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VECTOR–STABILITY OF MULTIPLE VECTOR REFINABLE VECTORS

QINGYUE ZHANG

Abstract. The stability is an expected property for refinable vectors, which is widely considered
in the study of refinement equations. There are two types of stability for refinable vectors. One
is the ordinary-stability, the other is the vector-stability. The ordinary-stability considers the
stability of entries of refinable vectors, but the vector-stability considers the stability of refinable
vectors themselves where they are considered as elements of super Hilbert spaces. In this paper,
we give a necessary and sufficient condition for refinable vectors to be vector-stable. Our results
improve some known ones.

1. Introduction and the main result

In this paper, we study vector refinement equations of the following form

Φ(x) = ∑
k∈Z

PkΦ(2x− k), x ∈ R. (1)

Here, Φ = (Φ1, · · · ,Φn) , where Φ j ∈ L2(R)(r), 1 � j � n and {Pk : k ∈ Z} is the re-
finement mask such that each Pk is an r× r (complex) matrix. A nonzero solution of
(1) is called a refinable vector.

Vector refinement equations are widely studied in the literature. Daubechies and
Cohen [4], Heil and Colella [12], and Long, Chen and Yan [26, 27] studied the exis-
tence of solutions of (1). And Daubechies, Jia, Jiang, Lau, Micchelli, Shen, Zhou etc.
discussed the regularity of refinable functions [1–3, 5–11, 16–19, 25, 28, 30–31]. In
particular, the stability of solutions of vector refinement equations was characterized
by Shen [29] and Jiang [22]. Hogan [14, 15] and Shen, Jiang and Lawton [23, 24]
gave some characterizations for the stability of solutions of multiple vector refinement
equations.

Recall that a vector Φ = (φ1, · · · ,φr)T ∈ L2(R)(r) is said to be stable [14] if there
exist constants 0 < β1 � β2 < ∞ such that for any a = {ap,k : 1 � p � r, k ∈Z} ∈ �2(Z) ,

β1‖a‖2
�2(Z) �

∥∥∥∥∥∑
k∈Z

r

∑
p=1

ap,kφp(·− k)

∥∥∥∥∥
2

L2(R)

� β2‖a‖2
�2(Z).

For convenience, we call the vector Φ ordinarily stable whenever the above con-
ditions are satisfied.

In this paper, we study the stability of refinable vectors in the following sense.
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DEFINITION 1. Let Φ = (Φ1, · · · ,Φn) , where Φ j ∈ L2(R)(r), 1 � j � n . Φ is
said to be vector-stable if there exist constants 0 < β1 � β2 < ∞ such that for any
a =

{
a j,k : 1 � j � n, k ∈ Z

} ∈ �2(Z) ,

β1‖a‖2
�2(Z) �

∥∥∥∥∥ n

∑
j=1

∑
k∈Z

a j,kΦ j(·− k)

∥∥∥∥∥
2

L2(R)(r)
� β2‖a‖2

�2(Z).

Before going further, we introduce some notations used in this paper. The Fourier
transform of a function in L1(R) is defined by

f̂ (ω) =
∫

R

f (x)e−ixω dx.

For F = ( f1, · · · , fr)T , G = (g1, · · · ,gr)T ∈ L2(R)(r) , the inner product of F and G is
given by

〈F,G〉L2(R)(r) =
∫

R

r

∑
p=1

fp(x)gp(x)dx,

the norm of F is defined by ‖F‖L2(R)(r) = 〈F,F〉1/2 and [F,G](ξ ) = ∑r
j=1 ∑k∈Z f̂ j(ξ +

2πk)ĝ j(ξ +2πk).
In the Fourier domain, the refinement equation (1) can be written as

Φ̂(ω) = P
(ω

2

)
Φ̂
(ω

2

)
,

where

P(ω) :=
1
2 ∑

k∈Z

Pke
−ikω ,

and the Fourier transform of the vector-valued function Φ is defined componentwise.
The symbols N and Z+ denote the set of natural numbers and non-negative inte-

gers, respectively. We denote by T the quotient group R/2πZ .
For a given integer m � 2, we say that a point ω ∈ R is m-cyclic in T if 2mω =

ω �= 0 in T . It was shown in [13] that if ω is m-cyclic in T for some integer m � 2,
then for any k ∈ Z ,

ω +2kπ = 2mnω +2mn−qνπ (2)

for some n ∈ N , q ∈ {0, · · · ,m−1} and ν ∈ Z\2Z . Also, if ω is cyclic, then ω +π is
acyclic, i.e., is not m-cyclic in T for any integer m .

Let

Pn,k(·) := ∏
n>�>k

P
(
2�·
)

= P
(
2n−1·)P(2n−2·) · · ·P(2k+1·

)
, ∀ k,n ∈ Z.

For the vector-stability of refinable vectors, Zhang and Sun gave some necessary
and sufficient conditions [32, 33]. However, they considered only the case of single vec-
tor refinable vectors. In this paper, we extend their results to multiple vector refinable
vectors.
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Let Φ = (Φ1, · · · ,Φn) , where Φ j ∈ L2(R)(r), 1 � j � n . We denote by S0(Φ) the
linear span of {Φ j(· − k) : 1 � j � n, k ∈ Z} and by S(Φ) the closure of S0(Φ) in
L2(R)(r) . Define

lenS(Φ) := min{�Ψ : S(Ψ) = S(Φ)}.
Our main result is the following.

THEOREM 1. Assume that Φ = (Φ1, · · · ,Φn) is a compactly supported solution
of the refinement equation (1) and lenS(Φ) = n. Then Φ is vector-stable if and only if
for every λ ∈ Cn\{0} ,

(i) if λ Φ̂(0) = 0 , then there exists n ∈ Z+ so that λPn(0)P(π) �= 0 ;

(ii) if λP(ω) = 0 for some ω ∈ R , then λP(ω + π) �= 0 ;

(iii) for any integer m � 2 and any ω ∈ R which is m-cyclic in T , there exist n ∈ N

and q ∈ {0, · · · ,m−1} so that

λPmn,q(ω)P(2qω + π) �= 0.

REMARK 1. Though Theorem 1 looks much like Theorem 1 in [13], they solve
different problems. One of them gives a necessary and sufficient condition for refin-
able vectors to be vector-stable, another one gives a necessary and sufficient condition
for refinable vectors to be ordinarily-stable. For the difference between two types of
stability see [32, Example 4.1].

2. Proof of the main result

In this section, we give the proof of the main result. We begin with some prelimi-
nary results.

Given a vector function F = ( f1, · · · , fr)T on R , we set

F0 := ∑
k∈Z

r

∑
p=1

| fp(·− k)|.

Then F0 is a 1-periodic function. Define

L 2(R)(r) :=
{

F = ( f1, · · · , fr)T : ‖F‖L 2(R)(r) := ‖F0‖L2([0,1)) < ∞
}

.

If r = 1, L 2(R)(1) is written as L 2(R) for an abbreviation.
Given a function φ and a sequence a , the semi-convolution a ∗sd φ is the sum

∑
k∈Z

a(k)φ(·− k).

Next we give a necessary and sufficient condition on the vector-stability of single
vector in L 2(R)(r) .
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PROPOSITION 1. [32, Theorem 3.3] Let Ψ = (ψ1, · · · ,ψr)T ∈L 2(R)(r) . Then Ψ
is vector-stable if and only if

∑
k∈Z

r

∑
p=1

|ψ̂p(ω +2kπ)|2 > 0, for all ω ∈ R.

The following proposition shows that ψ∗sd maps �1(Z) to L 2(R) and maps
�2(Z) to L2(R) .

PROPOSITION 2. [16, Theorem 2.1] If ψ ∈ L 2(R) , then

‖ψ ∗sd c‖L 2(R) � ‖ψ‖L 2(R)‖c‖�1(Z)

and
‖ψ ∗sd c‖L2(R) � ‖ψ‖L 2(R)‖c‖�2(Z).

The following lemma is the generalized form of Proposition 2.

LEMMA 1. If Ψ = (ψ1, · · · ,ψr)T ∈ L 2(R)(r) , then

‖Ψ∗sd c‖L 2(R)(r) �
√

r‖Ψ‖L 2(R)(r)‖c‖�1(Z) (3)

and
‖Ψ∗sd c‖L2(R)(r) � ‖Ψ‖L 2(R)(r)‖c‖�2(Z). (4)

Proof. Since

‖Ψ∗sd c‖L 2(R)(r) = ‖(Ψ∗sd c)0‖L2([0,1)) =

∥∥∥∥∥∑
k∈Z

r

∑
p=1

(ψp ∗sd c)(·− k)

∥∥∥∥∥
L2([0,1))

�
r

∑
p=1

∥∥∥∥∥∑
k∈Z

(ψp ∗sd c)(·− k)

∥∥∥∥∥
L2([0,1))

=
r

∑
p=1

∥∥ψp ∗sd c
∥∥

L 2(R) ,

by Proposition 2, we have

‖Ψ∗sd c‖L 2(R)(r) �
r

∑
p=1

‖ψp‖L 2(R)‖c‖�1(Z) = ‖c‖�1(Z)

r

∑
p=1

‖(ψp)0‖L2([0,1))

� ‖c‖�1(Z)
√

r

∥∥∥∥∥ r

∑
p=1

(ψp)0

∥∥∥∥∥
L2([0,1))

=
√

r‖Ψ‖L 2(R)(r)‖c‖�1(Z).

This proves (3).
(4) follows from [32, Lemma 3.1]. �
Let F ∈ L2(R)(r) , G ∈ L 2(R)(r) and c(F,G)(k) = 〈F,G(·− k)〉L2(R)(r) . We have

following lemma.
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LEMMA 2. The following inequality holds:

‖c(F,G)‖�2(Z) � ‖F‖L2(R)(r)‖G‖L 2(R)(r) . (5)

Proof. For two sequences a and b , let

〈a,b〉�2(Z) = ∑
k∈Z

a(k)b(k).

For any finitely supported sequence b , we obtain

〈c(F,G),b〉�2(Z) = 〈F,G∗sd b〉L2(R)(r) .

By Lemma 1, we have

|〈c(F,G),b〉�2(Z)| � ‖F‖L2(R)(r)‖G∗sd b‖L2(R)(r) � ‖F‖L2(R)(r)‖G‖L 2(R)(r)‖b‖�2(Z).

This proves (5). �

Now, we give a necessary and sufficient condition on the vector-stability of multi-
ple vectors in L 2(R)(r) .

THEOREM 2. Let Φ = (Φ1, · · · ,Φn) , where Φ j ∈ L 2(R)(r), 1 � j � n. Then Φ
is vector-stable if and only if for any ξ ∈ R , the sequences

{
Φ̂ j(ξ +2πk) : k ∈ Z

}
( j = 1, · · · ,n) are linearly independent.

Proof. (⇒) . We prove this by contradiction. If, for some ξ ∈ R , the sequences{
Φ̂ j(ξ +2πk) : k ∈ Z

}
( j = 1, · · · ,n ) are linearly dependent, then there exist constants

r j ( j = 1, · · · ,n ), not all zero, such that

n

∑
j=1

r jΦ̂ j(ξ +2πk) = 0 for all k ∈ Z.

Let Φ̃ := ∑n
j=1 r jΦ j . Then by Proposition 1, Φ̃ is not vector-stable, namely, Φ1, · · · ,Φn

∈ L 2(R)(r) are not vector-stable. This proves “(⇒)”.
(⇐) . Given a =

{
a j,k : 1 � j � n, k ∈ Z

} ∈ �2(Z) , then by Lemma 1∥∥∥∥∥ n

∑
j=1

∑
k∈Z

a j,kΦ j(·− k)

∥∥∥∥∥
2

L2(R)(r)
=

∥∥∥∥∥ n

∑
j=1

a j ∗sd Φ j

∥∥∥∥∥
2

L2(R)(r)
� n

n

∑
j=1

∥∥a j ∗sd Φ j
∥∥2

L2(R)(r)

� n
n

∑
j=1

‖Φ j‖2
L 2(R)(r)‖a j‖2

�2(Z) � nC2

n

∑
j=1

‖a j‖2
�2(Z)

= nC2‖a‖2
�2(Z),
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where C2 = max
{
‖Φ1‖2

L 2(R)(r)
, · · · ,‖Φn‖2

L 2(R)(r)

}
and a j = {a j(k) = a j,k : k ∈ Z}

(1 � j � n ).

Note that Φ1, · · · ,Φn ∈ L 2(R)(r) , we have
{

Φ̂ j(ξ +2πk) : k ∈ Z

}
∈ �2 (Z) (1 �

j � n ). Since the sequences
{

Φ̂ j(ξ +2πk) : k ∈ Z

}
(1 � j � n ) are linearly indepen-

dent, their Gram matrix ([Φ j,Φk](ξ ))1� j,k�n is nonsingular for ξ ∈ T and has its all
entries in B . Here

B =

{
∑
k∈Z

ake
−2πkiξ : a = {ak : k ∈ Z} ∈ �1 (Z) is a sequence

}
.

By Wiener’s lemma, the inverse matrix of ([Φ j,Φk](ξ ))1� j,k�n also has its all entries

in B . Take b j,k ∈ �1 (Z) ( j,k = 1, · · · ,n ) such that the matrix
(
b̂ j,k(ξ )

)
1� j,k�n

is the

inverse of ([Φ j,Φk](ξ ))1� j,k�n . For 1 � j � n , let

Ψ j :=
n

∑
k=1

Φk ∗sd b j,k.

Then by Lemma 1, Ψ j ∈ L 2(R)(r) and for 1 � j,m � n

[Ψ j,Φm](ξ ) =
n

∑
k=1

b̂ j,k(ξ )[Φk,Φm](ξ ) = δ j,m for all ξ ∈ T.

Hence 〈
Ψ j,Φk(·−α)

〉
= δ j,kδ0,α

and

a j,k =

〈
n

∑
m=1

∑
α∈Z

am,α Φm(·−α),Ψ j(·− k)

〉
for all1 � j � n, k ∈ Z.

Therewith, by Lemma 2

‖a‖2
�2(Z) =

n

∑
j=1

‖a j‖2
�2(Z)

�
n

∑
j=1

∥∥∥∥∥ n

∑
m=1

∑
α∈Z

am,α Φm(·−α)

∥∥∥∥∥
2

L2(R)(r)
‖Ψ j‖2

L 2(R)(r)

=

∥∥∥∥∥ n

∑
m=1

∑
α∈Z

am,α Φm(·−α)

∥∥∥∥∥
2

L2(R)(r)

n

∑
j=1

‖Ψ j‖2
L 2(R)(r) ,

where a j = {a j(k) = a j,k : k ∈ Z} (1 � j � n ). Let C1 = 1/(∑n
j=1 ‖Ψ j‖2

L 2(R)(r)
) .

Then C1‖a‖2
�2(Z) � ‖∑n

m=1 ∑α∈Z am,α Φm(·−α)‖2
L2(R)(r) . From the above argument, Φ

is vector-stable. �



VECTOR-STABILITY OF MULTIPLE VECTOR REFINABLE VECTORS 163

Denote by Π(C) the ring of polynomials over C . Let S be the linear space of all
sequences h : Z → C . For θ ∈ C\ {0} , the sequence given by

hθ : k → θ k, k ∈ Z,

is an element of S , which we shall denote by hθ . We define τh = h(·+ 1) . If p ∈
Π(C), p(x) = ∑k�0 akxk , then p induces the linear partial difference operator p(τ) :=
∑k�0 akτk . Let P = (pi j)1�i�m,1� j�n be a matrix with all its entries pi j ∈ Π(C) . For
(h1, · · · ,hn) ∈ Sn , consider the system of linear homogeneous partial difference equa-
tions

n

∑
j=1

pi j(τ)h j = 0, i = 1, · · · ,m.

All the solutions to this system of equations form a subspace of Sn which we shall
denote by τ(P) . We have the following proposition.

PROPOSITION 3. [20, Theorem 2.1] Let P be an m×n matrix whose entries are
elements of Π(C) . Then the following conditions are equivalent.

(i) τ(P) �= 0.

(ii) There exist some θ ∈ C\{0} and (a1, · · · ,an) ∈ Cn\{0} such that

(a1hθ , · · · ,anhθ ) ∈ τ(P).

Let ϒ1, · · · ,ϒn ∈ L2(R) or ϒ1, · · · ,ϒn ∈ L2(R)(r) . Assumption that ϒ1, · · · ,ϒn are
compactly supported. We define

K(ϒ1, · · · ,ϒn) :=

{
(h1, · · · ,hn) ∈ Sn :

n

∑
j=1

[ϒ j,h j] = 0

}

and

H(ϒ1, · · · ,ϒn) :=

{
n

∑
j=1

[ϒ j,h j] : (h1, · · · ,hn) ∈ Sn

}
.

Here, [ϒ j,h j] := ∑k∈Z ϒ j(·− k)h j(k) .
Let Φ1, · · · ,Φn ∈ L2(R)(r) be compactly supported. The following lemma gives a

characterization for K(Φ1, · · · ,Φn) .

LEMMA 3. There exists a matrix P with n columns whose entries are elements of
Π(C) such that K(Φ1, · · · ,Φn) = τ(P) .

Proof. Let G = (−1,1) . Since R = ∪k∈Z(G + k) , we have that (h1, · · · ,hn) ∈
K(Φ1, · · · ,Φn) if and only if

τα

(
n

∑
j=1

[Φ j,h j]

)∣∣∣∣∣
G

= 0, ∀ α ∈ Z.
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Observe that τα [F,h] = [F,ταh] . Hence, (h1, · · · ,hn) ∈ K(Φ1, · · · ,Φn) if and only if

n

∑
j=1

∑
k∈Z

(ταh j)(k)Φ j(·− k)

∣∣∣∣∣
G

= 0, ∀ α ∈ Z. (6)

Since Φ1, · · · ,Φn are compactly supported, there exists a positive integer N such that
|k| > N implies

Φ j(·− k)|G = 0, 1 � j � n.

This shows that the restriction of the linear space H(Φ1, · · · ,Φn) to G is finite dimen-
sional. Choose a basis Ψ1, · · · ,Ψm for it. For k ∈ Z, 1 � j � n , Φ j(·− k)|G can be
uniquely represented as follows:

Φ j(·− k)|G =
m

∑
i=1

ai j(k)Ψi, (7)

where the coefficients ai j(k) ∈ C and are zero for |k| > N . In terms of (7), (6) is
equivalent to

m

∑
i=1

(
n

∑
j=1

∑
|k|�N

ai j(k)ταh j(k)

)
Ψi = 0, ∀ α ∈ Z. (8)

Note that ταh(k) = h(k + α) = τkh(α) . Since Ψ1, · · · ,Ψm are linearly independent,
(8) is equivalent to

n

∑
j=1

(
∑

|k|�N

ai j(k)τk

)
h j = 0, i = 1, · · · ,m.

Let P = (pi j)1�i�m,1� j�n , where

pi j(x) = ∑
|k|�N

ai j(k)xk+N , i = 1, · · · ,m, j = 1, · · · ,n.

Then we have K(Φ1, · · · ,Φn) = τ(P) . �
The following proposition is a consequence of the Poisson summation formula.

PROPOSITION 4. [20, Lemma 3.2] Let φ be a compactly supported distribution
on R . Then for a given ω ∈ C , the sequence {eikω : k ∈ Z} lies in K(φ) if and only if

φ̂(ω +2kπ) = 0, ∀ k ∈ Z.

Based on Proposition 4, we give the following lemma.

LEMMA 4. Let Ψ = (ψ1, · · · ,ψr)T ∈ L2(R)(r) be compactly supported. Then for
a given ω ∈ C , the sequence {eikω : k ∈ Z} lies in K(Ψ) if and only if

Ψ̂(ω +2kπ) = 0, ∀ k ∈ Z.
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Proof. (⇒) If {eikω : k∈Z} ∈K(Ψ) , then {eikω : k∈Z}∈K(ψ j), 1 � j � r . By
Proposition 4, we have ψ̂ j(ω +2kπ) = 0, 1 � j � r , k ∈ Z , that is Ψ̂(ω +2kπ) = 0,
k ∈ Z .

(⇐) If Ψ̂(ω + 2kπ) = 0, k ∈ Z , then ψ̂ j(ω + 2kπ) = 0, 1 � j � r , k ∈ Z . By
Proposition 4, we have {eikω : k ∈ Z} ∈ K(ψ j) , 1 � j � r , that is {eikω : k ∈ Z} ∈
K(Ψ) . �

Now, we give two equivalent conditions of K(Φ1, · · · ,Φn) �= 0.

LEMMA 5. Let Φ1, · · · ,Φn ∈ L2(R)(r) be compactly supported. Then the follow-
ing conditions are equivalent.

(i) K(Φ1, · · · ,Φn) �= 0 .

(ii) There exist some θ ∈ C\{0} and (a1, · · · ,an) ∈ C
n\{0} such that

(a1hθ , · · · ,anhθ ) ∈ K(Φ1, · · · ,Φn). (9)

(iii) There exists some ω ∈ C such that the sequences
{

Φ̂ j(ω +2kπ) : k ∈ Z

}
( j =

1, · · · ,n) are linearly dependent.

Proof. By Lemma 3, K(Φ1, · · · ,Φn) = τ(P) for some matrix P of polynomials.
Hence, the equivalence between (i) and (ii) follows from Proposition 3.

Suppose (9) is true. Choose ω ∈ C so that eiω = θ , and set

Φ̃ :=
n

∑
j=1

a jΦ j. (10)

Then (9) and (10) imply

∑
k∈Z

θ kΦ̃(·− k) = ∑
k∈Z

θ k
n

∑
j=1

a jΦ j(·− k) =
n

∑
j=1

[Φ j,a jhθ ] = 0.

In other words, hθ ∈ K(Φ̃) . Hence, by Lemma 4,

̂̃Φ(ω +2kπ) = 0, ∀ k ∈ Z.

It follows from (10) that

n

∑
j=1

a jΦ̂ j(ω +2kπ) = 0, ∀ k ∈ Z. (11)

Since (a1, · · · ,an) �= 0, this proves that (ii) implies (iii).
Finally, suppose (iii) holds. Then there exists some (a1, · · · ,an) ∈ Cn\{0} such

that (11) is true. With θ = eiω and Φ̃ given by (10), we obtain

̂̃Φ(ω +2kπ) = 0, ∀ k ∈ Z.
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Hence, hθ ∈ K(Φ̃) . Thus (9) follows. �
A compactly supported Φ = (Φ1, · · · ,Φn) (Φ j ∈ L2(R)(r), 1 � j � n ) is said to

have linearly independent shifts if the map

(a1, · · · ,an) →
n

∑
j=1

∑
k∈Z

a j(k)Φ j(·− k)

is one-to-one on CZ . S0(Φ) denotes the linear span of {Φ j(·− k) : k ∈ Z,1 � j � n} .
Let [rΦ,sΦ] be the smallest integer-bounded interval containing suppΦ . The length of
the interval [rΦ,sΦ] is

�(Φ) = sΦ − rΦ.

We call �(Φ) the length of Φ . Let Φ = (Φ1, · · · ,Φn) be a finite collection of compactly
supported vector functions on R . The length of Φ , denoted �(Φ) , is defined by

�(Φ) =
n

∑
j=1

�(Φ j).

The following lemma shows that a compactly supported vector function is linear
combination of a collection of linearly independent compactly supported vector func-
tions.

LEMMA 6. Let Φ = (Φ1, · · · ,Φn) (Φ j ∈ L2(R)(r) , 1 � j � n) be compactly sup-
ported. Then there exists a compactly supported Ψ with the following properties:

(i) The shifts of the Ψ are linearly independent;

(ii) Φ ⊂ S0(Ψ) .

Proof. If K(Φ1, · · · ,Φn) = 0, then we may take Ψ = Φ .
Suppose K(Φ1, · · · ,Φn) �= 0. By Lemma 5, there exist some θ ∈ C\{0} and

(a1, · · · ,an) ∈ Cn\{0} such that

(a1hθ , · · · ,anhθ ) ∈ K(Φ1, · · · ,Φn),

that is
n

∑
j=1

∑
k∈Z

a jθ kΦ j(·− k) = 0. (12)

After shifting the Φ j appropriately, we may assume that all rΦ j = 0. Then sΦ j = �(Φ j) .
Let

� = max{�(Φ j) : a j �= 0}.
For simplicity, we assume that a1 �= 0 and �(Φ1) = � . Let ρ = ∑n

j=1 a jΦ j and Ψ =
∑∞

k=0 θ kρ(·− k). By our choice of ρ , we deduce from (12) that

∑
k∈Z

θ kρ(·− k) = 0.
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Let Ψ = (Ψ,Φ2, · · · ,Φn) . We have

Ψ−θΨ(·−1) =
∞

∑
k=0

θ kρ(·− k)−
∞

∑
k=0

θ k+1ρ(·− k−1) = ρ =
n

∑
j=1

a jΦ j.

Since a1 �= 0, we have Φ1 ∈ S0(Ψ) , that is Φ ⊂ S0(Ψ) . Clearly, suppΨ ⊆ [0,∞) . Note
that

Ψ(x) =
∞

∑
k=0

θ kρ(x− k) =
n

∑
j=1

∞

∑
k=0

a jθ kΦ j(·− k) =
n

∑
j=1

∑
k∈Z

a jθ kΦ j(·− k)

= ∑
k∈Z

θ kρ(x− k) = 0, x > �(Φ)−1.

Consequently, suppΨ ⊆ [0, �−1] , that is �(Ψ) < �(Φ) . Repeat the preceding process
until �(Ψ) achieves its minimum. The resulting vector function Ψ has the property
that the shifts of Ψ are linearly independent. �

Proof of Theorem 1. Suppose that Φ is vector-stable. Note that every element of
2πZ\ {0} has the form 2n+1(2k+1)π for some n ∈ Z+ and k ∈ Z . Then we have

Φ̂(2n+1(2k+1)π) = Pn(0)P(π)Φ̂((2k+1)π).

If the condition (i) is false, then
{

λ Φ̂(2kπ) : k ∈ Z

}
= 0. Also, if the condition (ii) is

false, then
λ Φ̂(2ω +4kπ) = λP(ω)Φ̂(ω +2kπ) = 0, ∀ k ∈ Z

and
λ Φ̂(2ω +2π +4kπ) = λP(ω + π)Φ̂(ω +2kπ + π) = 0, ∀ k ∈ Z.

Therefore, we have {λ Φ̂(2ω +2kπ) : k ∈ Z} = 0.
Now, if P does not satisfy condition (iii), then we show that

λ Φ̂(ω +2kπ) = 0, ∀ k ∈ Z.

Suppose ω is m-cyclic in T for some integer m � 2, and let k ∈ Z be given. Then by
(2), there exist n ∈ N , q ∈ {0, · · · ,m−1} and ν ∈ Z\2Z such that

λ Φ̂(ω +2kπ) = λ Φ̂(2mnω +2mn−qνπ) = λPmn,q(ω)Φ̂(2q+1ω +2νπ)

= λPmn,q(ω)P(2qω + νπ)Φ̂(2qω + νπ).

So, λ Φ̂(ω + 2kπ) is zero if condition (iii) is not satisfied. By arbitrariness of k , we
have {λ Φ̂(2ω +2kπ) : k ∈ Z} = 0. This completes the proof of necessity.

To prove sufficiency, suppose that the shifts of Φ is not vector-stable. Moreover,
assume that P satisfies conditions (i) and (ii). Then we show that (iii) is violated.

Since the shifts of Φ is not vector-stable, by Theorem 2, there exists ω0 ∈ R such
that

λ Φ̂(ω0 +2kπ) = 0, ∀ k ∈ Z.
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Lemma 6 implies that Φ is a finite linear combination of the shifts of the Ψ . In the
Fourier domain, this implies the existence of a trigonometric polynomial matrix U
satisfying

Φ̂(ω) = U(ω)Ψ̂(ω). (13)

Note that the shifts of the Ψ are linearly independent. Then by (13), we get λU(ω0) =
0. Since that lenS(Φ) = n , we have that detU is a non-trivial trigonometric poly-
nomial, which in turn implies that the rational trigonometric polynomials matrix B is
well-defined by the relation

U(2ω)B(ω) = P(ω)U(ω). (14)

Therewith, equation (14) implies that

λP
(ω0

2

)
U
(ω0

2

)
= λU(ω0)B

(ω0

2

)
= 0

and
λP
(ω0

2
+ π
)
U
(ω0

2
+ π
)

= λU(ω0)B
(ω0

2
+ π
)

= 0.

By condition (ii), it follows that U is singular at either ω0
2 or ω0

2 + π . Since detU is a
trigonometric polynomial, it has only finitely many zeros in T+ iR and the arguments
used in the proof of [21, Lemma 1] imply that 2mω0 −ω0 ∈ 2πZ for some m � 2. If
ω0 = 0, then λ Φ̂(0) = 0 and (i) implies that λPn(0)P(π) is not zero for some n∈ Z+ .
Evidently,

λPn(0)P(π)U(π) = U(0)Bn(0)B(π) = 0.

But this is a contradiction, since π is acyctic, so detU(π) �= 0.
Accepting the existence of the integer m � 2 and the ω0 is m-cyclic, we proceed

to prove that this violates condition (iii).
Observe that

2mnω0−ω0 =
2mn−1
2m −1

(2mω0−ω0) ∈ 2πZ.

Then λU(ω0) = 0 implies that λU(2mnω0) = 0. Therefore, by (14) and the 2π peri-
odicity of U

λPmn,q(ω0)P(2qω0 + π)U(2qω0 + π)

= λPmn,q(ω0)U(2q+1ω0 +2π)B(2qω0 + π)

= λPmn,q(ω0)U(2q+1ω0)B(2qω0 + π)
= λU(2mnω0)Bmn,q(ω0)B(2qω0 + π)
= 0,

where

Bn,k := ∏
n>�>k

B
(
2�·
)

= B
(
2n−1·)B(2n−2·) · · ·B(2k+1·

)
, ∀ k,n ∈ Z.
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Since 2qω0 + π is acyclic, detU(2qω0 + π) �= 0, so

λPmn,q(ω0)P(2qω0 + π) = 0

for every n ∈ N and q ∈ {0, · · · ,m−1} . �

3. Results and discussion

A wavelet system is generally derived from a refinable function via a multiresolu-
tion analysis. Stability is an important property of refinable function. In this paper, we
discuss the vector-stability of refinable vectors and we give a necessary and sufficient
condition for refinable vectors to be vector-stable. Our results improve some known
ones. Studying vector-stability of refinable vectors in Lp(R)(r) is the goal of future
work.
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