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FURTHER EXPLORATION OF RIEMANN’S FUNCTIONAL EQUATION

MICHAEL MILGRAM

Abstract. A previous exploration of the Riemann functional equation that focussed on the critical

line, is extended over the complex plane. Significant results include a simpler derivation of the

fundamental equation obtained previously, and its generalization from the critical line to the

complex plane. A simpler statement of the relationship that exists between the real and imaginary

components of ζ (s) and ζ ′(s) on opposing sides of the critical line is developed, reducing to a

simpler statement of the same result on the critical line. An analytic expression is obtained for

the sum of the arguments of ζ (s) on symmetrically opposite sides of the critical line, reducing to

the analytic expression for arg(ζ (1/2 + iρ)) first obtained in the previous work. Relationships

are obtained between various combinations of |ζ (s)| and |ζ ′(s)| , particularly on the critical

line, and it is demonstrated that the difference function arg(ζ (1/2 + iρ))− arg(ζ ′(1/2 + iρ))
uniquely defines |ζ (1/2 + iρ)| . A comment is made about the utility of such results as they

might apply to putative proofs of Riemann’s Hypothesis (RH).

1. Introduction

In a previous report [5, Milgram], hereinafter referred to as I, a variant of the

Riemann functional equation was studied and a number of results were discovered that

were either new, or well-buried in the literature. Notable was the derivation and/or

discovery of:

• an analytic expression for the argument of ζ (s) on the critical line s = 1/2 + iρ
through the use of a differential equation;

• a singular linear transformation that exists between the real and imaginary com-

ponents of ζ (1/2 + iρ) and the corresponding components of its derivative

ζ ′(1/2 + iρ) ;

• “anomalous zeros” whose existence calls into question several well-accepted re-

sults; and

• various estimates for the location and density of zeros on the critical line.

The purpose of this work is to report on additional properties that have been found

through further study of this functional equation, primarily a simplified form of both the

linear transformation referred to and its derivation, its extension over the entire complex

plane, and the derivation of an analytic expression for (the sum of) the argument of
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ζ (s) on symmetrically opposite sides of the critical line over the complex plane, again

obtained through the use of a differential equation. Additionally, various relationships

between |ζ (1/2+ iρ)| , |ζ ′(1/2+ iρ)| as well as the real and imaginary components of

ζ (s) and ζ ′(s) on opposite sides of the critical line are developed, and some criteria are

deduced that must be satisfied at s = s0 (where ζ (s0) = 0) anywhere in the complex

plane.

2. Recap and notation

The notation defined in I will be used here (see Appendix) with some extensions

– particularly the specification of functional dependence. In preference to studying the

complex function of a complex variable in reference to Riemann’s function ζ (s) over

the complex s plane, I prefer to utilize its real and imaginary components, each treated

as (semi-) independent real functions of a complex variable s = σ + iρ (σ ,ρ ∈ ℜ) ,

for the simple reason that many of the properties being studied must (at a fundamental

computational level) be manipulated in terms of these functions. Thus, I write

ζ (s) ≡ ζR(σ + iρ)+ iζI(σ + iρ) (2.1)

and, with due regard to the property that

ζ (1− s) = ζR(1−σ − iρ)+ iζI(1−σ − iρ)

= ζR(1−σ + iρ)− iζI(1−σ + iρ) (2.2)

and to distinguish results valid over the entire complex s plane from those valid only

on the critical line σ = 1/2, I write ζ (s) to mean the former and ζ to mean the latter,

with the extension that, for any (relevant) function,

ζ̃ (s) ≡ ζ (1−σ + iρ) 6= ζ (1−σ − iρ), (2.3)

and ρ > 0 always. Throughout, derivatives denoted by ′ refer to the operation ∂
∂ρ

unless the argument of the operand is specified as s , in which case it refers to d
ds

.

Thus by considering its real and imaginary parts, (see the Appendix for a summary

of symbols), the traditional form of Riemann’s functional equation reads

ζ̃R(s) =
1

2πσ
(g2(s)ζR(s)+ g1(s)ζI(s))

ζ̃I(s) =
1

2πσ
(g1(s)ζR(s)−g2(s)ζI(s)) (2.4)

or, more succinctly

ζ̃R(s) =
1

2πσ
ζp(s) (2.5)

ζ̃I(s) = − 1

2πσ
ζm(s) (2.6)
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from the polar form of which (see Appendix and I) the relationship between the argu-

ments of ζ (s) on symmetrically opposite sides of the critical line immediately follows:

tan(α̃(s)) ≡ ζ̃I(s)/ζ̃R(s) = − tan(α(s))g2(s)−g1(s)

tan(α(s))g1(s)+ g2(s)
. (2.7)

The inverse of (2.4) is

ζR(s) =
1

8

πσ (ζ̃ I(s)g1(s)+ ζ̃R(s)g2(s))

|Γ(s)|2 c0

(2.8)

ζI(s) = −1

8

πσ (ζ̃ I(s)g2(s)− ζ̃R(s)g1(s))

|Γ(s)|2 c0

. (2.9)

Squaring (2.8) and (2.9) then adding, eventually produces an expression equivalent

to relatively well-known (see for example [10, Spira, Eq. (2)]) expressions for the ratio

of magnitudes of ζ (s) on opposite sides of the critical line:

|ζ (s)|2

|ζ̃ (s)|2
=

(2π)2σ

2 (cos(π σ)+ cosh(π ρ)) |Γ(s)|2
≡ Φ(s) . (2.10)

For σ = 1/2 in (2.10), Φ = 1 (see [8, NIST, Eq. (5.4.4)]).

The variant form of the functional equation, as utilized in I is

L(s) ≡ ζ ′(1− s)

ζ ′(s)
+ χ(s) =

f (s)ζ (1− s)

ζ ′(s)
≡ T(s) (2.11)

where

χ(s) =
2cos

(π s

2

)
Γ(s)

(2π)s
(2.12)

valid for all s , and f is defined in (7.23). Recall that in I it was proven that ζ ′(1/2 +
iρ) 6= 0, except possibly at a zero, and, assuming the Riemann Hypothesis (RH), Spira

[11] has shown that ζ ′(s) 6= 0 for all σ < 1/2.

Throughout, in an attempt to reduce results with many terms into a comprehensible

whole, I adhere to the convention that any symbol containing one of the 8 primitive ζ

functions (real and imaginary components of ζ (s), ζ̃ (s) and derivatives thereof) some-

where in its structure will always be represented by a variation of the letter ζ , whereas

if a symbol does not contain the letter ζ , (e.g. Φ(s) in (2.10)), it is usually a function of

other variables, notably Γ and its derivatives, as well as trigonometric and hyperbolic

functions of the variables σ and ρ , with the notable exception that the argument(s) of

ζ and/or ζ ′ may also appear. As well, many of the calculations are rather lengthy and

require the use of a computer algebra program. Here I use the computer program Maple

[2] extensively and include the annotation “(Maple)” at the appropriate location(s) as

the justification and source of a particular result.
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3. Over the whole plane

3.1. The real and imaginary parts of ζ (s)

Many of the following results require fairly lengthy derivation and considerable

manipulation using a computer algebra program. By equating the real and imaginary

parts of (2.11), it is possible to relate the real and imaginary functions ζ̃R(s) and ζ̃I(s)
with the other 6 components – see (7.51) and (7.52). After incorporating (2.4), we find

(Maple) a number of interesting, useful and simpler variations:

ζ̃R(s) = − 4c0

(p1
2(s)+ p2

2(s))

(
1

(2π)σ
[h2(s)ζ ′

I (s)+ h1(s)ζ ′
R(s)]

−2 [ζ̃ ′
I (s) p1(s)− ζ̃ ′

R(s) p2(s)]

)
(3.1)

and

ζ̃I(s) =
4c0

(p1(s)
2+p2(s)

2)

(
1

(2π)σ
[h1ζ ′

I (s)−h2(s)ζ
′
R(s)]−2[ζ̃ ′

I (s)p2(s)+ζ̃ ′
R(s)p1(s)]

)

(3.2)

which together give the relationship between the components of ζ̃ (s) and their counter-

parts symmetrically across the critical line, demonstrating, as suggested in (2.11), that

knowledge of the derivatives on both sides of the critical line, specifies ζ̃ (s) and hence

ζ (s) itself via the transformation σ → 1−σ . In I, it was noted that when relationships

such as (3.1) and (3.2) are limited to the critical line, the transformation relationship is

singular and thus non-invertible (e.g. see (4.6) and (4.7) below). For arbitrary values of

s 6= 1/2 + iρ however, we find (Maple) the inverted transformation that defines ζ ′(s)

in terms of ζ̃ (s) and ζ̃ ′(s) – its components on the opposite side of the critical line:

ζ ′
R(s) = − (2π)σ

64 |Γ|2 c2
0

(
8c0 [ ζ̃ ′

I(s)g1(s)+ ζ̃ ′
R(s)g2(s)]+ h2(s) ζ̃ I(s) + h1(s) ζ̃R(s)

)

(3.3)

and

ζ ′
I (s) =

(2π)σ

64 |Γ|2 c2
0

(
8c0 [ ζ̃ ′

I (s)g2(s)− ζ̃ ′
R(s)g1(s)]−h2(s) ζ̃R(s)+ h1(s) ζ̃I(s) ,

)

(3.4)

along with the inverse(s):

ζ̃ ′
R(s) = −g1(s)ζ

′
I (s)+ ζ ′

R (s)g2(s)

2πσ
+

h3(s)ζI(s)−h4(s)ζR(s)

16πσ c0

(3.5)

and

ζ̃ ′
I (s) =

g2(s)ζ
′
I (s)−g1(s)ζ

′
R(s)

2πσ
+

h4(s)ζI(s)+ h3(s)ζR(s)

16πσ c0

. (3.6)
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Further, by appropriate (and patient) manipulation of the same equations, we find

(Maple)

∣∣ζ ′(s)
∣∣2 =

πσ

g1(s)

(
[ζ ′

I(s) ζ̃R(s)+ ζ ′
R(s) ζ̃ I(s)]q1(s)+ [−ζ ′

I(s) ζ̃ I(s)+ ζ ′
R(s) ζ̃R(s)]q2(s)

−2ζ ′
I(s) ζ̃ ′

R(s)−2ζ ′
R(s) ζ̃ ′

I(s)
)

. (3.7)

Applying the polar form of the the various elements to the ratio of (3.1) and (3.2),

we find (Maple) an equivalent form of (2.7)

tan(α̃(s)) =
e−

π ρ
2 sin(−π σ/2−α(s)+ ρθ(s))+ e

π ρ
2 sin(π σ/2−α(s)+ ρθ(s))

e
π ρ
2 cos(π σ/2−α(s)+ ρθ(s))+ e−

π ρ
2 cos(−π σ/2−α(s)+ ρθ(s))

.

(3.8)

In a sense, (2.7) and/or (3.8) are functional equations for the argument of ζ (s) .

Similarly, applying the polar forms to (3.3) and (3.4) we find

tan(β (s)) = − 8 ζ̃r(s)c0[ tan(β̃ (s))g2(s)−g1(s)]+ h1(s) tan(α̃(s))−h2(s)

8 ζ̃r(s)c0[ tan(β̃ (s))g1(s)+ g2(s)] + h2(s) tan(α̃(s))+ h1(s)
(3.9)

and the inverse

tan(β̃ (s)) = −8c0 ζr(s)(tan(β (s))g2(s)−g1(s)) + tan(α(s))h4(s)+ h3(s)

8c0 ζr(s)(tan(β (s))g1(s)+ g2(s)) − tan(α(s))h3(s)+ h4(s)
(3.10)

where

ζ̃r(s) ≡ ζ̃ ′
R(s)/ζ̃R(s) (3.11)

and

ζr(s) ≡ ζ ′
R(s)/ζR(s). (3.12)

Solving (3.9) gives

ζ̃r(s) =
(−tan(α̃(s))− tan(β (s)))h1(s)+ (−tan(α̃(s)) tan(β (s))+ 1)h2(s)

8c0

(
(tan(β̃ (s)) tan(β (s))−1)g1(s)+ (tan(β̃ (s))+ tan(β (s)))g2(s)

)

(3.13)

and/or solving (3.10) gives

ζr(s) =
(tan(α(s))h3(s)−h4(s)) tan(β̃ (s))− tan(α(s))h4(s)−h3(s)

8c0

(
(tan(β̃ (s))g1(s)+ g2(s)) tan(β (s))+ g2(s) tan(β̃ (s))−g1(s)

) (3.14)

results that may be useful elsewhere.
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3.2. The argument of ζ (s)

Motivated by the derivation of Eq. (6.1) of I (see (4.20) below), multiply together

(2.8), (3.3), (2.9) and (3.4) in corresponding pairs to find (Maple)

ζ ′
I (s)ζI(s)+ ζ ′

R(s)ζR(s) = −

(
ζ̃ ′

I(s) ζ̃I(s)+ ζ̃ ′
R(s) ζ̃R(s)

)
|ζ (s)|2

∣∣∣ζ̃ (s)
∣∣∣
2

− p2 |ζ (s)|2
8c0

,

(3.15)

which, after substitution (see Appendix) and simplifications (including (2.10)), can be

written more symmetrically as

ζ̃ ′
I(s) ζ̃I(s)+ ζ̃ ′

R(s) ζ̃R(s)

|ζ̃ (s)|2
+

ζ ′
I (s)ζI(s)+ ζ ′

R(s)ζR(s)

|ζ (s)|2
= −2Ψ2c0 −π sin(π σ)

4c0

,

(3.16)

being the generalization of Eq. (6.1) of I over the complex plane. Employing the same

logic carefully presented in Section 6 of I, and taking the derivatives with respect to ρ ,

it is evident that (3.16) can be interpreted as a differential equation for the sum of the

(continuous) arguments αp(s) ≡ α(s)+ α̃(s) , specifically

∂

∂ρ
αp (σ + iρ) = ln(2π)−ℜ(ψ (σ + iρ))+

π

2

sin(π σ)

cos(π σ)+ cosh(π ρ)
(3.17)

whose solution (Maple) gives

αp(s) = −ℜ

∫ ρ

0
ψ (σ + it) dt − arctan

(
(cos(π σ)−1)sinh(π ρ/2)

cosh(π ρ/2) sin(π σ)

)
+ ρπ + kπ

(3.18)

and, for a specific value of k ,

arg(ζ (s))+ arg(ζ̃ (s)) = αp(s), (3.19)

thereby expressing the sum of arg(ζ (s)) on opposite sides of the critical line, in terms

of simple, basic, well-known functions, reducing to Eq. (6.9) of I when σ = 1/2, taking

into account the identity

arctan(eρπ)− arctan(tanh(ρπ/2)) = π/4 .

See Figure 1 for an example, and note that the right-hand side of (3.17) is always

negative for ρ ≫ 0, implying that, for reasonably large values of ρ , the locus of ζ (s)
always travels in a clockwise direction with increasing ρ in the complex ζ (s) plane

(see Section 9.1 of I).

In the presence of a discontinuity, the value of k included in (3.18) is effectively a

winding number in the complex ζ (s) plane – each time either arg(ζ (s)) or arg(ζ̃ (s))
changes from −π to +π (with increasing ρ ) as the locus of ζ (s) crosses the negative
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axis (ζR(s) < 0 or ζ̃R(s) < 0), k will increase by 2 in order to maintain (the veracity

of) (3.19) over a limited (but continuous) range of ρ . If RH is true, or complex zeros (if

such exist when σ 6= 1/2) are always of even order, odd values of k will never occur,

because at a discontinuity associated with a simple (or odd-order) zero, arg(ζ (s)) only

jumps by odd multiples of π (see Eq. (8.2) of I). Thus, if all zeros of ζ (s) are simple,

the presence of an odd value of k in (3.18) over a continuous range of ρ (as opposed

to a numerical solution at a single value of ρ ) when σ 6= 1/2 would correspond to a

counter-example to the truth of RH, in which case (3.18) could possibly be utilized as

the basis for a test for RH.

Figure 1: Plot of the left and right-hand sides of (3.18) and (3.19) using σ = 1/3 and k = 2 .

Furthermore, although the two results (3.8) and (3.18) do not supply a solution for

α(s) and α̃(s) individually, after applying the identity (4.14) (see below), they do yield

the following identity:

ℑ(LogΓ(s))− arctan
(

tan
(πσ

2

)
tanh

(πρ

2

))
−ρ ln(2π)− kπ (3.20)

= arctan

(
sin(πσ/2)cos(ρθ(s))sinh(πρ/2)+cos(πσ/2)sin(ρθ(s))cosh(πρ/2)

sin(πσ/2)sin(ρθ(s))sinh(πρ/2)−cos(πσ/2)cos(ρθ(s))cosh(πρ/2)

)

(3.21)

= −arctan

(
g1(s)

g2(s)

)
(3.22)

which in turn reduces to the trivial identity (7.15) if the arctan addition rule [8, NIST,

Eq. (4.24.15)] is applied, where (see Eq. (6.12) of I)

ℜ

(∫ ρ

0
ψ (σ + it) dt

)
= ℑ(LogΓ(σ + iρ)) . (3.23)
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In a similar vein, note that the left-hand side of (3.18) is invariant under the substi-

tution σ → 1−σ and the right-hand side is not. Thus, after performing that substitution

and subtracting, we find

tan(ℑ [LogΓ(σ + iρ)−LogΓ(1−σ + iρ)]) = − tanh(π ρ)

tan(π σ)
, (3.24)

or, equivalently

cos(θ (s)− θ̃(s)) =
sin(πσ)

|cos(πσ)|
√

tan2(πσ)+ tanh2(πρ)
(3.25)

neither of which appear in the usual references [8, NIST, Section 5]. In the limit ρ ≫ 1,

(3.25) becomes

cos(θ (s)− θ̃(s)) ∼ sin(πσ) . (3.26)

Operating on (3.24) with ∂
∂σ gives

ℑ [ψ (σ + iρ)+ ψ (1−σ + iρ)] =
π sinh(2π ρ)

cosh(2π ρ)− cos(2π σ)
(3.27)

reducing to a known result [8, NIST, Eq. (5.4.17)] when σ = 1/2. Similarly, operating

on (3.24) with ∂
∂ρ gives

ℜ [ψ (σ + iρ)−ψ (1−σ + iρ)] =
−π sin(2π σ)

cosh(2π ρ)− cos(2π σ)
. (3.28)

Although neither of these appear in the usual references, combining (3.27) and (3.28)

yields the standard reflection formula [8, NIST, Eq. (5.5.4)] for ψ(σ + iρ) , and there-

fore both can alternatively be derived by working backwards from that relationship. See

also Srinivasan and Zvengrowski [12].

4. On the critical line

4.1. Relationships devolving from α(s)

In the case that σ = 1/2, we have α̃(s) = α(s) , and solving (3.8) gives (Maple)

tan(α) =
eπ ρ sin(π/4 + ρθ)− cos(π/4 + ρθ)

eπ ρ cos(π/4 + ρθ)+
√

e2π ρ + 1+ sin(π/4 + ρθ)
(4.1)

or equivalently

tan(α) = −eπ ρ cos(π/4 + ρθ)−
√

e2π ρ + 1+ sin(π/4 + ρθ)

eπ ρ sin(π/4 + ρθ)− cos(π/4 + ρθ)
. (4.2)

On the critical line, the analytic representation of α and therefore arg(ζ ) (see

(3.18) or Eq. (6.15) of I) is

α = −1

2

∫ ρ

0
ℜ(ψ(1/2+ it))dt +

ρ

2
ln(2π)− 9π

8
+

1

2
arctan(eπ ρ)+ k π , (4.3)
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so, for example, (4.2) can also be written

tan

(
1

2
ρθ −

π

8
+

1

2
arctan(eπ ρ)

)
=

eπ ρ cos(π/4+ ρθ )+ sin(π/4+ ρθ )−
√

e2π ρ + 1

−eπ ρ sin(π/4+ ρθ )+ cos(π/4+ ρθ )
.

(4.4)

Because of the definition (7.14), both (3.20) and (4.4) can be interpreted as functional

equations for any of θ (ρ),θ (s) or the imaginary part of the LogGamma function re-

spectively (see (3.23)), without reference to the ζ function at all. In contrast to (4.3)

with (3.23), and based on a well-known result (reproduced as Eq. (2.10) of I), Brent

has recently [1, Section 4] obtained

−arg(ζ (1/2 + iρ)) = −arg(Γ(1/2 + iρ))/2 +
ρ

2
ln(2π) + π/8− 1

2
arctan

(
e−π ρ

)
,

(4.5)

omitting a term equal to −kπ . As discussed in I, the term kπ in (4.3) tallies the zeros of

ζ (1/2+ iρ) . This would also be true of (4.5) only if the term arg(Γ(1/2+ iρ)) in (4.5)

were to be interpreted as the continuous function ℑ(LogΓ(1/2 + iρ)) (see [1, comment

following Eq. (1)]). Figure 2 illustrates the difference between the two interpretations

(also see Appendix, comment following (7.13)).

Figure 2: arg(ζ (1/2+ iρ)) in the vicinity of the first zero, showing the effect of two interpreta-

tions of the first term on the right-hand side of (4.5), as well as the necessity of including terms

±kπ . Both results in the Figure set k = 0.

Also, on the critical line σ = 1/2, ζ̃I = ζI , ζ̃R = ζR and similarly ζ̃ ′
I = ζ ′

I and

ζ̃ ′
R = ζ ′

R . Substituting these identifications into (3.1) and (3.2) we find

ζR

f
=

(
b +

1

2

)
ζ ′

R + aζ ′
I (4.6)
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and
ζI

f
= aζ ′

R −
(

b− 1

2

)
ζ ′

I (4.7)

where a and b are defined in the Appendix ((7.31) and (7.32)). The results (4.6) and

(4.7) are of the same, but simpler (and equivalent) form compared to Eqs. (4.9) of I. As

in I, these two results define a linear, singular transformation between ζ ′ and ζ on the

critical line, because, as is easily shown, the determinant of the transformation matrix

a2 + b2 −1/4 = 0. (4.8)

Further, it is possible to identify the functions a and b by first transforming (4.6)

and (4.7) into their polar counterparts, then writing

cos2(α) = ζ 2
R/(ζ 2

I + ζ 2
R) (4.9)

and substituting the right-hand sides of (4.6) and (4.7) along with (4.8) into (4.9) to

identify

b = cos(2α)/2 (4.10)

from which we correspondingly find

a = sin(2α)/2 . (4.11)

With reference to (7.31) and (7.32), and, relative to (4.2), there exists a simpler

relationship between the polar angles of Γ(1/2 + iρ) and ζ (1/2 + iρ) , that being

sin(2α) =
cos(ρθ )sinh( 1

2
π ρ)− sin(ρθ )cosh( 1

2
π ρ)√

cosh(π ρ)
. (4.12)

Utilizing Eq. (2.9) of I, then yields the following:

cos(2α) =
cosh

(
1
2

π ρ
)

cos(ρθ )+ sinh
(

1
2

π ρ
)

sin(ρθ )√
cosh(π ρ)

, (4.13)

thereby reducing Eq. (2.9) of I to a trivial trigonometric identity:

tan(α) = 1/sin(2α)−1/ tan(2α) . (4.14)

The set (4.12) and (4.13) can be inverted, giving

cos(ρθ ) =
sinh(π ρ/2)sin (2α)+ cosh(π ρ/2)cos(2α)√

cosh(πρ)
(4.15)

and

sin(ρθ ) =
sinh(π ρ/2)cos(2α)− cosh(π ρ/2)sin(2α)√

cosh(π ρ)
(4.16)

or, together

tan(ρθ ) = − (eπ ρ + 1) tan(2α)− eπ ρ + 1

(eπ ρ −1) tan(2α)+ eπ ρ + 1
(4.17)
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and, asymptotically (as ρ → ∞),

tan(ρθ ) ∼ 1− tan(2α)

1 + tan(2α)
. (4.18)

As expected, (4.15)-(4.17) reduce to tautologies with the identification (4.3). Be-

cause the denominator of (4.17) vanishes when

tan(2α) = −coth(ρπ/2) (4.19)

and the numerator doesn’t, discontinuities in ρθ are related to arg(ζ ) through numer-

ical solutions of (4.19). Thus, to the extent that coth(ρπ/2) ≈ 1, discontinuities in

ρθ (and hence arg(Γ)) will occur at those values of ρ where arg(ζ ) passes through

−π/8.

4.2. Relationships involving ζ and its derivatives

The fundamental relationships (I, Eqs. (6.1) and (6.6)) are reproduced here:

ζ 2
R + ζ 2

I = f (ζ ′
I ζI + ζ ′

RζR) (4.20)

and

α ′ = 1/ f . (4.21)

The majority of the results of I were based on (4.20), which was derived in a very

complicated manner [5, see Supplemental Material]. As an alternative to a reduction

of (3.15), (4.20) can now be simply obtained from the new (and independent) results

(4.6), (4.7), (4.10) and (4.11) by multiplying (4.7) by ζ ′
I , (4.6) by ζ ′

R , then adding the

two to yield the intermediate identity

ζIζ
′
I + ζRζ ′

R = f
[
−
(

ζ ′
I

2 − ζ ′
R

2
)

cos2 (α) + ζ ′
Rζ ′

I sin(2α)+ ζ ′
I
2
]
, (4.22)

converting all trigonometric factors back into the components ζR , ζI and |ζ | using

(7.8) and factoring the resulting expression. (4.20) is an immediate consequence.

Further useful results can be easily obtained by squaring (4.6) and (4.7), applying

(4.10) and (4.11) and simplifying, all of which eventually lead to

ζ 2
R/ f 2 = |ζ ′|2 cos2(α) cos2(α −β ) (4.23)

ζ 2
I / f 2 = |ζ ′|2 sin2(α)cos2(α −β ) (4.24)

and
|ζ |2
|ζ ′|2 = f 2 cos2(α −β ) . (4.25)

A more general form of (4.25) can be obtained by direct differentiation of (7.1)

using (4.21), yielding
|ζ |
|ζ ′| = f cos(α −β ) , (4.26)



34 M. MILGRAM

the polar form of (4.20). However, this procedure cannot be utilized as a derivation of

(4.20) because (4.21) is not independently known without (4.20). At this point, we also

note that (3.13) reduces (Maple) to (4.26) on the critical line. This is a fairly lengthy

reduction that makes use of (4.15) and (4.16) as well as many trigonometric identities;

an interim noteworthy result is

(− sinh(πρ)sin(2ρθ )−cos(2ρθ ))cos(4β )+(−cos(2ρθ )sinh(πρ)+sin(2ρθ ))sin(4β )+cosh(πρ)
cosh(πρ)cos(α−β )−sinh(πρ)sin(2ρθ +3β+α)−cos(2ρθ +3β+α) (4.27)

= 2 cos(α −β ) ,

which, it should be noted, is independent of β , although not obviously so.

From (4.26), for ρ & ρs = 6.28 . . . , where f < 0, (see Eq. (2.5) of I), we have

cos(α −β ) 6 0 . (4.28)

From Eq. (7.8) of I it is known that ζ (1/2 + iρ) = 0 iff

α −β = (n + 1/2)π . (4.29)

In addition to locating the full zero via the criterion (4.29), (4.23) and (4.24) to-

gether demonstrate that the real half-zero ζR = 0, ζI 6= 0 occurs when

α = (n + 1/2)π , (4.30)

and the imaginary half-zero ζI = 0, ζR 6= 0 occurs when

α = nπ , where n = 0,±1, . . . , (4.31)

thereby generalizing Section 13 of I. Also, recall that “anomalous zeros” (see I) are

characterized by the imaginary half-zero ζI = 0,ζR < 0,ζ ′
R > 0. From (4.23) and (4.24),

it is clear that, assuming that the zeros of ζ are simple, the combination α(ρ0) =
±π/2,β (ρ0) = 0 cannot occur, since, in that case ζR → 0 faster than ζI .

Further interesting relationships can be obtained ([5, see Supplemental Material])

from the supplement to I where, following Eq. (9), we find the intermediate identity

|ζ |2

|ζ ′|2 f 2
+

(−ζ ′
RζI + ζ ′

IζR)2

|ζ ′|2 |ζ |2
= 1 . (4.32)

By straightforward differentiation, the numerator of the second term can be iden-

tified as

(
−ζ ′

RζI + ζ ′
IζR

)2
=

(
d

dρ
|ζ |2

)2

/4 = |ζ |2
(
|ζ |′
)2

(4.33)

so that

(|ζ |′)2 = |ζ ′|2 − |ζ |2
f 2

(4.34)
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which can alternatively be written

(
d

dρ
log |ζ |

)2

=
|ζ ′|2
|ζ |2 − 1

f 2
(4.35)

=
tan2(α −β )

f 2
(4.36)

after applying (4.25). This generalizes Eq. (11.3) of I. In another form, (4.36) can be

rewritten
|ζ |′
|ζ ′| = sin(α −β ) (4.37)

obtained in the same way as (4.26); by transforming to polar form (see (7.1)), (4.37)

also reduces to a simple trigonometric identity, which also means that (4.36) can be

rewritten as
d

dρ
log |ζ | = tan(α −β )

f
. (4.38)

Integrating (4.38) shows that |ζ | is defined by the difference of the arguments α
and β , that is

|ζ (1/2 + iρ2)|
|ζ (1/2 + iρ1)|

= exp

(∫ ρ2

ρ1

tan(α −β )

f
dρ

)
. (4.39)

The result (4.39) has been numerically verified in several cases where (ρ1,ρ2) does not

encompass ρ0 – also see Eq. (11.5) of I. From all the above, and using (4.21), we find

β ′ (ρ) =
2

f
− f ′

f tan(α −β )
− |ζ ′|′

tan(α −β ) |ζ ′| (4.40)

which can be rewritten in the more intriguing form

β ′ (ρ)

α ′ (ρ)
= 2− (ln(|ζ ′| f ))′

(ln |ζ |)′
. (4.41)

In Eq. (4.7) of I, the following term arose

L1(ρ) =

[
− 1

f (ρ)
+ (sin(β )ζ ′′

I + cos(β )ζ ′′
R)/

∣∣ζ ′∣∣
]

(4.42)

and it was claimed that L1(ρ) < 0, based on a numerical study. Here I add the claim-

reinforcing observation that a sign change in L1 would imply the existence of a zero

of ζ (1/2 + iρ) , which in turn would lead to an inconsistency between the solutions of

Eqs. (4.3) and (4.8) of I. Further rearrangement using Eq. (6.2) of I and converting

from polar form shows that (4.42) can be rewritten as

L1 = β ′ (ρ)−α ′(ρ) < 0 . (4.43)

Recall that f (ρ) < 0 for ρ & 6.2. Equations (4.28), (4.29) and (4.43) between

them thus provide a reasonable prediction of the structure of the function β −α – see

Figure 3.
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Figure 3: Plot of β (ρ)−α(ρ) over the range 30 6 ρ 6 50 . Note that the slope is always

negative (Eq. (4.43)), there exist discontinuities corresponding to ζ (1/2+ iρ) = 0 at β −α =
±π/2 (Eq. (4.29)), and β −α never intrudes (Eq. (4.28)) into the region ±π/2 delineated by

dotted lines .

4.3. Inverse of the singular transformation

Although the inverse transformation of (4.6) and (4.7) is singular, it is possible to

work from (3.3) and (3.4) in the limit σ = 1/2. In that limit, taking (4.12) and (4.13)

into account, we find (Maple)

ζ ′
I =

2ζR

sin(2α) f
− (cos(2α)+ 1)ζ ′

R

sin(2α)
(4.44)

which, when fully converted to polar form, reduces to a tautology after applying (3.13).

When (3.3) is calculated to first order in σ −1/2, we find

ζ ′
R =

f ′ ζI

2 f
+

ζR

f
+

1

4

(
2sin2 (α)ζ ′′

R − sin(2α)ζ ′′
I

)
f (4.45)

and

ζ ′
I = − f ′ ζR

2 f
+

ζI

f
+

1

4

(
2 cos2 (α)ζ ′′

I − sin(2α)ζ ′′
R

)
f . (4.46)

An interesting set of results can be obtained from (4.45) and (4.46) by multiplying

(4.45) by ζI , (4.46) by ζR , subtracting, converting to polar form and applying (4.26),

yielding
|ζ ′′|
|ζ ′| =

− f ′ cos(α −β )+ 2 sin(α −β )

sin(−γ(ρ)+ α) f
. (4.47)

A related result can be obtained by making use of (4.26), (4.37) and (4.38) to

obtain
|ζ ′′|
|ζ | =

− f ′ + 2 tan(α −β )

sin(−γ(ρ)+ α) f 2
, (4.48)
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where, in both cases, γ has been written γ(ρ) to distinguish it from Euler’s constant

(see (7.6)).

4.4. Complex representations on the critical line

By combining the real and imaginary components of ζ (1/2 + iρ) into a complex

representation, we find several interesting forms equivalent to (4.6) and (4.7), those

being
2

f
ζ (1/2+ iρ) = e2 iα ζ ′(1/2− iρ)+ ζ ′(1/2+ iρ) (4.49)

equivalent to

|ζ (1/2 + iρ)|= e−iαζ (1/2 + iρ) = f ℜ
(
eiα ζ ′(1/2− iρ)

)
(4.50)

and
ζ (1/2 + iρ)

|ζ ′(1/2 + iρ)| = f eiα cos(α −β ) (4.51)

or, equivalently, either

ζ (1/2 + iρ)

ζ ′(1/2 + iρ)
= f ei(α−β ) cos(α −β ) (4.52)

or (4.26).

Simple expansion of (4.50) into its real and imaginary parts shows that it is equiv-

alent to Eq. (2.12) of I. With respect to the above, the requirement that the right-

hand side of (4.52) must vanish at a zero, is equivalent to Eq. (7.8) of I, provided that

ζ ′(1/2 + iρ0) 6= 0.

5. At a zero

5.1. Conditions on β (s0)

At a zero (s = s0 ), we require that ζR(s0) = ζI(s0) = ζ̃R(s0) = ζ̃I(s0) = 0; with

these conditions, and solving (7.51) and (7.52) for |ζ ′(s0|2 , respectively, we find that,

at a zero anywhere in the complex s plane, |ζ ′(s0|2 must satisfy

∣∣ζ ′(s0)
∣∣2 =

2(ζ ′
I (s0) ζ̃ ′

I (s0)− ζ ′
R(s0) ζ̃ ′

R(s0))(2π)σ

g2(s0)
(5.1)

and simultaneously

∣∣ζ ′(s0)
∣∣2 = −2(ζ ′

I (s0) ζ̃ ′
R(s0)+ ζ ′

R(s0) ζ̃ ′
I (s0))(2π)σ

g1(s0)
(5.2)

Similarly, from (3.1) and (3.2) we obtain the simpler conditions

ζ ′
R(s0) = −1

8

(2π)σ0 (ζ̃ ′
I(s0)g1(s0)+ ζ̃ ′

R(s0)g2(s0))

|Γ(s0)|2 c0

(5.3)
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and

ζ ′
I(s0) =

1

8

(2π)σ0 (ζ̃ ′
I(s0)g2(s0)− ζ̃ ′

R(s0)g1(s0))

|Γ(s0)|2 c0

. (5.4)

By setting the two right-hand sides of (5.1) and (5.2) equal, and identifying the

appropriate ratios of components, we find a necessary, but not sufficient condition that

ζ (s0) = 0, that being

tan(β̃ (s0)) = −g2(s0) tan(β (s0))−g1(s0)

tan(β (s0))g1(s0)+ g2(s0)
. (5.5)

and its inverse (symmetrical under β (s0) ↔ β̃ (s0)); i.e.

tan(β (s0)) = −g2(s0) tan(β̃ (s0))−g1(s0)

tan(β̃ (s0))g1(s0)+ g2(s0)
. (5.6)

The result (5.5) is not unexpected, since it is equivalent to applying l’Hôpital’s rule

to (2.7) in the limit ζ̃I(s0)= ζ̃R(s0)→ 0 where the limiting ratio redefines tan(α̃(s0))→
tan(β̃ (s0)) , if such points exist; on the critical line s0 = 1/2 + iρ0 , we have β̃ = β ;

thus solving (5.5) in this case gives

tan(β (ρ0)) =
−g2 ±

√
g1

2 + g2
2

g1

(5.7)

reducing to a known result (Eq. (2.9) of I with α → β ) after applying identifications

given in the Appendix with σ = 1/2, particularly (7.26). A simpler result is also avail-

able, by noting that, as proven in I, setting L(s) = 0 in (2.11) results in a necessary

condition that ζ (s) = 0. Evaluating the ratio of the real and imaginary parts of L(s)
and converting to polar form, eventually (Maple) yields a necessary condition for locat-

ing s0 corresponding to ζ (s0) = 0, that being

tan(β (s0)+ β̃(s0)) = −
−tan(π σ0/2) tanh(π ρ0/2)+ tan(ρθ(s0))

1 + tan(π σ0/2) tan(ρθ(s0)) tanh(π ρ0/2)
=

g1(s0)

g2(s0)
, (5.8)

the second equality arising due to (7.27).

On the critical line, (5.8) reduces to the following numerical condition for locating

ρ = ρ0 corresponding to β = β0 , equivalent to (4.29)):

tan(2β0) = −−tanh(π ρ0/2)+ tan(ρθ0
)

1 + tan(ρθ0)) tanh(π ρ0/2)
. (5.9)

Notice that the right hand side of this criterion corresponds to tan(2α) for all values of

ρ because of (4.12) and (4.13).

Asymptotically (ρ → ∞), (5.8) further reduces to

tan(β (s0)+ β̃(s0)) ∼ tan
(πσ0

2
−ρθ(s0)

)
. (5.10)

and (5.9) becomes

tan(2β0) ∼ tan
(π

4
−ρθ0

)
. (5.11)
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6. Summary and a comment

In the previous sections, new relationships have been developed among the real

and imaginary components of ζ (s) on both sides of the critical strip. Notably, an

analytic expression was obtained for the sum α(s)+ α̃(s) as well as a simplified form

of the transformation between the real and imaginary components of ζ and ζ ′ on the

critical strip. In addition, simplified derivations of previous results were both presented

and generalized from the critical strip to the whole complex plane.

The results relating various functions on both sides of the critical strip are signifi-

cant because of interest in several theorems in the literature, generally based on an anal-

ysis of (2.10). Spira [10], Saidak and Zvengrowski [9], Nazardonyavi and Yakubovich

[6] show for 0 < σ < 1/2, that

|ζ (s)| > |ζ̃ (s)|, (6.1)

“with equality only if |ζ (s)| = 0”. All of these claim that if the “>” operator could be

replaced by the “>” operator, RH would be proven. These claims are incorrect.

Consider the function (Milgram, see Eq. (A.1)) [4]

ζc(s) ≡ ζ (s)sin (π (s− s0)) sin(π (s+ s0)) sin(π (s− s0)) sin(π (s+ s0))(
cosh2 (π ρ0)− cos2 (π σ0)

)2
(6.2)

where s0 ≡ σ0 + iρ0 with ρ0 > 1 locates a (complex, arbitrary) zero and s0 denotes

complex conjugation. This function has the interesting properties that it satisfies the

functional equation (2.4) because

ζc(s)

ζc(1− s)
=

ζ (s)

ζ (1− s)
, (6.3)

and, in common with ζ (s) , is both self-conjugate (see (2.2)), and possesses a pole with

residue unity at s = 1. As noted, ζc possesses complex zeros at s = s0,s = 1− s0

and conjugate points, but cannot be confused with ζ (s) because it also possesses zeros

at s = s0 ± k , where it is well-known, ζ (s) does not. In fact, any function (but, see

Titchmarsh and Heath-Brown, [13, Section 2.13]) of the form

ϒ(s) = w(s)ζ (s) (6.4)

will satisfy the functional equation provided that w(s) is self-conjugate and satisfies

w(s) = w(1− s). (6.5)

It is a simple matter to recognize that at a complex zero (s = s0 ) of order n , the

expression (2.10) reduces to the well-defined limit

lim
s→s0

|ζ (s)|2

|ζ̃ (s)|2
=

(|ζ (s0)|2)(n)

(|ζ̃ (s0)|2)(n)
= Φ(s0) (6.6)
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in terms of derivatives of nth order, by l’Hôpital’s rule applied to an analytic function,

and thus none of the cited allusions to a possible “proof” of RH are valid. A simple

study of (6.2) exemplifies this reasoning. For 0 6 σ < 1/2, evaluating the simple limit,

yields

lim
s→s0

|ζc(s)|2

|ζ̃c(s)|2
=

|ζ (s0)|2

|ζ̃ (s0)|2
> 1, (6.7)

where the inequality (lack of equality) is implied by any of the cited proofs, because s0

is arbitrary and, without loss of generality, we can specify that ζ (s0) 6= 0. To reiterate,

the function ζc(s) demonstrates that it is possible for any function that satisfies the

functional equation and is self-conjugate to possess a complex zero, satisfy the stronger

form of (6.1) (lack of equality) and violate RH.

Further insight on this subject can be obtained by straightforward evaluation of

the derivative of Φ(s) with respect to σ (Maple), giving (and providing a simplified

derivation for results obtained by Nazardonyavi and Yakubovich [6])

∂

∂σ

(
(|ζ (σ + iρ)|)2

(|ζ (1−σ + iρ)|)2

)
=

(2π)2σ (π sin(π σ)−Ψ2 (cos(π σ)+ cosh(π ρ)))

2 (cos(π σ)+ cosh(π ρ))2 (|Γ(σ + iρ)|)2

(6.8)

from which we conclude that
|ζ (s)|2

|ζ̃ (s)|2
> 1 because the right-hand side of (6.8) is ob-

viously always negative and monotonic for ρ & 10 and all σ (see (7.44) and (7.47)).

Therefore Φ(s) > 1 when 0 6 σ < 1/2 independent of the possibility that ζ (s0) = 0.

This further demonstrates the invalidity of the comments cited, including some made by

myself in [3]. See also Nazardonyavi and Yakubovich [6, Proposition (2)]. For further

clarity, see Figure 4.

Figure 4: Plot of |ζc(σ ,ρ0)| and |ζc(1−σ ,ρ0)| (left) and |ζc(σ ,ρ0)|/|ζc(1−σ ,ρ0)| (right)

as a function of σ using s0 = 3/4+ iρ0 with ρ0 = 12 , demonstrating the inequality (6.7) at s0

in the limiting case s = s0 . The arrows point to the location of zeros.
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7. Appendix – notation

The following summarizes the notation used throughout. Each of the symbols

retains functional dependence according to how it is referenced in the main text. Any

symbol lacking specific functional dependence is assumed to be only a function of ρ . If

some entity is referenced only as a function of ρ , the implication is that any appearance

of σ in its structure corresponds to σ = 1/2. Subscripts R and I respectively refer to

the real and imaginary components of the associated quantity. In all cases ρ > 0, k

is an integer and ψ refers to the digamma function. All derivatives specified by the

“prime” symbol ( ′ ) are taken with respect to ρ unless specified otherwise. In polar

notation, I use

ζ (s) = eiα(s)|ζ (s)| (7.1)

ζ̃ (s) = eiα̃(s)|ζ̃ (s)| (7.2)

Γ(s) = eiθ(s)|Γ(s)| (7.3)

ζ ′(s) = eiβ (s)|ζ ′(s)| (7.4)

ζ̃ ′(s) = eiβ̃ (s)|ζ̃ ′(s)| (7.5)

ζ ′′(s) = eiγ(s)|ζ ′′(s)| (7.6)

ζ̃ ′′(s) = eiγ̃(s)|ζ̃ ′′(s)| (7.7)

For example, specific to the “critical line” s = 1/2 + iρ , a specialized form might

be written

ζ (1/2 + iρ) = eiα |ζ | = eiα
√

ζ 2
R + ζ 2

I (7.8)

with symbols

ρπ = ρ log(2π) (7.9)

θ = arg(Γ(1/2 + iρ))+ kπ (7.10)

α = arg(ζ (1/2 + iρ))+ kπ (7.11)

β = arg(ζ ′(1/2 + iρ))+ kπ (7.12)

γ = arg(ζ ′′(1/2 + iρ))+ kπ . (7.13)

The symbols (θ ,α,β ,γ) are continuous functions, whereas the arg operator denotes

the corresponding discontinuous function limited to (−π ,π) , the two being separated

by a term equal to kπ , k = 0,±1,±2, . . . .
In general

ρθ(s) = ρπ −θ (s) (7.14)

θ (s) = arg(Γ(σ + iρ))+ kπ = ℑ(LogΓ(s)) (7.15)

α(s) = arg(ζ (σ + iρ))+ kπ (7.16)

and

α̃(s) = arg(ζ (1−σ + iρ))+ kπ . (7.17)
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Specialized symbols are

c0 = 1
2

cos(π σ)+ 1
2

cosh(π ρ) (7.18)

g1(s) = 4ΓI(s)S2(s)+ 4ΓR(s)S1(s) (7.19)

g2(s) = 4ΓI(s)S1(s)−4ΓR(s)S2(s) (7.20)

S1(s) = sin(ρπ)cos( 1
2
πσ)cosh( 1

2
πρ)+cos(ρπ)sin( 1

2
πσ)sinh( 1

2
πρ) (7.21)

S2(s) = sin(ρπ)sin( 1
2
πσ)sinh( 1

2
πρ)−cos(ρπ)cos( 1

2
πσ)cosh( 1

2
πρ) (7.22)

f (s) = ln(2π)−ψ(s)+
1

2
π tan

(π s

2

)
(7.23)

f =
4 cosh(π ρ)

2 ln(2π)cosh(π ρ)−2ℜ(ψ (1/2 + iρ))cosh(π ρ) + π
(7.24)

g1(s)
2 + g2(s)

2 = 16 |Γ(s)|2 c0 (7.25)

g2
1 + g2

2 = 8π . (7.26)

In polar form

g1(s) = 4|Γ(s)|
(

sin
(πσ

2

)
cos(ρθ(s))sinh

(πρ

2

)
− cos

(πσ

2

)
sin(ρθ(s))cosh

(πρ

2

))

= 2|Γ(s)|
(

sin(πσ/2−ρθ(s))e
1/2πρ−sin(πσ/2+ρθ(s))e

−1/2πρ
)

(7.27)

g2(s) = 4|Γ(s)|
(

sin
(πσ

2

)
sin(ρθ(s))sinh

(πρ

2

)
+cos

(πσ

2

)
cos(ρθ(s))cosh

(πρ

2

))

= 2 |Γ(s)|
(

cos
(
π σ/2−ρθ(s)

)
e1/2π ρ + cos

(
π σ/2 + ρθ(s)

)
e−1/2π ρ

)
, (7.28)

along with the definitions

ζp(s) ≡ ζI(s)g1(s)+ ζR(s)g2(s) (7.29)

ζm(s) ≡ ζI(s)g2(s)− ζR(s)g1(s) (7.30)

a ≡
√

2g1

8
√

π
(7.31)

b ≡
√

2g2

8
√

π
(7.32)

h1(s) ≡−g1(s) p1(s)+ g2(s) p2(s) (7.33)

h2(s) ≡ g1(s) p2(s)+ g2(s) p1(s) (7.34)

h3(s) ≡−g1(s)p2(s)+ g2(s)p1(s) (7.35)

h4(s) ≡ g1 (s) p1(s)+ g2(s)p2(s) (7.36)

and

h1 = −16
√

2π cosh(πρ)cos(2α)

f
(7.37)
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h2 = −16
√

2π cosh(πρ)sin(2α)

f
. (7.38)

Both of the above two results were obtained using (4.12) and (4.13). Additionally,

h1(s)
2 + h2(s)

2 = (g1(s)
2 + g2(s)

2)(p1(s)
2 + p2(s)

2) . (7.39)

Furthermore, it is convenient to introduce

p1(s) = 8c0 Ψ1 −2π sinh(π ρ) (7.40)

p2(s) = 4c0 Ψ2 −2π sin(π σ) (7.41)

πσ = (2π)σ (7.42)

Ψ1 = ψI(s) (7.43)

Ψ2 = −2ln(2π)+ 2ψR(s) (7.44)

q1 = −Ψ2 +
π

2

sin(π σ)

c0

(7.45)

q2 = 2Ψ1 −
π

2

sinh(π ρ)

c0

. (7.46)

Asymptotically (ρ → ∞ , 0 < σ < 1) we have [8, NIST, Eq. 5.11.2]

ℜ(ψ(σ + iρ)) ≈ ln(ρ)+
2σ2 −4σ + 1

4ρ2
(7.47)

ℑ(ψ(σ + iρ)) ≈ π

2
+

1−σ

ρ
+

σ (2σ2 −6σ + 3)

6ρ3
(7.48)

whence, in the same asymptotic limit

p1(s) ≈
(
−2(σ −1)

ρ
+

σ (2σ2 −6σ + 3)

3ρ3

)
eπ ρ + 2π cos(π σ)

−4(σ −1)cos(π σ)

ρ
+

2σ cos(π σ)

3

(2σ2 −6σ + 3)

ρ3
(7.49)

p2(s) ≈


ln

(
ρ2

4π2

)
+

σ2 −2σ +
1

2
ρ2


 eπ ρ + cos(π σ) ln

(
ρ4

16π4

)

−2π sin(π σ)+
(2σ2 −4σ + 1)cos(π σ)

ρ2
. (7.50)

Finally, the formal, and straightforwardly obtained (Maple), expressions for the

real and imaginary parts of ζ̃ (s) as obtained from (2.11) are:

ζ̃R(s) =
(
[(−4ψI(s)ζ ′

R(s)+ζ ′
I (s)Ψ2(s))ζm(s)+8(−ζ ′

I (s)ζ̃
′
I (s)+ζ ′

R(s)ζ̃ ′
R(s))(2π)σ

+4g2(s)
∣∣ζ ′(s)

∣∣2]c0+(sinh(πρ)ζ ′
R(s)− sin(πσ)ζ ′

I (s))πζm(s)
)

/ζd(s) (7.51)
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ζ̃I(s) = −
([

(4ψI(s)ζ
′
R(s)−2ζ ′

I (s)Ψ2(s))ζp(s)−8(ζ ′
I (s)ζ̃ ′

R(s)+ζ ′
R(s)ζ̃ ′

I(s))(2π)σ

−4g1

∣∣ζ ′(s)
∣∣2
]

c0−
[
sinh(πρ)ζ ′

R(s)− sin(πσ)ζ ′
I (s)
]

πζp(s)
)

/ζd(s) (7.52)

where

ζd(s) ≡ ((−8ψI(s)c0+2π sinh(πρ))ζ ′
I (s)+(−4c0Ψ2(s)+2π sin(πσ))ζ ′

R(s))(2π)σ .
(7.53)
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