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VECTOR–STABILITY OF MULTIPLE VECTOR REFINABLE VECTORS

QINGYUE ZHANG

Abstract. The stability is an expected property for refinable vectors, which is widely considered
in the study of refinement equations. There are two types of stability for refinable vectors. One
is the ordinary-stability, the other is the vector-stability. The ordinary-stability considers the
stability of entries of refinable vectors, but the vector-stability considers the stability of refinable
vectors themselves where they are considered as elements of super Hilbert spaces. In this paper,
we give a necessary and sufficient condition for refinable vectors to be vector-stable. Our results
improve some known ones.
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