμ
kn

∣∣∣∣∣
r

dθ

} 1
r

�
{ 2π∫

0

|1+Aμeiθ |rdθ

} 1
r

, (2.4)

where m = min|z|=k |P(z)| and Aμ is defined by (1.9).

Since for every α ∈ C , we have |DαP(eiθ )| � max|z|=1 |DαP(z)| , 0 � θ < 2π ,
the following result easily follows from Theorem 2.

COROLLARY 1. If P(z) = anzn +
n
∑

υ=μ
an−υzn−υ , 1 � μ � n, is a polynomial of

degree n having all its zeros in |z| � k , k � 1 , then for α, β ∈ C with |α| � Aμ ,
|β | � 1 and for each r > 0 ,

n(|α|−Aμ)

{ 2π∫
0

∣∣∣∣∣P(eiθ )+ β
mAμ

kn

∣∣∣∣∣
r

dθ

} 1
r

�
{ 2π∫

0

|1+Aμeiθ |rdθ

} 1
r
{

max
|z|=1

|DαP(z)|− mnAμ

kn

}
, (2.5)

where m = min|z|=k |P(z)| and Aμ is defined by (1.9).

If we let r → ∞ in (2.5) and choose argument of β with |β | = 1, we obtain the
following refinement of (1.8).

COROLLARY 2. If P(z) = anzn +
n
∑

υ=μ
an−υzn−υ , 1 � μ � n, is a polynomial of

degree n having all its zeros in |z| � k , k � 1 , then for every α ∈ C with |α| � Aμ ,

max
|z|=1

|DαP(z)| � n

(
|α|−Aμ

1+Aμ

)
max
|z|=1

|P(z)|+ nAμ

kn

(
1+ |α|
1+Aμ

)
m

which is equivalent to

max
|z|=1

|DαP(z)| � n(|α|− kμ)
1+ kμ max

|z|=1
|P(z)|+ n(|α|+1)

kn−μ(1+ kμ)
m

+n

(
kμ −Aμ

1+ kμ

)
max
|z|=1

|P(z)|+ n(Aμ − kμ)
kn(1+ kμ)

m

+
n(kμ −Aμ)(|α|−Aμ)

(1+ kμ)(1+Aμ)

{
max
|z|=1

|P(z)|− m
kn

}
, (2.6)
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where m = min|z|=k |P(z)| and Aμ is defined by (1.9). The result is best possible and

equality in (2.6) holds for P(z) = (zμ + kμ)
n
μ , where n is a multiple of μ .

By Lemma 3, Aμ � kμ , therefore, Corollary 2 holds for every α ∈C with |α|� kμ

as well.
In fact, excepting the case when k = 1 or μ

n

( |an−μ |
|an|− m

kn

)
= kμ , the bound obtained in

Corollary 2 is always sharper than the bound obtained in (1.8) and for this it needs to
show that

n(kμ −Aμ)(|α|−Aμ)
(1+ kμ)(1+Aμ)

{
max
|z|=1

|P(z)|− m
kn

}
� 0. (2.7)

In view of inequality (3.3) of Lemma 3, the the above inequality becomes equiva-
lent to

max
|z|=1

|P(z)| � m
kn . (2.8)

Now using (1.1) in the Lemma 2, we get

|Q′
(z)| � Aμnmax

|z|=1
|P(z)|− mnAμ

kn = nAμ

{
max
|z|=1

|P(z)|− m
kn

}
,

and hence (2.8) holds.
The following interesting refinement of (1.6) is obtained from Corollary 2 by di-

viding both sides of (2.6) by |α| and letting |α| → ∞ ,

COROLLARY 3. If P(z) = anzn +
n
∑

υ=μ
an−υzn−υ , 1 � μ � n, is a polynomial of

degree n having all its zeros in |z| � k , k � 1 , then

max
|z|=1

|P′(z)| � n
1+ kμ

{
max
|z|=1

|P(z)|+ m
kn−μ

}
+

n(kμ −Aμ)
(1+ kμ)(1+Aμ)

{
max
|z|=1

|P(z)|− m
kn

}
,

(2.9)

where m = min|z|=k |P(z)| and Aμ is defined by (1.9). The result is best possible and

equality in (2.9) holds for P(z) = (zμ + kμ)
n
μ , where n is a multiple of μ .

Several other interesting results easily follow from Theorem 2. Here, we mention
a few of these. If we take β = 0 in (2.4), we obtain the following result which gives
Theorem 1 as a special case.

COROLLARY 4. If P(z) = anzn +
n
∑

υ=μ
an−υzn−υ , 1 � μ � n, is a polynomial of

degree n having all its zeros in |z|� k , k � 1 , then for every α ∈ C with |α|� Aμ and
for each r > 0 ,

n(|α|−Aμ)

{ 2π∫
0

∣∣∣∣∣ P(eiθ )

|DαP(eiθ )|− mnAμ
kn

∣∣∣∣∣
r

dθ

} 1
r

�
{ 2π∫

0

|1+Aμeiθ |rdθ

} 1
r

, (2.10)
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where m = min|z|=k |P(z)| and Aμ is defined by (1.9).

Taking β = 0 and dividing both sides of (2.5) by |α| then letting |α| → ∞ , we
obtain the following generalization and refinement of (1.10).

COROLLARY 5. If P(z) = anzn +
n
∑

υ=μ
an−υzn−υ , 1 � μ � n, is a polynomial of

degree n having all its zeros in |z| � k , k � 1 , then for each r > 0 ,

n

{ 2π∫
0

|P(eiθ )|rdθ

} 1
r

�
{ 2π∫

0

|1+Aμeiθ |rdθ

} 1
r

max
|z|=1

|P′(z)|, (2.11)

where Aμ is defined by (1.9).

The result is best possible and equality in (2.11) holds for P(z) = (zμ + kμ)
n
μ ,

where n is a multiple of μ .

3. Lemmas

We need the following lemmas to prove the theorems.

LEMMA 1. If P(z) = anzn +
n
∑

υ=μ
an−υzn−υ , 1 � μ � n, is a polynomial of degree

n having all its zeros in |z| � k , k � 1 , and Q(z) = znP( 1
z ) , then on |z| = 1

|Q′(z)| � sμ |P′(z)|, (3.1)

and
μ
n

∣∣∣an−μ

an

∣∣∣� kμ ,

where sμ is defined by (2.2).

The above lemma is due to Aziz and Rather [3].

LEMMA 2. If P(z) = anzn +
n
∑

υ=μ
an−υzn−υ , 1 � μ � n, is a polynomial of degree

n having all its zeros in |z| � k , k � 1 , and Q(z) = znP( 1
z ) , then on |z| = 1

|Q′(z)| � Aμ |P′(z)|− nmAμ

kn , (3.2)

where m = min|z|=k |P(z)| and Aμ is defined by (1.9).

The above lemma is due to Mir et al. [18].

LEMMA 3. If P(z) = anzn +
n
∑

υ=μ
an−υzn−υ , 1 � μ � n, is a polynomial of degree

n having all its zeros in |z| � k , k � 1 , then

Aμ � kμ , (3.3)

where Aμ is defined by (1.9).

The above Lemma is due to Dewan et al. [9].
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4. Proofs of theorems

Proof of Theorem 2. Since P(z) has all its zeros in |z| � k , k � 1, it follows from
Lemma 2 that for |z| = 1,

|Q′(z)|+ nmAμ

kn � Aμ |P′(z)|. (4.1)

Also Q(z) = znP( 1
z ) , then P(z) = znQ( 1

z ) and it can be easily verified that for |z| = 1,

|Q′(z)| = |nP(z)− zP′(z)| (4.2)

and

|P′(z)| = |nQ(z)− zQ′(z)|. (4.3)

Using (4.3) in (4.1), we get for |z| = 1

∣∣∣Q′(z)+ β
nmAμzn−1

kn

∣∣∣� |Q′(z)|+ nmAμ

kn

� Aμ |P′(z)|
= Aμ |nQ(z)− zQ′(z)|. (4.4)

Now for every α ∈ C with |α| � Aμ , we have

|DαP(z)| � |α||P′(z)|− |Q′(z)|
� |α||P′(z)|− |nP(z)− zP′(z)|,

which on using (4.2) and Lemma 2 gives for |z| = 1,

|DαP(z)| � |α||P′(z)|− |Q′(z)|
� (|α|−Aμ)|P′(z)|+ mnAμ

kn ,

|DαP(z)|− mnAμ

kn � (|α|−Aμ)|P′(z)|. (4.5)

Since P(z) has all its zeros in |z| � k , k � 1, it follows by Gauss-Lucas theorem that
all the zeros of P′(z) also lie in |z| � k , k � 1. This implies that the polynomial

zn−1P′
(1

z

)
= nQ(z)− zQ′(z)

has all its zeros in |z| � 1
k � 1. Therefore, it follows from (4.4) and the Maximum

Modulus Principle that the function

W (z) =
z
(
Q′(z)+ β mnAμ zn−1

kn

)
Aμ(nQ(z)− zQ′(z))
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is analytic for |z| � 1 and |W (z)| � 1 for |z| � 1. Furthermore, W (0) = 0 and so the
function 1+AμW (z) is subordinate to the function 1+Aμz for |z| � 1. Hence by a
well-known property of sub-ordination [14], we have for each r > 0,

2π∫
0

∣∣∣1+AμW (eiθ )
∣∣∣rdθ �

2π∫
0

∣∣∣1+Aμeiθ
∣∣∣rdθ . (4.6)

Now

1+AμW (z) =
n
(
Q(z)+ β mAμ zn

kn

)
nQ(z)− zQ′(z)

,

and

|P′(z)| =
∣∣∣zn−1P′

(1
z

)∣∣∣= |nQ(z)− zQ′(z)| for |z| = 1.

Therefore for |z| = 1,

n
∣∣∣Q(z)+ β

mAμzn

kn

∣∣∣= |1+AμW (z)||P′(z)|.

Equivalently,

n
∣∣∣znP

(1
z

)
+ β

mAμzn

kn

∣∣∣= |1+AμW (z)||P′(z)|.

This implies

n
∣∣∣P(z)+ β

mAμ

kn

∣∣∣= |1+AμW (z)||P′(z)| for |z| = 1. (4.7)

From (4.5) and (4.7), we deduce that for |α| � Aμ and r > 0,

nr(|α|−Aμ)r

2π∫
0

∣∣∣ P(eiθ )+ β mAμ
kn

|DαP(eiθ )|− mnAμ
kn

∣∣∣rdθ �
2π∫
0

∣∣∣1+AμW (eiθ )
∣∣∣rdθ .

which gives by using (4.6) that

n(|α|−Aμ)

{ 2π∫
0

∣∣∣ P(eiθ )+ β mAμ
kn

|DαP(eiθ )|− mnAμ
kn

∣∣∣rdθ

}r

�
{ 2π∫

0

∣∣1+Aμeiθ ∣∣rdθ

}r

.

This completes the proof of Theorem 2. �

REMARK 3. The proof of Theorem 1 follows along the lines of the proof of The-
orem 2, by applying inequality (3.1) of Lemma 1 instead of Lemma 2.
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