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CLOSURE OF THE LINEAR SPAN OF AN EXPONENTIAL

SYSTEM IN A WEIGHTED BANACH SPACE

ELIAS ZIKKOS

Abstract. For a certain class of sequences with repeated terms,

{λn,μn}∞
n=1 := {λ1,λ1, . . . ,λ1︸ ︷︷ ︸

μ1 times

,λ2 ,λ2, . . . ,λ2︸ ︷︷ ︸
μ2 times

, . . . ,λk ,λk , . . . ,λk︸ ︷︷ ︸
μk times

, . . .},

we prove that every function belonging to the closed span of the exponential system

{xkeλnx : n ∈ N, k = 0,1,2, . . . ,μn −1},
in some weighted Banach spaces on the real line, extends analytically as an entire function by
admitting a series representation of the form

∞

∑
n=1

(
μn−1

∑
k=0

cn,kz
k

)
eλnz, cn,k ∈ C, ∀ z ∈ C.

1. Introduction and the main result

Let w(x) be a non-negative real valued continuous function defined on the real
line R , not identically equal to zero, such that for some positive constants a and β we
have

0 � w(x) �
{

ax2, x � 0,

β |x|, x < 0.
(1)

For any p � 1 we denote by Lp
w the Banach space of complex-valued measurable func-

tions f defined on R such that∫ ∞

−∞
| f (x)e−w(x)|p dx < ∞,

equipped with the norm

|| f ||Lp
w

:=
(∫ ∞

−∞
| f (x)e−w(x)|p dx

) 1
p

.

Similarly we denote by Cw the Banach space of complex-valued continuous functions
f defined on R , satisfying the condition

lim
|t|→∞

f (t)e−w(t) = 0,
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equipped with the norm

|| f ||Cw := sup{| f (t)e−w(t)| : t ∈ R}.
Our main goal in this article is to describe the closure of the linear span of some ex-
ponential system in the above weighted Banach spaces. The system in consideration
is

EΛ := {xkeλnx : n ∈ N, k = 0,1,2, . . . ,μn −1},
where {λn}∞

n=1 is a sequence of distinct complex numbers diverging to infinity and
{μn}∞

n=1 is a sequence of positive integers so that
(A) supn∈N |argλn| < π/4,

(B) there is a constant κ > 1 so that |λn+1|
|λn| > κ for all n ∈ N ,

(C) there are positive constants α and c , with 0 < α < 1 such that μn � c|λn|α
for all n ∈ N .

The set with multiple terms

{λn,μn}∞
n=1 := {λ1,λ1, . . . ,λ1︸ ︷︷ ︸

μ1 times

,λ2,λ2, . . . ,λ2︸ ︷︷ ︸
μ2 times

, . . . ,λk,λk, . . . ,λk︸ ︷︷ ︸
μk times

, . . .}

is called a multiplicity-sequence Λ , and we denote by U the class of multiplicity-
sequences whose terms satisfy conditions (A),(B),(C) as above.

EXAMPLE 1.1. Let {eiθn}∞
n=1 be a sequence of points on the arc {z : |z|= 1, |argz|

� π/6} . Then the multiplicity-sequence

{5neiθn ,4n}∞
n=1

belongs to the class U .

We now state a property of Λ ∈U . Consider the constants κ and α in conditions
(B) and (C) . Observe that from (B) one gets |λn| � κn−1|λ1| . Therefore we have

∞

∑
n=1

μn

|λn| �
∞

∑
n=1

c|λn|α
|λn| �

∞

∑
n=1

c|λ1|α−1

(κ1−α)n−1 < ∞ (2)

since κ > 1 and 0 < α < 1.
Next, for any Λ belonging to the class U , we denote by span(EΛ) the set of all

finite linear combinations of the system. We say that a function f : R �→ C belongs to
the closed span of EΛ in Lp

w if for every ε > 0 there is an exponential polynomial of
the form

gm(x) =
m

∑
n=1

(
μn−1

∑
k=0

cm,n,kx
k

)
eλnx, cm,n,k ∈ C,

so that
|| f −gm||Lp

w
< ε.

Similarly for Cw .
We now state our main result.
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THEOREM 1.1. Let Λ be a multiplicity-sequence belonging to the class U . Let
f be a function which belongs to the closed span of EΛ in Cw (or in Lp

w for some
p � 1 ). Then there is an entire function g(z) which admits a Taylor-Dirichlet series
representation

g(z) =
∞

∑
n=1

(
μn−1

∑
k=0

cn,kz
k

)
eλnz, cn,k ∈ C, ∀ z ∈ C,

so that f (x) = g(x) for all x ∈ R (or almost everywhere on the real line).

We note that similar results but with more general weights and with Λ satisfying
the condition

∞

∑
n=1

μn

|λn| = ∞

were deduced in [5, 7] whose work was motivated by articles [1, 2, 3, 4] on a version
of Bernstein’s weighted polynomial approximation problem on the real line. In these
papers the weight w is always a convex function. Observe that in our case the function
w in (1) does not have to be a convex function. We also point out that an interest-
ing paper which deals with complete and incomplete exponential systems in weighted
Banach spaces and does not assume convexity of w is [6].

In Sections 2 and 3 we state and prove several lemmas, needed for the proof of
Theorem 1.1 which is given in Section 4. The various lemmas and Theorem 1.1 are
then applied in Section 5 in order to derive a result concerning the Hilbert space L2

w .

2. An infinite product

Let Λ belong to the class U and consider the positive constant β in (1) . Then
construct the infinite product

F(z) =
∞

∏
n=1

(
1− z

λn

1+ z
λn+4β

)μn

. (3)

Due to the convergence of the series (2) , this infinite product converges uniformly on
every compact subset of the complex plane which does not contain the points {−λn−
4β}∞

n=1 Thus it is a meromorphic function having its poles at these points and its zeros
at the points {λn}∞

n=1 , both poles and zeros with respective multiplicity μn .
Consider then the infinite union of closed circles B :=

⋃∞
n=1 ∂Bn where Bn = {z :

|z−λn| � 1|} . Then the following result holds.

LEMMA 2.1. There is a positive constant M such that

|F(z)| � M ∀ z : ℜz � −2β . (4)

Moreover, for every ε > 0 there is a positive constant mε so that

|F(z)| � mεe
−ε|z|, ∀ z ∈ B. (5)
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Proof. First we prove (4) . It is easy to see that∣∣∣∣ λn− z

λn +4β + z

∣∣∣∣� 1 ∀ z : ℜz � −2β .

Also
∞

∏
n=1

∣∣∣∣∣λn +4β
λn

∣∣∣∣∣
μn

< ∞

because the series ∑∞
n=1 μn/|λn| converges. Combining these two results gives (4) .

Next we prove (5) . First, for every z∈C we write the sequence Λ as Λ = Λ1∪Λ2

where

Λ1 = {λn : |λn| � 6|z|},
Λ2 = {λn : |λn| < 6|z|}.

Then, we write

F(z) = ∏
λn∈Λ1

(
1− z

λn

1+ z
λn+4β

)μn

∏
λn∈Λ2

(
1− z

λn

1+ z
λn+4β

)μn

. (6)

Our goal is to find a lower bound for each one of these products.
Consider the first product with λn ∈ Λ1 . Then |1− z

λn
| � 5

6 , thus we get∣∣∣∣∣
z

λn+4β
+ z

λn

1− z
λn

∣∣∣∣∣� 6
5

|z|
|λn|

∣∣∣∣∣λn + λn +4β
λn +4β

∣∣∣∣∣� 12
5

· |z|
|λn| . (7)

Since |λn| � 6|z| the above is less than 2/5 and we can now apply the inequality
| log(1+w)|� 3|w|/2 which holds when |w| < 1/2. We get∣∣∣∣∣log

(
1+ z

λn+4β

1− z
λn

)∣∣∣∣∣=
∣∣∣∣∣log

(
1+

z
λn+4β

+ z
λn

1− z
λn

)∣∣∣∣∣� 3
2

∣∣∣∣∣
z

λn+4β
+ z

λn

1− z
λn

∣∣∣∣∣ .
Combining this with (7) gives∣∣∣∣∣log

(
1+ z

λn+4β

1− z
λn

)∣∣∣∣∣� 18
5

|z|
|λn| .

From the inequality | log |w|| � | logw| , we now get

1
|z|

∣∣∣∣∣ ∑
λn∈Λ1

μn log

∣∣∣∣∣
1+ z

λn+4β

1− z
λn

∣∣∣∣∣
∣∣∣∣∣� 1

|z| ∑
λn∈Λ1

μn

∣∣∣∣∣log

(
1+ z

λn+4β

1− z
λn

)∣∣∣∣∣� ∑
λn∈Λ1

18μn

5|λn| .

Recall however that ∑∞
n=1 μn/|λn| converges. Hence as |z| → ∞ the sum ∑|λn|>6|z|

18μn
5|λn|

tends to zero.
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Therefore, for every ε > 0 there is rε > 0 so that∣∣∣∣∣ ∑
λn∈Λ1

log

∣∣∣∣∣
1+ z

λn+4β

1− z
λn

∣∣∣∣∣
μn
∣∣∣∣∣=
∣∣∣∣∣log ∏

λn∈Λ1

∣∣∣∣∣
1+ z

λn+4β

1− z
λn

∣∣∣∣∣
μn
∣∣∣∣∣� ε|z|, ∀ z : |z| > rε .

Hence, for every ε > 0 there is a positive constant Mε,1 so that

∏
λn∈Λ1

∣∣∣∣∣ 1− z
λn

1+ z
λn+4β

∣∣∣∣∣
μn

� Mε,1e
−ε|z|, ∀ z ∈ C. (8)

Consider now the second product with λn ∈ Λ2 . Let z ∈ B , thus there is a unique λk so
that |z−λk| = 1. We easily get

|λk+1−λk| � (κ −1)|λk| and |λk−1−λk| � (κ −1)
κ

|λk|. (9)

Thus

|λn−λk| � (κ −1)
κ

|λk| ∀ n �= k.

Hence we get

|λn− z| � (κ −1)
κ

|λk|−1 ∀ n ∈ N.

Since |z−λk|= 1 then |λk| � |z|−1 > |z|/2 for all z such that |z| > 2. Thus for some
0 < τ < 1 we have

|λn− z|� τ(κ −1)
|κ | |z| ∀ n ∈ N.

Then for all λn ∈ Λ2 we get∣∣∣∣ λn− z

λn +4β + z

∣∣∣∣μn

�
( τ(κ−1)

κ |z|
7|z|

)μn

=
(

τ(κ −1)
7κ

)μn

.

Since μn � c|λn|α (condition (C) for Λ) and |λn| � 6|z| then μn � 6c|z|α . Therefore∣∣∣∣ λn− z

λn +4β + z

∣∣∣∣μn

�
(

τ(κ −1)
7κ

)6c|z|α
(10)

Next we find an upper bound for the number of λn ∈ Λ2 . If κn|λ1|� 6|z| then |λn+1|�
6|z| as well. Since λn ∈ Λ2 then

n �
log 6|z|

|λ1|
logκ

.

Combining this with (10) gives

∏
λn∈Λ2

∣∣∣∣ λn− z

λn +4β + z

∣∣∣∣μn

� ∏
λn∈Λ2

(
τ(κ −1)

7κ

)6c|z|α
�
((

τ(κ −1)
7κ

)6c|z|α) log
6|z|
|λ1|

logκ

.



136 E. ZIKKOS

Next, we deduce that for every ε > 0 there is Rε > 0 so that

6c|z|α
log 6|z|

|λ1|
logκ

log
7κ

τ(κ −1)
� ε|z|, ∀ z : |z| > Rε .

Therefore, for every ε > 0 there is a positive constant Mε,2 such that

∏
λn∈Λ2

∣∣∣∣∣ 1− z
λn

1+ z
λn+4β

∣∣∣∣∣
μn

� Mε,2e
−ε|z|, ∀ z : z ∈ B.

Combining this with (8) gives (5) . �

3. Some crucial lemmas

Throughout this section we let Λ = {λn,μn}∞
n=1 belong to the class U , F is the

meromorphic function of the previous section, and a,β are the positive constants as in
(1)

LEMMA 3.1. Consider the meromorphic function

f (z) = F(z)e
z2
5a . (11)

Then there exists a continuous function h defined on R such that

f (z) =
1√
2π

∫ +∞

−∞
h(t)ezt dt, ∀z ∈ C+ := {z : ℜz > 0}. (12)

Moreover, for some δ > 0 we have

|h(t)| �
{

δ exp(− 5at2
4 ), t � −4β

5a ,

δ exp( 4β 2

5a +2β t), t < −4β
5a .

(13)

Proof. First observe that f is analytic in the open half-plane C−4β := {z : ℜz >
−4β} , and vanishes exactly on the multiplicity sequence Λ = {λn,μn}∞

n=1 . We note
that the zeros and poles are symmetric with respect to the line ℜz = −2β . Consider
also the closed right half-plane C−2β := {z : ℜz �−2β} . It then follows from (4) that

| f (z)| � Me
x2
5a · e− y2

5a , ∀ z ∈ C−2β . (14)

Due to this estimate, it then follows by contour integration that for any fixed t ∈ R the
value of the integral

1√
2π

∫ +∞

−∞
f (x+ iy)e−t(x+iy) dy
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is the same for all x � −2β . We call this h(t) , in other words we have

h(t) :=
1√
2π

∫ +∞

−∞
f (x+ iy)e−t(x+iy) dy, ∀ x � −2β . (15)

Fix now x � −2β . Then etxh(t) is the Fourier Transform of f (x+ iy) . Our goal is to
prove that for any fixed x > 0, f (x+ iy) is equal to the Inverse Fourier Transform of
exth(t) . In other words, (12) holds.

For this, it suffices to show that for every fixed x > 0, one has
∫ ∞
−∞ |exth(t)|dt < ∞ .

Thus we need to obtain an upper bound for |h(t)| . From (14) and (15) we get

|h(t)| � M
e

x2
5a−tx

√
2π

∫ ∞

−∞
e−

y2
5a dy ∀ x � −2β . (16)

Let δ = M√
2π

∫ ∞
−∞ e−

y2

5 . We then deduce that

inf
x�−2β

{
x2

5a
− tx

}
= −5at2

4
if t � −4β

5a

and

inf
x�−2β

{
x2

5a
− tx

}
=

4β 2

5a
+2β t if t <

−4β
5a

.

Combining these with (16) gives (13) . From the latter relation we see that for every
fixed x > 0 one has

∫ ∞
−∞ |exth(t)|dt < ∞ . �

LEMMA 3.2. The exponential system EΛ is not complete in the various weighted
Banach spaces.

Proof. Let h be the continuous function of the previous lemma. For f ∈ Lp
w let

V ( f ) :=
1√
2π

∫ ∞

−∞
h(t) f (t)dt.

Then from (13) and (1) , we deduce by the Hölder inequality that V defines a bounded
linear functional on Lp

w , with norm ||V ||p . By differentiating f in (12) and since f
vanishes on Λ , gives

0 =
∫ ∞

−∞
h(t)tkeλnt dt ∀ n ∈ N, k = 0,1, . . . ,μn −1.

Thus V (tkeλnt) = 0 for all elements of the exponential system. Suppose now that this
system is complete in Lp

w . Then if f ∈ Lp
w and not equal to zero almost everywhere, for

an arbitrary ε > 0 there is an exponential polynomial P in span of the system such that

|| f −P||Lp
w

< ε.
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Therefore,
|V ( f )−V (P)| < ε||V ||p.

But V (P) = 0, hence ||V ( f )||Lp
w

< ε||V ||p . Since the choice of ε is arbitrary, this
means that f = 0 a.e, a contradiction. Hence the system is not complete in Lp

w . With
similar arguments we prove the result for the space Cw . �

By the notation f (l)(z0) we mean the l derivative of f at z0 .

LEMMA 3.3. There exist analytic functions { fn,k(z) : k = 0,1, . . . ,μn − 1}∞
n=1 in

the half-plane C−4β , so that

f (l)
n,k(λ j) =

⎧⎪⎨
⎪⎩

1 j = n, l = k,

0, j = n, l ∈ {0,1, . . . ,μn −1} \ {k},
0, j �= n, l ∈ {0,1, . . . ,μ j −1}.

(17)

Furthermore, there are positive constants M and ξ , independent of n and k , so that
for every fixed n ∈ N one has

| fn,k(z)| � Me−ξ (ℜλn)2e
x2
5a− y2

5a , ∀ z : |z−λn| � 1 ∀ k = 0,1, . . . ,μn−1. (18)

Proof. Consider the meromorphic function f of Lemma 3.1. Since 1/ f (z) has a
pole of order μn at the point λn , we write down its Laurent series representation

1
f (z)

=
μn

∑
j=1

An, j

(z−λn) j +gn(z)

which is valid in the open punctured disk {z : 0 < |z− λn| < ρn} where ρn > 2 as
shown in (9) . We note that

An, j =
1

2π i

∫
∂Bn

(z−λn) j−1

f (z)
dz, Bn = {z : |z−λn| � 1}

and gn(z) is the regular part.

It follows from (5) that | f (z)|� mεe−ε|z|e
x2
5a− y2

5a for all z on the circle ∂Bn . Since
supn∈N |argλn| < π/4 then we deduce that there are positive constants M′ and ξ ′ so
that

|An, j| � M′e−ξ ′(ℜλn)2 . (19)

We now construct the functions that satisfy (17) . Fix some positive integer n and
some k ∈ {0,1,2, . . . ,μn−1} and define

fn,k(z) :=
f (z)
k!

μn−k

∑
l=1

An,k+l

(z−λn)l
. (20)
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First suppose that k = 0, thus

fn,0(z) = f (z)
μn

∑
l=1

An,l

(z−λn)l .

Then we get f (l)
n,0(λ j) = 0 for j �= n and l = 0,1, . . . ,μ j−1. Since fn,0(z) is continuous

at z = λn , then

fn,0(z) = f (z)
[

1
f (z)

−gn(z)
]

= 1− f (z)gn(z) ∀ z ∈ Bn.

Hence, fn,0(λn) = 1 and f (l)
n,0(λn) = 0 for l ∈ {1, . . . ,μn − 1} . Thus, fn,0(z) satisfies

(17) .
Next, suppose that k ∈ {1,2, . . . ,μn − 1} . Since fn,k(z) is continuous at z = λn ,

we rewrite fn,k(z) for all z in Bn as

fn,k(z) =
f (z)(z−λn)k

k!

μn

∑
l=k+1

An,l

(z−λn)l

=
f (z)(z−λn)k

k!

[
1

f (z)
−gn(z)−

k

∑
j=1

An, j

(z−λn) j

]

=
(z−λn)k

k!
− f (z)(z−λn)kgn(z)

k!
− f (z)

k!

k

∑
j=1

An, j(z−λn)k− j. (21)

From (20) we get f (l)
n,k(λ j) = 0 for j �= n and l = 0,1, . . . ,μ j − 1. From (21) we get

f (k)
n,k (λn) = 1 and f (l)

n,k(λn) = 0 for l ∈ {0,1, . . . ,μn − 1} \ {k} . Thus, fn,k(z) satisfies
(17) for k �= 0.

Finally by combining (14) , (19) , (20) and the fact that μn � c|λn|α (Condition
(C)), shows that there exist positive constants M and ξ so that the upper bound (18)
holds outside the open disk |z−λn| < 1. �

LEMMA 3.4. For each positive integer n and each integer k ∈ {0,1,2, . . . ,μn −
1} , there exist non-trivial bounded linear functionals V p

n,k on Lp
w for p ∈ [1,∞) and

Vn,k on Cw , so that

V p
n,k(t

leλ jt) =

⎧⎪⎨
⎪⎩

1, j = n, l = k,

0, j = n, l ∈ {0,1, . . . ,μn−1} \ {k},
0, j �= n, l ∈ {0,1, . . . ,μ j −1}.

(22)

Furthermore, there are positive constants M and ξ , independent of n and k , so that

||V p
n,k|| � M exp{−ξ (ℜλn)2} (23)

where || || stands for the norms. Similarly for the functionals Vn,k .
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Proof. Due to the upper bound (18) , by contour integration one deduces that the
value of the integral

1√
2π

∫ +∞

−∞
fn,k(x+ iy)e−(x+iy)t dy, x � −2β ,

does not depend on x , thus it is a function of t only. We denote this function by hn,k(t) .
Repeating the steps as in Lemma 3.1 and using the bound (18) gives

|hn,k(t)| �
{

M exp{−ξ (ℜλn)2}exp{− 5at2
4 }, t � −4β

5a ,

M exp{−ξ (ℜλn)2}exp{ 4β 2

5a +2β t}, t < −4β
5a .

(24)

This relation implies that for every fixed x > 0 we have exthn,k(t) ∈ L1(R) . As a result

fn,k(z) =
1√
2π

∫ +∞

−∞
hn,k(t)etz dt, ∀z ∈ C+.

Differentiating with respect to z and applying (17) gives

1√
2π

∫ ∞

−∞
hn,k(t)tleλ jt dt =

⎧⎪⎨
⎪⎩

1, j = n, l = k,

0, j = n, l ∈ {0,1, . . . ,μ j −1} \ {k},
0, j �= n, l ∈ {0,1, . . . ,μ j −1}.

(25)

Next, for f ∈ Lp
w define

V p
n,k( f ) :=

1√
2π

∫ ∞

−∞
hn,k(t) f (t)dt.

We then write

V p
n,k( f ) =

1√
2π

∫ ∞

−∞

(
hn,k(t)ew(t)

)(
f (t)e−w(t)

)
dt.

Due to relations (24) and (1) , applying the Hölder inequality shows that the V p
n,k define

bounded linear functionals on Lp
w . Then relations (23) and (22) are derived from (24)

and (25) respectively. �
The next result shows that every element of the exponential system EΛ lies outside

the closure of the span of the rest of the elements. In other words the system is minimal.

LEMMA 3.5. The exponential system EΛ is minimal in the various weighted Ba-
nach spaces.

Proof. Suppose that an element pn,k(t) := tkeλnt of the system belongs to the
closed span of EΛ \ {pn,k(t)} in Lp

w for some p � 1. Then for an arbitrary ε > 0
there is an exponential polynomial P in span of EΛ \ {pn,k(t)} so that

||pn,k −P||Lp
w

< ε.
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Consider the functional V p
n,k of Lemma 3.4. Then

|V p
n,k(pn,k)−V p

n,k(P)| < ε||V p
n,k||.

By (22) we have V p
n,k(pn,k) = 1 and V p

n,k(P) = 0. We then get

1 < ε||V p
n,k||.

The arbitrary choice of ε leads to a contradiction. Similarly for the space Cw . �

LEMMA 3.6. Consider the linear functionals V p
n,k . Let f ∈ Lp

w and associate to
f the series

g(z) =
∞

∑
n=1

(
μn−1

∑
k=0

V p
n,k( f )zk

)
eλnz.

The series is an entire function.

Proof. Consider the sequence {TM(z)}∞
M=1 of exponential polynomials of the form

TM(z) :=
M

∑
n=1

(
μn−1

∑
k=0

V p
n,k( f )zk

)
eλnz.

Due to the upper bound (23) and since ℜλn > |ℑλn| , this sequence converges uni-
formly on compact subsets of the complex plane, thus its limit is an entire function. �

4. Proof of Theorem 1.1

We prove the result for the Lp
w spaces. The proof for Cw is similar. Hence, consider

the space Lp
w for some p � 1 and suppose that f ∈ span(EΛ) in Lp

w . We will show
that f (x) = g(x) almost everywhere on R where g is the Taylor-Dirichlet series as in
Lemma 3.6.

By assumption, there exists a sequence {Pl(x)}∞
l=1 in span(EΛ) , where

Pl(x) =
r(l)

∑
n=1

(
μn−1

∑
k=0

an,k,lx
k

)
eλnx

such that || f −Pl||Lp
w
→ 0 as l → ∞ . Choose an arbitrary closed interval [c,d] . It then

follows that || f −Pl||Lp
w[c,d] → 0 as l → ∞ where

|| f ||Lp
w[c,d] :=

(∫ d

c
| f (x)e−w(x)|p dx

) 1
p

.

Then by the Minkowski inequality one gets

|| f −g||Lp
w[c,d] � || f −Pl||Lp

w[c,d] + ||Pl −g||Lp
w[c,d].
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We now claim that ||Pl −g||Lp
w[c,d] → 0 as l → ∞ . This implies that the right hand-side

of the above inequality converges to zero as l → ∞ . Since the left hand-side does not
depend on l , then || f − g||Lp

w[c,d] = 0, hence f = g almost everywhere on [c,d] . The
arbitrary choice of this interval implies that f = g almost everywhere on R and our
proof is finished.

So let us justify our claim. Again by the Minkowski inequality we get

||Pl −g||Lp
w[c,d] � I + II

where

I :=
r(l)

∑
n=1

μn−1

∑
k=0

|an,k,l −V p
n,k( f )|

(∫ d

c

(
|x|kexℜλne−w(x)

)p
dx

) 1
p

and

II :=
∞

∑
n=r(l)+1

μn−1

∑
k=0

|V p
n,k( f )|

(∫ d

c

(
|x|kexℜλne−w(x)

)p
dx

) 1
p

.

We show below that I and II converge to zero as l → ∞ , thus ||Pl − g||Lp
w[c,d] → 0 as

l → ∞ as well.
First consider the integral

(∫ d

c

(
|x|kexℜλne−w(x)

)p
dx

) 1
p

.

Let T = max{1, |c|, |d|} and N = maxx∈[c,d] e
−w(x) . Then

(∫ d

c

(
|x|kexℜλne−w(x)

)p
dx

) 1
p

� NTkedℜλn(d− c)1/p.

It follows from (23) that

|V p
n,k( f )−an,k,l| = |V p

n,k( f )−V p
n,k(Pl)| � Me−ξ (ℜλn)2 || f −Pl||Lp

w
.

Similarly we get

|V p
n,k( f )| � Me−ξ (ℜλn)2 || f ||Lp

w
.

Thus,

I � NM(d− c)1/p|| f −Pl||Lp
w

r(l)

∑
n=1

μnT
μne−ξ (ℜλn)2edℜλn (26)

and

II � NM(d − c)1/p|| f ||Lp
w

∞

∑
n=r(l)+1

μnT
μne−ξ (ℜλn)2edℜλn . (27)

Next, observe that for every ε > 0 there is a positive constant mε so that

μnT
μn � mεe

εℜλn .



LINEAR SPAN OF AN EXPONENTIAL SYSTEM IN A WEIGHTED BANACH SPACE 143

Therefore
∞

∑
n=1

μnT
μne−ξ (ℜλn)2edℜλn � mε

∞

∑
n=1

e−ξ (ℜλn)2e(d+ε)ℜλn .

Obviously the series on the right hand-side of this inequality converges. Thus there is a
positive constant C so that

r(l)

∑
n=1

μnT
μne−ξ (ℜλn)2edℜλn < C ∀ l ∈ N,

and the tail
∞

∑
n=r(l)+1

μnT
μne−ξ (ℜλn)2edℜλn → 0 l → ∞.

These results together with the assumption || f −Pl||Lp
w
→ 0 as l → ∞ shows that the

right hand-sides in (26) and (27) tend to zero as l → ∞ . Hence both I and II tend to
zero as l → ∞ . Our proof is now complete.

5. The Hilbert space L2
w

Our second result, Theorem 5.1, concerns the weighted L2
w space which is a

Hilbert space when endowed with the inner product

〈 f ,g〉 :=
∫ ∞

−∞
f (t)g(t)e−2w(t) dt.

We say that a doubly indexed sequence {rn,k : n∈N, k = 0,1, . . . ,μn−1} is a biorthog-
onal sequence to the exponential system EΛ in L2

w , with Λ ∈U , if

∫ β

γ
rn,k(t)tleλ jt e−2w(t) dt =

⎧⎪⎨
⎪⎩

1, j = n, l = k,

0, j = n, l ∈ {0,1, . . . ,μn −1} \ {k},
0, j �= n, l ∈ {0,1, . . . ,μ j −1}.

Recall now that in Lemma 3.5 we proved that the system EΛ is minimal in L2
w . There-

fore, if we take an element pn,k(x) := xkeλnx and let EΛn,k := EΛ \{pn,k(x)} , then there
is some ε > 0, not necessarily the same for all elements of the system, so that

inf
g∈span(EΛn,k

)
||pn,k −g||L2

w
> ε.

In fact this lower bound is even larger. Let

D2,n,k := inf
g∈span(EΛn,k

)
||pn,k −g||L2

w
.

Then the following result holds.
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LEMMA 5.1. There are positive constants M∗ and ξ , independent of n ∈ N and
k = 0,1, . . . ,μn−1 , so that

D2,n,k � M∗ exp{ξ (ℜλn)2}. (28)

Proof. Suppose that f ∈ span(EΛn,k) in the space L2
w . Hence for ε > 0 there is an

exponential polynomial P ∈ span(EΛn,k) such that

|| f −P||L2
w

< ε. (29)

Let hn,k be the function as in Lemma 3.4 with the upper bound (24) . In combination
with (1) this yields a positive constant N so that

(∫ ∞

−∞
|hn,k(t)ew(t)|2 dt

) 1
2

< N exp{−ξ (ℜλn)2}. (30)

Now since P ∈ span(EΛn,k) by (25) we get

∫ ∞

−∞
hn,k(t)P(t)dt = 0.

Thus by (29) and (30) , applying the Cauchy-Schwartz inequality gives∣∣∣∣∫ ∞

−∞
hn,k(t) f (t)dt

∣∣∣∣=
∣∣∣∣∫ ∞

−∞
(hn,k(t)ew(t)

[
( f (t)−P(t))e−w(t)

]
dt

∣∣∣∣� εN exp{−ξ (ℜλn)2}.

Since ε is arbitrary we then have∫ ∞

−∞
hn,k(t) f (t)dt = 0.

By the above and (25) we get

√
2π =

∫ ∞

−∞
hn,k(t)tkeλnt dt =

∫ ∞

−∞
hn,k(t)

(
tkeλnt − f (t)

)
dt.

Thus √
2π =

∫ ∞

−∞

(
hn,k(t)ew(t)

)(
(tkeλnt − f (t))e−w(t)

)
dt.

By (30) and the Cauchy-Schwartz inequality we get

√
2π � N exp{−ξ (ℜλn)2} · ||pn,k− f ||L2

w
, where pn,k(t) = tkeλnt .

Therefore, for any f ∈ span(EΛn,k) in the space L2
w , we have the lower bound

||pn,k − f ||L2
w

�
√

2π
N

exp{ξ (ℜλn)2}.
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But then this is a lower bound for inf f∈span(EΛn,k
) ||pn,k − g||L2

w
as well. Our proof is

now complete. �

Next, from Hilbert space theory, we know that there exists a unique element in
span(EΛn,k) in L2

w , that we denote by φn,k , so that

||pn,k −φn,k||L2
w

= D2,n,k.

The function pn,k −φn,k is orthogonal to all the elements of the closed span of EΛn,k in

L2
w , hence to φn,k itself. It then follows that

〈pn,k −φn,k, pn,k −φn,k〉 = 〈pn,k −φn,k, pn,k〉.

In other words, we have (D2,n,k)2 = 〈pn,k −φn,k, pn,k〉 . If we now define

rn,k(x) :=
pn,k(x)−φn,k(x)

(D2,n,k)2 . (31)

it then follows that {rn,k : n ∈ N, k = 0,1, . . . ,μn − 1} is biorthogonal to the system
EΛ , and since φn,k ∈ span(EΛn,k) in L2

w then rn,k ∈ span(EΛ) in L2
w . In fact, it is the

unique biorthogonal sequence to the system EΛ , which belongs to its closed span in
L2

w . For, if there was another such biorthogonal sequence, call it {tn,k} , then for all
n ∈ N and k ∈ {0,1, . . . ,μn−1} we would have

〈rn,k − tn,k, pm,l〉 = 0 ∀ m ∈ N l = 0,1, . . .μm −1 pm,l = xleλmx.

But this in turn implies that rn,k− tn,k = 0 since the system EΛ is complete in the closed
span of EΛ .

Next, we also claim that if {un,k} is any other sequence biorthogonal to the system
EΛ , then ||rn,k||L2

w
� ||un,k||L2

w
. Indeed, choose an element un,k and write un,k = rn,k +

(un,k − rn,k) . We note that 〈un,k − rn,k, f 〉 = 0 for every f which belongs to the closed
span of EΛ , hence un,k − rn,k belongs to the orthogonal complement of the closed span
of EΛ in L2

w . Of course we also have 〈un,k − rn,k,rn,k〉 = 0. Then we get

||un,k||2L2
w

= ||rn,k||2L2
w
+ ||un,k− rn,k||2L2

w
� ||rn,k||2L2

w
.

Next, observe that it follows from Lemma 5.1 and (31) that ||rn,k||L2
w
� 1

M∗ e−ξ (ℜλn)2 ,
thus obtaining an upper bound for these norms.

And finally, from our first result, Theorem 1.1, we know that each rn,k extends
analytically in the complex plane admitting a Taylor-Dirichlet series representation.

Overall, we proved the following result.

THEOREM 5.1. Suppose that Λ = {λn,μn}∞
n=1 belongs to the class U . Suppose

also that
{rn,k : n ∈ N, k = 0,1, . . . ,μn −1}
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is the unique biorthogonal sequence to the system EΛ in L2
w , belonging to its closed

span. Then there are positive constants Q and ξ , independent of n and k , so that

||rn,k||L2
w

� Qe−ξ (ℜλn)2 , ∀ n ∈ N, k = 0,1, . . . ,μn−1.

Moreover, for each rn,k there exists an entire function Rn,k so that rn,k(x) = Rn,k(x) for
almost all x ∈ R , with Rn,k admitting a Taylor-Dirichlet series representation

Rn,k(z) =
∞

∑
j=1

(
μn−1

∑
l=0

cn,k, j,lz
l

)
eλ jz, cn,k, j,l ∈ C.
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