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DERIVATIVE FORMULAS FOR BESSEL,

STRUVE AND ANGER––WEBER FUNCTIONS

ROBERT E. GAUNT

Abstract. We derive formulas for the derivatives of general order for the functions z−νhν (z) and
zνhν (z) , where hν (z) is a Bessel, Struve or Anger–Weber function.

1. Introduction and preliminary results

Formulas for the derivatives of general order for the functions z−νhν(z) and zνhν(z) ,
where z and ν are complex numbers and hν(z) is a Bessel, Struve or Anger–Weber
function are established. In particular, the functions, hν(z) , that we obtain formulas for

are the Bessel functions Jν(z) , Yν(z) , Iν(z) and Kν(z) ; the Hankel functions H(1)
ν (z)

and H(2)
ν (z) ; the Struve functions Hν(z) and Lν(z) ; the Anger–Weber functions Jν(z)

and Eν(z) . For definitions and properties of these functions see, for example, [4, 5].
The pair of simultaneous equations

Fν−1(z)+Fν+1(z) = 2F ′
ν(z)+ fν (z), (1)

Fν−1(z)−Fν+1(z) =
2ν
z

Fν(z)+gν(z), (2)

where fν (z) and gν(z) are arbitrary functions of the complex numbers ν and z , form
a generalisation of the recurrence identities that are satisfied by the modified Bessel
functions Iν(z) and Kν (z) , and the modified Struve function Lν(z) . These identities
can be found in [4, 5]. Also, the pair of simultaneous equations

Gν−1(z)−Gν+1(z) = 2G′
ν(z)+ fν(z), (3)

Gν−1(z)+Gν+1(z) =
2ν
z

Gν(z)+gν(z), (4)

where fν (z) and gν(z) are, again, arbitrary functions of ν and z , form a generalisation
of the recurrence identities that are satisfied by the Bessel functions Jν(z) and Yν(z) ,
the Hankel functions H(1)

ν (z) and H(2)
ν (z) , the Struve function Hν(z) , and the Anger–

Weber functions Jν(z) and Eν(z) . Again, these identities can be found in [4, 5].
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The simultaneous equations (3) and (4) were studied by [3], in which it was shown
that the functions fν (z) and gν(z) must satisfy the relation

fν−1(z)+ fν+1(z)− 2ν
z

fν (z) = gν−1(z)−gν+1(z)− 2
z
(zgν(z))′;

and it has been shown by [6] that, if this relation is satisfied, the system can be reduced
to a pair of soluble difference equations of the first order. We may apply similar argu-
ments to the simultaneous equations (1) and (2) to show that the functions fν(z) and
gν(z) must satisfy the relation

fν−1(z)− fν+1(z)− 2ν
z

fν (z) = gν−1(z)+gν+1(z)− 2
z
(zgν(z))′;

and that, if this relation is satisfied, the system can be reduced to a pair of soluble
difference equations of the first order.

From equations (1) and (2), one can easily deduce the following formulas:

d
dz

(
Fν(z)
zν

)
=

Fν+1(z)
zν +

gν(z)− fν (z)
2zν , (5)

d
dz

(zνFν(z)) = zνFν−1(z)− 1
2
zν( fν (z)+gν(z)). (6)

Similarly, from equations (3) and (4), we have:

d
dz

(
Gν(z)

zν

)
= −Gν+1(z)

zν +
gν(z)− fν (z)

2zν , (7)

d
dz

(zνGν(z)) = zνGν−1(z)− 1
2
zν ( fν (z)+gν(z)). (8)

Again, formulas (5)–(8) form a generalisation of the well–known formulas (see
[4, 5]) for the first-order derivatives of Bessel, Struve and Anger–Weber functions.
However, as far as this author is aware, there do not exist simple formulas in the liter-
ature for the n -th order derivatives of the functions z±νFν(z) and z±νGν (z) . This gap
in the literature is filled in by this paper, and we apply these general formulas to obtain
formulas for the n -th order derivatives of z±νhν(z) , where hν(z) is a Bessel, Struve
or Anger–Weber function. It should be noted that the proofs of our results rely heavily
on the fact that the Bessel, Struve and Anger-Weber functions satisfy the simultaneous
equations (1), (2) and (3), (4), and therefore analogous results for the generalized hy-
pergeometric function and other general special functions are beyond the scope of this
paper. This investigation was motivated by occurrence of the n -th order derivatives of
z−ν Iν(z) and z−νKν (z) in the study of Stein’s method for variance-gamma approxi-
mation (see [1, 2]), for which the simple formulas obtained in this paper proved to be
particularly useful.
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2. Ancillary results

Before stating our main results, we establish a result for the coefficients that are
present in the formulas. The coefficients An

k(ν) and Bn
k(ν) are defined, for n ∈ N =

{0,1,2 . . .} , k = 0,1, . . . ,n , and all complex numbers ν , expect the integers −(k +
1),−(k+2), . . . ,−(2k−1),−(2k+1),−(2k+2), . . .,−(k+n−1) , and −(k+2),−(k+
3), . . . ,−2k,−(2k+2),−(2k+3), . . .,−(k+n) , respectively, as follows:

An
k(ν) =

(2n)!(ν +2k)∏k−1
j=0(2ν +2 j +1)

22n−k(2k)!(n− k)!∏n
j=0(ν + k+ j)

, (9)

Bn
k(ν) =

(2n+1)!(ν +2k+1)∏k−1
j=0(2ν +2 j +1)

22n−k(2k+1)!(n− k)!∏n
j=0(ν + k+ j +1)

, (10)

where we set ∏−1
j=0(2ν +2 j +1) = 1.

REMARK 1. The coefficients An
k(ν) and Bn

k(ν) are equal to zero if and only if
k � 1 and ν = − 1

2 − l , where l = 0,1, . . . ,k−1.

REMARK 2. Let (x)n denote the Pochhammer symbol (x)n = x(x+1) · · · (x+n−
1) . Then straightforward calculations yield the following alternative expressions for
the coefficients An

k(ν) and Bn
k(ν) :

An
k(ν) =

( 1
2 )n

(ν +1)n

(−1)k(−n)k(ν)k(ν + 1
2)k( ν+2

2 )k

( 1
2)k( ν

2 )k(ν +n+1)kk!
,

Bn
k(ν) =

( 3
2 )n

(ν +2)n

(−1)k(−n)k(ν + 1
2 )k(ν +1)k( ν+3

2 )k

( 3
2 )k( ν+1

2 )k(ν +n+2)kk!
.

We shall not make further use of these expressions, but we do note that the Pochham-
mer symbol is one of the main tools for complex analysis of generalized hypergeometric
functions, such as the Bessel functions, meaning that these representations may be use-
ful in future applications of the differentiation formulas that are derived in this paper.

LEMMA 1. Let n ∈ N . Then An
k(ν) and Bn

k(ν) are related as follows

Bn
k(ν) =

ν + k
ν +2k

An
k(ν)+

k+1
ν +2k+2

An
k+1(ν), 0 � k � n−1, (11)

Bn
n(ν) =

ν +n
ν +2n

An
n(ν), (12)

An+1
0 (ν) =

1
2(ν +1)

Bn
0(ν), (13)

An+1
k+1(ν) =

2ν +2k+1
2(ν +2k+1)

Bn
k(ν)+

2k+3
2(ν +2k+3)

Bn
k+1(ν), 0 � k � n−1, (14)

An+1
n+1(ν) =

2ν +2n+1
2(ν +2n+1)

Bn
n(ν), (15)
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and satisfy
n

∑
k=0

An
k(ν) =

n

∑
k=0

Bn
k(ν) = 1. (16)

Proof. Identities (11)–(15) can be verified by simply substituting the definitions
of An

k(ν) and Bn+1
k+1(ν) , as given by (9) and (10), into both sides of the identities.

We now prove identity (16). From (13), (14) and (15), we have that

n+1

∑
k=0

An+1
k (ν) =

1
2(ν +1)

Bn
0(ν)+

n−1

∑
k=0

{
2ν +2k+1

2(ν +2k+1)
Bn

k(ν)+
2k+3

2(ν +2k+3)
Bn

k+1(ν)
}

+
2ν +2n+1

2(ν +2n+1)
Bn

n(ν)

=
n

∑
k=0

{
2ν +2k+1

2(ν +2k+1)
+

2k+1
2(ν +2k+1)

}
Bn

k(ν) =
n

∑
k=0

Bn
k(ν).

A similar calculation shows that ∑n
k=0 Bn

k(ν) = ∑n
k=0 An

k(ν). Since A0
0(ν) = B0

0(ν) = 1,
the result follows. �

3. Main results

We are now able to prove our main results. To simplify the formulas, we define
the functions pν,l(z) and qν,l(z) , for l ∈ N and ν ∈ C , by

pν,l(z) =
ν

2(ν + l)
gν+l(z)

zν − fν+l(z)
2zν , qν,l(z) = − ν

2(ν − l)
zνgν−l(z)− 1

2
zν fν−l(z).

We use the convention 0
0 := 1, so that p0,0(z)= 1

2 (g0(z)− f0(z)) and q0,0(z)=− 1
2( f0(z)

+g0(z)) . Also, for N � 1, we write [N] for the set {1,2, . . . ,N} , and write −[N] for
the set {−1,−2, . . . ,−N} . We take [0] , [−1] , −[0] and −[−1] to be the empty set.
Finally, we let h(n)(z) denote the n -th derivative of h(z) .

THEOREM 1. Suppose that Fν(z) satisfies the simultaneous equations (1) and (2),
and that Gν(z) satisfies the simultaneous equations (3) and (4). Also, suppose that
pν,l(z), qν,l(z) ∈C2n(C) , for all l ∈ {0,1, . . . ,2n} . Then for n ∈ N ,

d2n

dz2n

(
Fν(z)
zν

)
=

n

∑
k=0

An
k(ν)

Fν+2k(z)
zν +

n−1

∑
j=0

j

∑
k=0

Aj
k(ν)p(2n−2 j−1)

ν,2k (z)

+
n−1

∑
j=0

j

∑
k=0

Bj
k(ν)p(2n−2 j−2)

ν,2k+1 (z), ν ∈ C\ (−[2n−1]), (17)

d2n+1

dz2n+1

(
Fν(z)
zν

)
=

n

∑
k=0

Bn
k(ν)

Fν+2k+1(z)
zν +

n

∑
j=0

j

∑
k=0

Aj
k(ν)p(2n−2 j)

ν,2k (z)

+
n−1

∑
j=0

j

∑
k=0

Bj
k(ν)p(2n−2 j−1)

ν,2k+1 (z), ν ∈ C\ (−[2n]), (18)
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d2n

dz2n (zνFν(z)) =
n

∑
k=0

An
k(−ν)zνFν−2k(z)+

n−1

∑
j=0

j

∑
k=0

Aj
k(−ν)q(2n−2 j−1)

ν,2k (z)

+
n−1

∑
j=0

j

∑
k=0

Bj
k(−ν)q(2n−2 j−2)

ν,2k+1 (z), ν ∈ C\ [2n−1], (19)

d2n+1

dz2n+1 (zνFν(z)) =
n

∑
k=0

Bn
k(−ν)zνFν−2k−1(z)+

n

∑
j=0

j

∑
k=0

Aj
k(−ν)q(2n−2 j)

ν,2k (z)

+
n−1

∑
j=0

j

∑
k=0

Bj
k(−ν)q(2n−2 j−1)

ν,2k+1 (z), ν ∈ C\ [2n], (20)

d2n

dz2n

(
Gν(z)

zν

)
=

n

∑
k=0

(−1)n+kAn
k(ν)

Gν+2k(z)
zν

+
n−1

∑
j=0

j

∑
k=0

(−1)k+ jA j
k(ν)p(2n−2 j−1)

ν,2k (z)

+
n−1

∑
j=0

j

∑
k=0

(−1)k+ j+1Bj
k(ν)p(2n−2 j−2)

ν,2k+1 (z), ν ∈ C\ (−[2n−1]),

(21)

d2n+1

dz2n+1

(
Gν(z)

zν

)
=

n

∑
k=0

(−1)n+k+1Bn
k(ν)

Gν+2k+1(z)
zν

+
n

∑
j=0

j

∑
k=0

(−1)k+ jA j
k(ν)p(2n−2 j)

ν,2k (z)

+
n−1

∑
j=0

j

∑
k=0

(−1)k+ j+1Bj
k(ν)p(2n−2 j−1)

ν,2k+1 (z), ν ∈ C\ (−[2n]), (22)

d2n

dz2n (zνGν(z)) =
n

∑
k=0

(−1)n+kAn
k(−ν)zνGν−2k(z)

+
n−1

∑
j=0

j

∑
k=0

(−1)k+ jA j
k(−ν)q(2n−2 j−1)

ν,2k (z)

+
n−1

∑
j=0

j

∑
k=0

(−1)k+ jB j
k(−ν)q(2n−2 j−2)

ν,2k+1 (z), ν ∈ C\ [2n−1], (23)

d2n+1

dz2n+1 (zνGν(z)) =
n

∑
k=0

(−1)n+kBn
k(−ν)zνGν−2k−1(z)

+
n

∑
j=0

j

∑
k=0

(−1)k+ jA j
k(−ν)q(2n−2 j)

ν,2k (z)

+
n−1

∑
j=0

j

∑
k=0

(−1)k+ jB j
k(−ν)q(2n−2 j−1)

ν,2k+1 (z), ν ∈ C\ [2n], (24)
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where we use the convention that ∑−1
k=0 ak = 0 .

Proof. We begin by proving formulas (17) and (18) and do so by induction on n .
It is certainly true that (17) holds for n = 0 and (18) holds for n = 0 by (5). Suppose
now that (18) holds for n = m , where m � 0. We therefore have

d2m+1

dz2m+1

(
Fν(z)
zν

)
=

m

∑
k=0

Bm
k (ν)

Fν+2k+1(z)
zν +

m

∑
j=0

j

∑
k=0

Aj
k(ν)p(2m−2 j)

ν,2k (z)

+
m−1

∑
j=0

j

∑
k=0

Bj
k(ν)p(2m−2 j−1)

ν,2k+1 (z), ν ∈ C\ (−[2m]). (25)

Our inductive argument will involve differentiating both sides of (25) and to do so will
shall need a formula for the first derivative of the function z−νFν+α(z) , where α ∈ N .
Applying (5) and (2) we have, for all ν �= −α ,

d
dz

(
Fν+α(z)

zν

)
=

d
dz

(
zα · Fν+α(z)

zν+α

)

=
Fν+α+1(z)

zν +
αFν+α(z)

zν+1 +
gν+α(z)− fν+α(z)

2zν

=
Fν+α+1(z)

zν +
α

zν+1 ·
z

2(ν + α)
(Fν+α−1(z)−Fν+α+1(z)

−gν+α(z))+
gν+α(z)− fν+α(z)

2zν

=
2ν + α

2(ν + α)
Fν+α+1(z)

zν +
α

2(ν + α)
Fν+α−1(z)

zν

+
ν

2(ν + α)
gν+α(z)

zν − fν+α (z)
2zν

=
2ν + α

2(ν + α)
Fν+α+1(z)

zν +
α

2(ν + α)
Fν+α−1(z)

zν + pν,α(z). (26)

With this formula we may differentiate both sides of (25) to obtain

d2m+2

dz2m+2

(
Fν(z)
zν

)
=

m

∑
k=0

Bm
k (ν)

(
2ν +2k+1

2(ν +2k+1)
Fν+2k+2(z)

zν

+
2k+1

2(ν +2k+1)
Fν+2k(z)

zν + pν,2k+1(z)
)

+
m

∑
j=0

j

∑
k=0

Aj
k(ν)p(2m−2 j+1)

ν,2k (z)+
m−1

∑
j=0

j

∑
k=0

Bj
k(ν)p(2m−2 j)

ν,2k+1 (z)

=
m+1

∑
k=0

Ãm
k (ν)

Fν+2k(z)
zν +

m

∑
j=0

j

∑
k=0

Aj
k(ν)p(2m−2 j+1)

ν,2k (z)

+
m

∑
j=0

j

∑
k=0

Bj
k(ν)p(2m−2 j)

ν,2k+1 (z), ν ∈ C\ (−[2m+1]),
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where

Ãm+1
0 (ν) =

1
2(ν +1)

Bm
0 (ν), Ãm+1

m+1(ν) =
2ν +2m+1

2(ν +2m+1)
Bm

m(ν)

Ãm+1
k+1 (ν) =

2ν +2k+1
2(ν +2k+1)

Bm
k (ν)+

2k+3
2(ν +2k+3)

Bm
k+1(ν), k = 0,1, . . . ,m−1.

We see from Lemma 1 that Ãm+1
k (ν) = Am+1

k (ν) , for all k = 0,1, . . . ,m+1. It therefore
follows that if (18) holds for n = m then (17) holds for n = m+1.

We now suppose that (17) holds for n = m , where m � 1. If we can show that it
then follows that (18) holds for n = m then the proof will be complete. Our inductive
hypothesis is therefore that

d2m

dz2m

(
Fν(z)
zν

)
=

m

∑
k=0

Am
k (ν)

Fν+2k(z)
zν +

m−1

∑
j=0

j

∑
k=0

Aj
k(ν)p(2m−2 j−1)

ν,2k (z)

+
m−1

∑
j=0

j

∑
k=0

Bj
k(ν)p(2m−2 j−2)

ν,2k+1 (z), ν ∈ C\ (−[2m−1]).

We may use the formula (26) to differentiate the functions z−νFν+2k(z) , for k � 0, and
thus use a similar argument to the first part to obtain

d2m+1

dz2m+1

(
Fν(z)
zν

)
=

m

∑
k=0

B̃m
k (ν)

Fν+2k+1(z)
zν +

m

∑
j=0

j

∑
k=0

Aj
k(ν)p(2m−2 j)

ν,2k (z)

+
m−1

∑
j=0

j

∑
k=0

Bj
k(ν)p(2m−2 j−1)

ν,2k+1 (z), ν ∈ C\ (−[2m]),

where

B̃m
m(ν) =

ν +m
ν +2m

Am
m(ν), B̃m

k (ν) =
ν + k

ν +2k
Am

k (ν)+
k+1

ν +2k+2
Am

k+1(ν),

and k = 0,1, . . . ,m−1. We see from lemma 1 that B̃m
k (ν)= Bm

k (ν) , for all k = 0,1, . . . ,m .
It therefore follows that if (17) holds for n = m then (18) holds for n = m , which com-
pletes the proof of formulas (17) and (18).

We now prove formulas (19) and (20). Using (6) and (2) and a similar calculation
to the one used to obtain (26), we have, for all ν �= α ,

d
dz

(zνFν−α(z)) =
−2ν + α

2(−ν + α)
zνFν−α−1(z)+

α
2(−ν + α)

zνFν−α+1(z)+qν,α(z). (27)

Comparing (27) with (26), we can see that the formula for d2n

dz2n (zνFν) will be similar
to formula (17), with the only difference being that we replace the terms z−νFν+α(z)
by zνFν−α(z) , the terms Al

k(ν) and Bl
k(ν) by Al

k(−ν) and Bl
k(−ν) , and the terms

p(l)
ν,α(z) by q(l)

ν,α(z) . Formulas (21), (22), (23) and (24) can be verified using similar
calculations. �
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We now apply Theorem 1 to obtain formulas for the derivatives of any order for
the functions z−νhν(z) and zνhν(z) , where hν(z) is a Bessel, Struve, or Anger–Weber
function. The formulas for Bessel functions are particularly simple:

COROLLARY 1. Let Cν(z) denote Jν(z) , Yν(z) , H(1)
ν (z) , H(2)

ν (z) or any linear
combination of these functions, in which the coefficients are independent of ν and z.
Then for n ∈ N ,

d2n

dz2n

(
Cν (z)

zν

)
=

n

∑
k=0

(−1)n+kAn
k(ν)

Cν+2k(z)
zν , ν ∈ C\ (−[2n−1]),

d2n+1

dz2n+1

(
Cν (z)

zν

)
=

n

∑
k=0

(−1)n+k+1Bn
k(ν)

Cν+2k+1(z)
zν , ν ∈ C\ (−[2n]),

d2n

dz2n (zνCν (z)) =
n

∑
k=0

(−1)n+kAn
k(−ν)zνCν−2k(z), ν ∈ C\ [2n−1],

d2n+1

dz2n+1 (zνCν (z)) =
n

∑
k=0

(−1)n+kBn
k(−ν)zνCν−2k−1(z), ν ∈ C\ [2n].

Now let Lν(z) denote Iν(z) , eνπ iKν(z) or any linear combination of these functions,
in which the coefficients are independent of ν and z. Then for n ∈ N ,

d2n

dz2n

(
Lν(z)

zν

)
=

n

∑
k=0

An
k(ν)

Lν+2k(z)
zν , ν ∈ C\ (−[2n−1]),

d2n+1

dz2n+1

(
Lν(z)

zν

)
=

n

∑
k=0

Bn
k(ν)

Lν+2k+1(z)
zν , ν ∈ C\ (−[2n]),

d2n

dz2n (zνLν(z)) =
n

∑
k=0

An
k(−ν)zνLν−2k(z), ν ∈ C\ [2n−1],

d2n+1

dz2n+1 (zνLν(z)) =
n

∑
k=0

Bn
k(−ν)zνLν−2k−1(z), ν ∈ C\ [2n].

Proof. We have that Cν(z) satisfies the system of equations (3) and (4), with
fν (z) = gν(z) = 0 (see [4], Section 10.6). Hence, the formulas involving Lν (z) fol-
low immediately from taking pν,l(z) = qν,l(z) = 0 in formulas (21)–(24) of Theorem
1. The formulas involving Lν(z) are derived similarly. �

COROLLARY 2. The n-th derivatives of the functions z−νHν(z) and zνHν(z)
satisfy formulas similar to (21)–(24), with the only difference being that the terms

p(m)
ν,l (z) and q(m)

ν,l (z) are replaced by tmν,l(z) and um
ν,l(z) , respectively, functions tmν,l(z)
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and um
ν,l(z) are defined, for l,m ∈ N , by

tmν,l(z) =
(2ν + l)( 1

2 )ν+l+1

√
π(ν + l)Γ(ν + l + 3

2 )
(l)mzl−m,

um
ν,l(z) =

l( 1
2 )ν−l+1

√
π(l−ν)Γ(ν − l + 3

2 )
(2ν − l)mz2ν−l−m,

where (x)n denotes the Pochhammer symbol (x)n = x(x+1) · · · (x+n−1) .
Similarly, the n-th derivatives of the functions z−νLν (z) and zνLν (z) satisfy for-

mulas similar to (17)–(20), with the only difference being that the terms p(m)
ν,l (z) and

q(m)
ν,l (z) are replaced by tmν,l(z) and um

ν,l(z) .
The n-th derivatives of the functions z−νJν(z) and zνJν(z) satisfy formulas sim-

ilar to (21)–(24), with the only difference being that the terms p(m)
ν,l (z) and q(m)

ν,l (z) are
replaced by tmν,l(z) and um

ν,l(z) , respectively, where the functions vm
ν,l(z) and wm

ν,l(z)
are defined, for l,m ∈ N , by

vm
ν,l(z) = − ν

π(ν + l)
sin(π(ν + l))(−ν −1)mz−ν−m−1,

wm
ν,l(z) =

ν
π(ν − l)

sin(π(ν − l))(ν −1)mzν−m−1.

The formulas for the Weber function Eν (z) are similar, with the only difference being
that sin(π(ν + k)) is replaced by 1− cos(π(ν + k)) , for k ∈ Z .

Proof. We first establish the formulas for the n -th derivatives involving Struve
functions. The function Hν(z) satisfies the system of equations (3) and (4), with

fν (z) = −gν(z) = − ( 1
2 z)ν

√
πΓ(ν+ 3

2 )
(see [4], Section 11.4). Therefore

p(m)
ν,l (z) =

dm

dzm

(
ν

2(ν + l)
gν+l(z)

zν − fν+l(z)
2zν

)
=

(2ν + l)( 1
2 )ν+l+1

√
π(ν + l)Γ(ν + l + 3

2 )
dm

dzm (zl)

=
(2ν + l)( 1

2)ν+l+1

√
π(ν + l)Γ(ν + l + 3

2 )
(l)mzl−m = tmν,l(z).

Similarly, we can show that q(m)
ν,l (z) = um

ν,l(z) . We then apply formulas (21)–(24) of
Theorem 1, and this gives the desired formulas for the derivatives of the functions
z−νHν(z) and zνHν(z) . The formulas involving Lν (z) are derived similarly.

The Anger–Weber functions Jν(z) and Eν (z) satisfy the system of equations
(3) and (4), with fν (z) = 0, gν(z) = − 2

πz sin(πν) , and fν (z) = 0, gν(z) = − 2
πz(1−

cos(πν)) , respectively (see [4], Section 11.10). We then apply Theorem 1 and some
simple calculations, as we did in the proof of formulas for the n -th derivatives involving
Struve functions, to obtain the desired formulas. �



78 R. E. GAUNT

RE F ER EN C ES

[1] R. E. GAUNT, Rates of Convergence of Variance-Gamma Approximations via Stein’s Method, DPhil
thesis, University of Oxford, 2013.

[2] R. E. GAUNT, Variance-Gamma approximation via Stein’s method, Electron. J. Probab., 19, no. 38
(2014), 1–33.

[3] N. NIELSEN, Handbuch der Theorie der Cylinderfunktionen, Leipzig, 1904.
[4] F. W. J. OLVER, D. W. LOZIER, R. F. BOISVERT AND C. W. CLARK, NIST Handbook of Mathe-

matical Functions, Cambridge University Press, 2010.
[5] G. N. WATSON, A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cam-

bridge University Press, 1966.
[6] G. N. WATSON, On Nielsen’s functional equations, Messenger, XLVIII. (1919), 49–53.

(Received May 3, 2017) Robert E. Gaunt
School of Mathematics

The University of Manchester
Manchester, M13 9PL, UK

e-mail: robert.gaunt@manchester.ac.uk

Journal of Classical Analysis
www.ele-math.com
jca@ele-math.com


