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MONOTONIC FUNCTIONS RELATED TO THE q–GAMMA

AND q–TRIGAMMA FUNCTIONS WITH APPLICATIONS
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Dedicated to Professor Fozi Dannan

Abstract. In this paper our aim is to investigate necessary and sufficient conditions for the com-
plete monotonicity properties of some functions related to the q -gamma and q -trigamma func-
tions. As application of this results, some new inequalities are derived. Our results are shown to
be as a generalization of results which were obtained by Qi [6].

1. Introduction

Recall that a non-negative function f defined on (0,∞) is called completely mono-
tonic if it has derivatives of all orders and

(−1)n f (n)(x) � 0, n � 1

and x > 0 [[5], Def. 1.3]. This inequality is known to be strict unless f is a constant. By
the celebrated Bernstein theorem, a function is completely monotonic if and only if it
is the Laplace transform of a non-negative measure [[5], Th. 1.4]. The above definition
implies the following equivalences:

f is completely monotonic on (0,∞).
⇔ f � 0, − f ′ is completely monotonic on (0,∞) ,

⇔− f ′ is completely monotonic on(0,∞), and limx→∞ f (x) � 0.

Euler’s gamma function is defined for positive real numbers x by

Γ(x) =
∫ ∞

0
tx−1e−tdt,

which is one of the most important special functions and has many extensive applica-
tions in many branches, for example, statistics, physics, engineering and other mathe-
matical sciences.

The logarithmic derivative of Γ(x) , denoted ψ(x) = Γ
′
(x)

Γ(x) , is called the psi or

digamma function, and ψ(k)(x) for k ∈ N are called the polygamma functions. The
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functions Γ(x) and ψ(k)(x) for k ∈ N are of fundamental importance in mathematics
and have been extensively studied by many authors.

The q -analogue of Γ is defined by

Γq(x) = (1−q)1−x
∞

∏
j=0

1−q j+1

1−q j+x , 0 < q < 1, x > 0, (1)

and

Γq(x) = (q−1)1−xq
x(x−1)

2

∞

∏
j=0

1−q−( j+1)

1−q−( j+x) , q > 1, x > 0. (2)

The q -gamma function Γq(z) has the following basic properties:

lim
q→1−

Γq(z) = lim
q→1+

Γq(z) = Γ(z), (3)

and
Γq(z) = q

(x−1)(x−2)
2 Γ 1

q
(z). (4)

The q -digamma function ψq , the q -analogue of the psi or digamma function ψ is
defined by

ψq(x) =
Γ′

q(x)
Γq(z)

= − ln(1−q)+ lnq
∞

∑
k=0

qk+x

1−qk+x

= − ln(1−q)+ lnq
∞

∑
k=1

qkx

1−qk ,

(5)

for 0 < q < 1.
Using the Euler-Maclaurin formula, Moak [[3], p. 409] obtained the following

q -analogue of Stirling formula

logΓq(x) ∼
(

x− 1
2

)
log

(
1−qx

1−q

)
+

Li2(1−qx)
logq

+
1
2
H(q−1) logq+Cq̂

+
∞

∑
k=1

B2k

(2k)!

(
log q̂
q̂x−1

)2k−1

q̂xP2k−3(q̂x)
(6)

as x → ∞ where H(.) denotes the Heaviside step function, Bk , k = 1,2, . . . are the
Bernoulli numbers,

q̂ =

{
q if 0 < q < 1

1/q if q > 1.

Li2(z) is the dilogarithm function defined for complex argument z as

Li2(z) = −
∫ z

0

log(1− t)
t

dt, z /∈ [1,∞). (7)
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Pk is a polynomial of degree k satisfying

Pk(z) = (z− z2)P
′
k−1(z)+ (kz+1)Pk−1(z), P0 = P−1 = 1, k = 1,2, . . . (8)

and

Cq =
1
2

log(2π)+
1
2

log

(
q−1
logq

)
− 1

24
logq+

1
log(q)

∫ − log(q)

0

udu
eu−1

+ log

(
∞

∑
m=−∞

rm(6m+1) − r(2m+1)(3m+1)

)
,

where r = exp(4π2/ logq). Simple computation shows that(
Li2(1−qx)

log(q)

)′
=

xqx log(q)
1−qx (9)

On the other hand, we have (see [2])

lim
q→1

Li2(1−qx)
logq

= −x, and lim
q→1

cq =
1
2

log(2π). (10)

The main aim of this paper is to investigate the monotonicity properties of the
function

Ka(x;q) =
1
12

ψ ′
q(x+a)− logΓq(x)+

(
x− 1

2

)
log

(
1−qx

1−q

)
+

Li2(1−qx)
1−q

+Cq +
1
2
H(q−1) log(q),

(11)

where q ∈ (0,1) , a � 0 and x > 0.
It is worth mentioning that Qi [6] considered the function

Ka(x) =
1
2

log(2π)− x+
(

x− 1
2

)
log(x)− logΓ(x)+

1
12

ψ ′(x+a), x > 0, a � 0,

(12)
which is a special case of the function Ka(x;q) on letting q tends to 1 and proved that
−Ka(x) is completely monotonic on (0,∞) if and only if a � 1/2 and Ka(x) is com-
pletely monotonic on (0,∞) if and only if a = 0. As a consequence, some inequalities
for the q -gamma function and the function Ka(x;q) were established.

2. Lemmas

For proofs in this paper we need the following lemmas.

LEMMA 1. Let q ∈ (0,1) , a � 0 and x > 0. Then

K(2)
a (x;q) =

∞

∑
k=1

qkx log(q)
1−qk

f (a;qk), (13)
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where

f (a;y) =
1
12

(ya log3(y)−6log(y)−6y log(y)+12y−12), y = qk, k = 1,2, . . . (14)

Proof. From (5) and (9) we get

K′
a(x;q) =

1
12

ψ(2)
q (x+a)−ψq(x)+ log

(
1−qx

1−q

)
+

qx log(q)
2(1−qx)

, (15)

for q ∈ (0,1) and x > 0. Differentiating (15), using the series expansion

x
(1− x)2 =

∞

∑
k=1

kxk, x ∈ (0,1)

and (5) we obtain

K(2)
a (x;q) =

1
12

ψ(3)
q (x+a)−ψ ′

q(x)−
qx log(q)
1−qx +

qx log2(q)
(1−qx)2

=
1
12

∞

∑
k=1

k3qk(x+a) log4(q)
1−qk −

∞

∑
k=1

kqkx log2(q)
1−qk −

∞

∑
k=1

qkx log(q)+
1
2

∞

∑
k=1

kqkx log2(q)

=
∞

∑
k=1

qkx log(q)
1−qk f (a;qk).

Lemma 1 is thus proved. �

LEMMA 2. The function f (0,y) as defined in (14) is negative for all y ∈ (0,1).

Proof. By using the fact ya = exp(−a log(1/y)) , a ∈ R , we can write f (0,y) as

f (0,y) =
1
12

(log3(y)−6log(y)−6y log(y)+12y−12)

=
y
12

(
− log3(1/y)

y
+6

log(1/y)
y

− 12
y

+6log(1/y)+12

)

=
y
12

(
−

∞

∑
k=0

logk+3(1/y)
k!

+6
∞

∑
k=0

logk+1(1/y)
k!

−12
∞

∑
k=0

logk(1/y)
k!

+6log(1/y)+12

)

=
y
12

(
−

∞

∑
k=3

logk(1/y)
(k−3)!

+6
∞

∑
k=2

logk(1/y)
(k−1)!

−12
∞

∑
k=2

logk(1/y)
k!

)

=
y
12

(
−

∞

∑
k=3

logk(1/y)
(k−3)!

+6
∞

∑
k=3

logk(1/y)
(k−1)!

−12
∞

∑
k=3

logk(1/y)
k!

)

= − y
12

∞

∑
k=3

logk(1/y)(k−2)(k(k−1)+6)
k!

< 0,

for all y ∈ (0,1) . So, the proof of Lemma 2 is complete. �
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LEMMA 3. The function g defined by

g(y) =
log(6)+ log(2−2y+ y log(y)+ log(y))− log(log3(y))

log(y)
(16)

is increasing on (0,1), such that limy→0 g(y) = 0 and limy→1 g(y) = 1
2 .

Proof. Let y ∈ (0,1), thus g′(y) = g1(y)/y log2(y), where

g1(y) = − log(6)−3+ log(log3(y))− log(2−2y+ y log(y)+ log(y)

+
log(y)− y log(y)+ y log2(y)
2−2y+ y log(y)+ log(y)

.

Differentiating g1(y) yields

g′1(y) =
g2(y)

y log(y)(2−2y+ y log(y)+ log(y))2 ,

where

g2(y) = 12−24y+12y2+12log(y)+2log2(y)−12y2 log(y)

+2y2 log2(y)+8y log2(y)+ y log4(y).

Now, we can write g2(y) as

g2(y) = y2

(
12− 24

y
+

12
y2 −12

log(1/y)
y2 +2

log2(1/y)
y2 +12log(1/y)

+2log2(1/y)+8
log2(1/y)

y
+

log4(1/y)
y

)

= y2

(
12−24

∞

∑
k=0

logk(1/k)
k!

+12
∞

∑
k=0

2k logk(1/k)
k!

−12log(1/y)
∞

∑
k=0

2k logk(1/k)
k!

+2log2(1/y)
∞

∑
k=0

2k logk(1/k)
k!

+12log(1/y)

+2log2(1/y)+8log2(1/y)
∞

∑
k=0

logk(1/k)
k!

+ log4(1/y)
∞

∑
k=0

logk(1/k)
k!

)

= y2

(
−24

∞

∑
k=4

logk(1/k)
k!

+12
∞

∑
k=4

2k logk(1/k)
k!

−12
∞

∑
k=3

2k logk+1(1/k)
k!

+
∞

∑
k=2

2k+1 logk+2(1/k)
k!

+8
∞

∑
k=2

logk+2(1/k)
k!

+
∞

∑
k=0

logk+4(1/k)
k!

)

= y2
∞

∑
k=4

logk(1/k)ak

k!
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where

ak = −24+2k−1(24−12k+ k(k−1))+ k(k−1)(8+(k−2)(k−3)), k � 4.

We note that a4 = a5 = a6 = a7 = 0, a8 = 56, a9 = 504, a10 = 2664 and ak � a11 > 0.
So the sequence an � 0 for all k � 4. Thus g2(y) > 0 for all y ∈ (0,1). Therefore the
function g1(y) is decreasing on (0,1) . On the other hand, by using the l’Hospital’s rule
we have

lim
y→1

2−2y+ y log(y)+ log(y)
log3(y)

= lim
y→1

y log(y)
6log(y)

=
1
6
,

and

lim
y→1

log(y)− y log(y)+ y log2(y)
2−2y+ y log(y)+ log(y)

= 1+ lim
y→1

2 log(y)+ log2(y)
log(y)

= 3.

Thus implies that g1(y) > limy→1 g1(y) = 0, and consequently the function g(y) is
increasing on (0,1). Finally, by using the l’Hospital’s rule we get

lim
y→1

g(y) =
1
2

and it is easy to proved that
lim
y→0

g(y) = 0,

which completes the proof. �

3. Completely monotonic functions related to the
q -gamma and q -trigamma functions

THEOREM 1. Let q ∈ (0,1). Then the function Ka(x;q) is completely monotonic
on (0,∞) if and only if a = 0.

Proof. By contradiction. Suppose that the function Ka(x;q) for a > 0 is com-
pletely monotonic on (0,∞) , thus means that Ka(x;q) is positive on (0,∞). But, using
the q -analogue of Stirling formula (6) we gave for q ∈ (0,1)

lim
x→0+

Ka(x;q) =
1
12

ψ ′
q(a)− lim

x→0+

∞

∑
k=1

B2k

(2k)!

(
log(q̂)
q̂x−1

)2k−1

q̂xP2k−3(q̂x)

= −∞,

which leads to a contradiction and a = 0. Now we proved that the function K0(x;q) is
completely monotonic on (0,∞). By again using Lemma 1 and Lemma 2 we conclude

that K(2)
0 (x;q) is completely monotonic on (0,∞). Therefore the function K′

0(x;q) is
increasing on (0,∞). Thus

K′
0(x;q) � lim

x→∞
K′

0(x;q)

= lim
x→∞

(
1
12

ψ(2)
q (x)−ψq(x)+ log

(
1−qx

1−q

)
+

qx log(q)
2(1−qx)

)
.

(17)



MONOTONIC FUNCTIONS RELATED TO THE q -GAMMA AND q -TRIGAMMA FUNCTIONS 153

On the other hand, from (5) we have

lim
x→∞

ψ(k)(x+a) = 0, and lim
x→∞

ψ(x) = − log(1−q), k � 1 (18)

for all q∈ (0,1) and a � 0 Combining (17) and (18) we conclude that K′
0(x;q) � 0 for

all q ∈ (0,1) and x > 0. Consequently, the function K0(x;q) is decreasing on (0,∞) .
From the asymptotic formula (6) and (18) we have for q ∈ (0,1)

K0(x;q) � lim
x→∞

K0(x;q)

= − lim
x→∞

∞

∑
k=1

B2k

(2k)!

(
log(q̂)
q̂x−1

)2k−1

q̂xP2k−3(q̂x)

= 0.

(19)

So the function K0(x;q) is completely monotonic on (0,∞) for q ∈ (0,1). This ends
the proof. �

THEOREM 2. Let q ∈ (0,1). Then the function −Ka(x;q) is completely mono-
tonic on (0,∞) if and only if a � g(q).

Proof. Assume that the function −Ka(x;q) is completely monotonic on (0,∞) ,
thus −q−xKa(x;q) � 0. In [4] proved that

lim
x→∞

∞

∑
k=1

B2k

(2k)!

(
log(q̂)
q̂x−1

)2k−1

P2k−3(q̂x) =
1

1− q̂
+

1
log(q̂)

− 1
2

(20)

and using (5) we get

lim
x→∞

q−xψ ′
q(x+a) =

qa log2(q)
1−q

. (21)

Finally, by (20) and (21) such that limx→∞(−q−xKa(x;q)) � 0 we conclude that a �
g(q) .

Conversely, from Lemma 1, we have

−K(2)
a (x;q) = −

∞

∑
k=1

qkx log(q)
1−qk f (a;qk),

where f (a;y) , y = qk as defined in (14). Moreover, using the fact that the function
a �→ f (a,y) is increasing on (0,∞) , and since

lim
x→∞

f (a,y) = −6log(y)−6y log(y)+12y−12

= y

(
∞

∑
k=3

log(1/y)k(6k−12)
k!

)
> 0

and Lemma 2 and the intermediate value Theorem we conclude that the function a �→
f (a,y) admits a zero depending on the values of y at a = g(y). From Lemma 3, the
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function g(y) is increasing on (0,∞) such that 0 � g(y) � 1/2 for all y∈ (0,1). There-
fore to take a � g(q) to ensure that f (a,y) > 0 for all y = qk. Thus implies that the

function −K(2)
a (x;q) is completely monotonic on (0,∞) for a � g(q) . So the function

K′
a(x;q) is decreasing on (0,∞), in particular K′

a(x;q) � limx→∞ K′
a(x;q). In view of

(15) and (18) we see that K′
a(x;q) � 0 for all q ∈ (0,1) and x ∈ (0,∞). In particular,

the function Ka(x;q) is increasing on (0,∞) . Thus Ka(x;q) � limx→∞ Ka(x;q). Finally
(18) and the q -analogue of Stirling formula (6) we conclude that limx→∞ Ka(x;q) = 0.
Consequently the function −Ka(x;q) is completely monotonic on (0,∞) for q∈ (0,1).
So the proof of Theorem 2 is complete. �

As application of the complete monotonicity properties of the function (11) which
are proved in Theorem 1 and Theorem 2 we can provide the following inequalities for
the q -gamma function .

The next result is a generalization of the inequalities proved by Qi in [[6], Re-
mark 4].

COROLLARY 1. Let q ∈ (0,1) and x > 0. Then the following inequalities

eCqq
1
12 H(q−1) exp

(
1
12

ψ ′
q(x+ α)+

Li2(1−qx)
1−q

)
� Γq(x) (22)

� eCqq
1
12 H(q−1) exp

(
1
12

ψ ′
q(x+ α)+

Li2(1−qx)
1−q

)
,

holds for α = 0 and β � g(q).

Proof. From Theorem 1 and Theorem 2, we obtain for x > 0 and q ∈ (0,1)

Kβ (x;q) � 0 � Kα(x;q)

holds if and only if β � g(q) and α = 0. �
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