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ON AN EXTENSION OF EXTENDED BETA
AND HYPERGEOMETRIC FUNCTIONS

RAKESH K. PARMAR, PURNIMA CHOPRA AND RICHARD B. PARIS

Abstract. Motivated mainly by certain interesting recent extensions of the Gamma, Beta and
hypergeometric functions, we introduce here new extensions of the Beta function, hypergeomet-
ric and confluent hypergeometric functions. We systematically investigate several properties of
each of these extended functions, such as their various integral representations, Mellin trans-
forms, derivatives, transformations, summation formulas, generating function and asymptotics.
Relevant connections of certain special cases of the main results presented herewith are also
pointed out.

1. Introduction

Extensions of a number of well-known special functions have been investigated
recently by several authors (see [1, 2, 3,4, 7, 8,9, 11, 13, 15]). In 1994, Chaudhry and
Zubair [4] introduced the following extensions of the incomplete Gamma functions in
the form

Ya,x:p) = /O “exp(——LYar R(p)>0p=0%@)>0) W

and

(ox:p) = / e (—-Dya @p)z0) @)

with |arg x| < 7. These functions satisfy the following decomposition formula:

t
=2p"Ky (2\/p)  (R(p) >0), 3)

where, here and in the following, K, (x) denotes the modified Bessel function. In 1997,
Chaudhry et al. [1, Eq. (1.7)] presented the following extension of the Beta function
given by

y(o,x;p) +T(o,x;p) =Tp(x) = / 1* Lexp (—t - B) dt
0

1
B(x,y; p) ::/0 A=) texp (—ﬁ) dt 4

(R(p) > 0: p=0,%R(x) >0, R(y) >0)
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and showed that this extension has certain connections with the Macdonald, error and
Whittaker functions.

More recently, Chaudhry e al. [2] used B(x, y; p) to extend the hypergeometric
and the confluent hypergeometric functions as follows:

d B(b+n,c—b;p) "
F b;c;z):= h—————— — 5
plabic2) ,ZO@ Bb,c—b) n! )

(p=0, |z <1;R(c) >R(b) >0)

and 50 .

— +n,c—b;p

D, (b;c;z):= 1 2ol
p(bic:2) ;0 B(b,c—b)

(p=0;KR(c) >R(b) > 0).

Among several interesting and potentially useful properties of the extended hypergeo-
metric functions defined by (5) and (6), the following integral representations were also
given by Chaudhry et al. [2, Eq. (3.2)] and [2, Eq. (3.6)]:

< ©)
n.

F,(a,b;c;2) ':;/1 P —) T (1 —2) " exp (—L> dr (7)
PR B(b, ¢ — b) t(1—1)

0
(Jarg(1 —z)| < m; p>0; p=0and R(c) > R(b) >0)

and

1 1
i) = gy - (et

(p>0;p=0and R(c) > R(b) > 0),

respectively. They investigated these functions and gave their various integral represen-
tations, beta distribution, certain properties including differentiation formulas, Mellin
transform, transformation formulas, recurrence relations, summation formula, asymp-
totic formulas and certain interesting connections with some well-known special func-
tions. It is clearly seen that in the case p =0, (3), (4), (5) and (6) reduce to the usual
Gamma function, Beta function, Gauss hypergeometric and confluent hypergeometric
functions, respectively.

In 1997, Chaudhry and Zubair [5] considered the following extensions of the in-
complete gamma functions (1) and (2) in the form

2 X 3

w(oLx;p) =1/ 7” /0 %2 exp(—t)Ker% (?) dt 9)
2 ind 3

Ty(o,xp) = w/;p/ ("3 exp(—1)K, .1 (i—’) dr (10)

(larg x| <, R(p) > 0, —o0 < ¢ < o0).

and
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respectively. The functions (9) and (10) satisfy the following decomposition formula:

YV(OC’X;p)"i_FV((X’X;p)
211 1 1 1\ 1 1\ 1 1
:20672 -1 G074 p_‘_ - _ - - _ _ - 11
T VPG| gla \V s ) (Vs )9t )a (@7 ) ) AD

(R(p) >0,—c0 < < o0),
where G is the Meijer G-function. From the fact that [14, Eq. (10.39.2)]

Ki(z)=1/52¢" 12)

1
2

it is easily seen that (9) and (10) reduce to the generalized incomplete gamma functions
(1) and (2) when v =0.

Motivated essentially by the demonstrated potential for applications of these gen-
eralized incomplete gamma functions in many diverse areas of mathematical, physical,
engineering and statistical sciences (see, for details, [5, 6] and the references cited
therein), we introduce here another interesting extension of the extended Beta function

B(x,y; p) given by

By (x,y;p) = \/?/01 F3 (1 —t)y—% K1 (ﬁ) dt (R(p) >0), (13)

where /p takes its principal value. We note that this extension preserves the symmetry
in the parameters x and y, and we have

By(x,y; p) = By(y, x; p).

REMARK 1. The special case of (13) when v = 0 is easily seen to reduce to the
extended beta function (4) upon making use of (12).

Further, making use of the extended Beta function By (x, y; p) in (13), we consider
other extensions of the extended Gauss hypergeometric and the confluent hypergeomet-
ric functions. For each of these new extensions we obtain various integral representa-
tions, properties and Mellin transforms, together with differentiation, transformation,
summation, generating function and asymptotic formulas. Relevant connections of cer-
tain special cases of the main results presented herewith are also pointed out.

2. Integral representations of By (x, y; p)

In this section, we obtain several integral representations of By (x,y;p) for integer
values of v and consider certain special cases.
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THEOREM 1. The following various integral representations for By(x,y;p) in
(13) hold true:

2 n
By(x,y;p)=2 <P 70052("*1>Gsin2(y*1>61< 1 (psec?6csc?0)do, (14)
T v+3

2p w3 1
vy p) =4/ — / Aty IKJr <p<2+u+;))du (15)
2 3 4
2—x— 14 x— 3 1%
By(x,y: p) =22 [P / (1+uy3 (1-up K, %<1_u2>du (16)

(R(p) >0).

and

Proof. Equations (14), (15) and (16) can be obtained by employing the transfor-
mations 7 = cos®> @, t =u/(1 +u) and t = (1 +u)/2 in (13), respectively. [J

REMARK 2. Clearly, when v = 0, the results in Theorem 1 reduce to the corre-
sponding integrals in [1].

THEOREM 2. The following representation for integer values of v =n € N in
(13) holds true:

2p)™ I'(n+m+1)
m! T(n—m+1)

Bu(x,y;p) =, B(x+m,y+m; p) (17)

m=0

(neN:={1,2,3---} and R(p) > 0).

Proof. Using the fact (see, for example, [14, Eq. (10.49.12)])

K 712 M T(n+m+1)

n+% r(n_m+1) (nEN) (18)

in (13) and applying the definition (4), we obtain the desired representation (17). [l

REMARK 3. The Meijer G-function [9, p. 232, Eq. (5.124)], the Whittaker func-
tion Wy, g(z) [14, p. 334], and the confluent function U (a,b,z) [14, p. 325] are express-
ible in terms of the extended beta function B(x, y; p) for R(p) > 0 as follows:

| 30 Xty xty+1

B(x,y; p) =72 VG <4p 20 2 ) (19)
' 0,x,y

Blx,x:p) = VA2 P2 ¢ Wy 1 (4p) (20)

and

1
B(x,x; p) = /m2!"Ze U (5,1 —x,4p>. (21)



EXTENSIONS OF BETA AND HYPERGEOMETRIC FUNCTIONS 95

Now, applying the relationships (19)—(21) to (17), we can deduce certain interest-
ing representations of the extended beta function in (13) for integer values of v. These
are given in Corollary 1 below without proof.

COROLLARY 1. Each of the following representations for integer values of v =
n € N in (17) holds true:

—m F(n—|—m+ 1) X+y+2m  x+y+2m+1
) 1—x—y 3,0 o) ) 2
By(x,y; p) = V2 ; T(n— +1)G2=3 <4p 0,x+m,y+m
(22)
B B Apy/p) ™™ T(n+m+1
Bu(x,xip) = VA2 p'T & 2 f rEn_m+1;W”Tm’HTm(4p) >
and
B " Tn+m+1) (1
(x,x;p) = 2 T(n—m+1) g TP 24)

3. Some properties of B, (x,y; p)

In this section, we obtain certain properties including functional relations and sum-
mation formulas for By (x, y; p) as follows:

THEOREM 3. The following functional relation for By (x,y; p) in (13) holds true:

By(x+1,y:p) +By(x,y+1;p) = By(x,y: p). (25)

Proof. The left-hand side of (25) becomes

2p (s _3
Bv(x+1,y;p)+Bv(x,y+1;p)=\/;p/o e (=K, (ﬁ) a

which, after a simple algebraic manipulation and application of (13), establishes the
desired result. [

THEOREM 4. The following summation formula for By(x,y; p) in (13) holds
true:

By(x,1—y;p)= i (n)," By(x+n,1;p)  (R(p)>0). (26)
n=0 :

Proof. Application of the binomial theorem

=

(=07 =YOni (<)

n=0
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to the definition (13) of By (x,y; p) yields

By(x, 1 —y;p) \/E/ ”"*7(1 t)*%KH% (t(lp;—t)) dt

Interchange of the order of integration and summation in the last expression and use of
(13) proves the desired identity. [

THEOREM 5. The following infinite summation formula for By (x,y; p) in (13)
holds true:

By(x,y;p)= Y, Bu(x+n,y+1;p)  (R(p)>0). 27)
n=0
Proof. Replacing (1 —¢)*~! in (13) by its series representation

oo

(L= t=1—p ¥ " (<),

n=0

v(x,y:p) \/7/ 1—tV*j i =3 g ((1—:)>dt'

we obtain

Interchange of the order of integration and summation in the last expression and use of
(13) proves the desired identity. [

REMARK 4. In the special case v = 0, (25)-(27) reduce to the corresponding
results given in [1].

4. Mellin transforms of B, (x,y; p)

The Mellin transform of a suitably integrable function f(¢) with index s is defined,
as usual, by (see [12])

M{f(T):T— s} = / 1 f(1)dr, (28)
0
whenever the improper integral in (28) exists.

THEOREM 6. The following Mellin transformation formula for By (x, y; p) in (13)
holds true:

s—1 _
AMABy(x,y;p):p—st= 2\/—EF<S 2V)F<s+;+1) B(x+s,y+s) (29

(R(x+5)>0, R(y+s) >0, R(s—v) >0, R(s+v) > —1),

where B(x,y) denotes the classical Beta function, provided that each member of (29)
exists.
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Proof. Using the Definition (28) of the Mellin transform, we find from (13) that

///{Bvxy p):p— s}

{\/Z/ 3 (1—1)” %Kv%(ﬁ)dt}dp
:\/g/:ps—%{ x——(l—t)y_fK <(1p_t)>dt}dp. (30)

Upon interchanging the order of integration in (30), which can easily be justified by
absolute convergence of the integrals involved under the constraints stated in (29), we
find

MA{By(x,y;p):p— s}

\/7/ x—3 (1—1) g{/ ' %Kv+% (z(lp—t)>dp}dt
:/ tx+-\'*1 Ak 1{\/7/ wh™ 5[( )dw}dt, (3D
0

where we have set w = pr/(1 —1t) in the inner p-integral.
The inner integral may be evaluated with the help of [14, Eq. (10.43.19)]

P s—3 s—0o s+o+1
/Ot ZKoH_%(t)dt:Z 2F< 7 )F( > ) (32)

for R(s— o) >0, R(s+ o) > —1, and the integral with respect to 7 can then be eval-
uated in terms of the classical Beta function (given by (4) with p = 0). This evidently
completes our derivation of the Mellin transform formula (29). U

5. The beta distribution of B, (x, y; p)

As a statistical application of By (x, y; p), we define the extended beta distribution
by employing By (x, y; p), where the parameters a and b satisfy co < a < o0, 0o < b < o0
and p > 0 as:

1 2p a— Z o b—7 )4
flt)= Bv(a,b;p)\/7 =072k, 2<’(1—’>) O=r<b. (33)

0, otherwise.

If r is any real number, then we have the rth moment of X

By(a+rb;p)
BV(a7 b’p)

(p>0, —0<a< oo, —o0< b < oo).

E(X") = (34)
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The particular case of (34) when r =1,

By(a+1,b;p)

“:E“F:Bﬁamm

represents the mean of the distribution, and

o’ =E(X*) —{EX)}’ =

By(a,b; p)By(a+2,b; p)—B(a+1,b; p)

B (a,b;p)

is the variance of the distribution.
The moment generating function of the distribution is

o 1" 1
M(t) = —EX"Y)= —«—

) ngz)n! (X" = By(a,b;p) =

The cumulative distribution of (33) can be expressed as

Byx(a,b; p)
By(a,b;p)’

Byv(a,b;p) V/__/1‘F_ l—t 2K’ <(1

(p>0, —c0<a< oo, —o0o< b < oo)

F(x) =

where

is the extended incomplete beta function.

6. Extension of extended hypergeometric functions

ZBV a+n,b; p)

(35)

(36)

(37)

(38)

(39)

In this section, we extend the extended Gauss hypergeometric and confluent hy-
pergeometric functions in (5) and (6) by making use of By(x, y; p) in (13) as follows:

i(a) By(b+n,c—b;p) "
=" B(b,c—b) nl

Fyv(a,bic;z):=

(p=0: |27 < 1, R(c) > R(b) > 0)

and

i v(ib+n,c— b;p)i
B(b,c—D) n!

n=0

(p=0; R(c) > R(b) > 0).

(40)

(41)

REMARK 5. The special case v =0 in (40) and (41) leads to the corresponding

extensions given in (5) and (6) by Chaudhry et al. [2].



EXTENSIONS OF BETA AND HYPERGEOMETRIC FUNCTIONS 99

6.1. Integral representations of the extended hypergeometric functions

We obtain integral representations of the extended Gauss hypergeometric and con-
fluent hypergeometric functions as follows:

THEOREM 7. The following integral representations for the extended hypergeo-
metric functions in (40) and (41) hold true:

[2p 1 L. 3 c—b_3 —a 14
Fp,v(a,b;C;Z): FW/O tb 2(1—1) b Z(I—ZI) Kv+% (t(l—l))dt

(42)
(larg(1—2)|<m; p>0;v=0and p=0,R(c) >R(b) > 0)
and
AR ) 4 1 b3 c—b—3 p
q)mv(b,C,Z)— ?m/ot 2(1—[) ZCXp(Zt)Kv+% t(l—t) dt
(43)

(p>0;v=0andp=0,%R(c) >R(b) >0).

Proof. Substituting the definition of By(x, y; p) in (13) into (40), we have

2p 1 L2 p3 P - at)"
Fralabicid) =\ T gy [, -0 Ry (,u_z)) 2(}"’"(,1!) .

n

Employing the binomial expansion

(1—zt)™%= 2 (@)n " (lzt] < 1)

in (44), we obtain the integral in (42).
A similar argument can be used to establish the integral representation of the ex-
tended confluent hypergeometric function in (43). O

REMARK 6. The special case v =0 of the integrals in (42) and (43) leads to the
corresponding integral representations given in Chaudhry et al. [2].

THEOREM 8. The following representations of the extended hypergeometric func-
tions for integer values v = n in (42) and (43) hold true:

2 (2p)~" T(n+m+1)B(b+m,c—b+m)
F" ab’ s 2) =
12 (a cZ) 2 ml F(n—m+l) B(b,c—b)

F,(a,b+m;c+2m;z)

m=0
(45)
and
L(2p)™ T 1) B(b —b
q)pﬁ(b;C;Z): 2 ( p) (n+m+ ) ( +m,c +m)d>p(b+m;c—|—2m;z),

= m! T(n—m+1) B(b,c—D)
(46)

where F, and @, denote the extended functions defined in (5) and (6).
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Proof. Using the fact (18) in the integral representation (42) and applying the
definition (7), we obtain the desired representation.

A similar argument can be used to establish the representation of the extended
confluent hypergeometric function in (46). U

6.2. Differentiation formulas

Differentiation formulas for the extended Gauss hypergeometric and confluent hy-
pergeometric functions can be found by differentiating (40) and (41) with respect to z
as follows:

THEOREM 9. The following differentiation formulas for the extended hypergeo-
metric functions in (40) and (41) hold true for p > 0 and non-negative integer n:

% {Fpv(a,b;c;2)} = %Fmv (a+n,b+n;c+n;z) (47)
and d" ,
a7 {@pv(brc;2)} = 8: @, (b+n;c+n;z). (48)

Proof. Differentiating (40) with respect to z, we have

vib+n,c—b;p) 7!
9} = 2 B(b,c—D) (n—1)!

diz{ (a, b; c;
which, upon replacing n by n+ 1 and using the facts that
B(b,c—b)= %B(b+ Le=b) and  (A)us1=A (A + 1),
yields
diZ{FpN(a, bic;z)} = ac—b pvl(a+1,b+1;c+1;2).

The restriction R(c) > R(b) > 0 on the above result may be removed by ana-
Iytic continuation. Repeated application of this process gives the general form (47). A
similar argument can be employed to establish (48) for the extended confluent hyper-
geometric function. [

REMARK 7. The special case v =0 of (47) and (48) leads to the corresponding
results given in Chaudhry et al. [2].
6.3. Transformation and summation formulas

In this section, we obtain transformation and summation formulas for the extended
Gauss hypergeometric and confluent hypergeometric functions as follows:
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THEOREM 10. The following transformation formulas for the extended hyperge-
ometric functions hold true when p > 0:

Fpy(a,bic;z)=(1—2)"“Fpy (a, c—b;c; —%Z) (larg(1—z)| < 7)

1
(49)
and

D,y (b;c;2) =Dy (c—b;¢; —2). (50)
Proof. By writing

M—z(1-0)]“=(1—2)° (1 +IL_Zz> h

and replacing ¢ by 1 —¢ in (42), we obtain

(1—z)@ /1 p3 b3 z \ P
F, bic;z) = ——F— ¢ 1— I+— K dr,
polabied)=ga-5 o 0 AT M) Ky Gy )4

which establishes (49).
Again, replacing ¢ by 1 —¢ in (43), we find

[2p € b3 3 04
q)py(b;C;Z): ?m/o t b z(l—l)h ZCXp(—Zf)Kv_,’_% (t(l—l))dt,

which establishes (50). [

REMARK 8. The special case v =0 in (49) and (50) leads to the corresponding
extensions of Gauss’ summation formula and Kummer’s first transformation formula,
respectively, given in Chaudhry et al. [2].

THEOREM 11. The following summation formula for the extended Gauss hyper-
geometric function holds true:

By(b,c—a—1b;p)
B(b,c—D)

Fpyv(a,bic;1) = (52)
(p>0;v=0 and p=0, R(c—a—>b)>0).

Proof. Setting z =1 in (42) and using the definition (13), we readily obtain the
summation formula (52). [
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REMARK 9. The formula (52) in the case v =0 and p = 0 reduces to the well-
known Gauss summation formula

I'(c)l'(c—a—b) B(b,c—a—Db)
I'(c—a)(c—b)  B(b,c—b)

F(a,b;c;1) = (R(c—a—>b)>0).

6.4. A generating function for F), ,(a,b;c;z)

We have the following theorem:

THEOREM 12. The following generating function for Fy, y(a,b;c;z) holds true

o m

Z(a)nFmv(a—Fn,b;c;z) — = (1—=1)"F,y (a b;c; < ) (53)

= n! 1—1t
(p=0,Jt|<1).

Proof. Let the left-hand side of (53) be denoted by S.Then, from the definition
(40) we have

8

. .
S=20<a>n{z<a+n>k3v<b+k, b,p>%}f_

; = B(b,c—D) n!
= Bv (b+k,c—b;p) | &
= 2@ ) {;O(Hk) '}k!

upon reversal of the order of summation and use of the identity (a),(a+n); = (a)r(a+
k).
Since by the binomial theorem

(1—r)~ @k Za+k (t] < 1),

identification of the series over k from (40) as F, y(a,b;c;z/(1 —t)) then leads to the
assertion in (53). [

6.5. Asymptotic behaviour for large z

We present the asymptotic behaviour of @, (b;c;z) for |z| — e in R(z) >0
when it is supposed that p > 0. The major contribution to the integrand in (51) for
large |z| arises from the neighbourhood of # = 0, where the Bessel function may be
approximated by its leading asymptotic behaviour

vl (ﬁ) ~ \/gti(l —1)? exp (-?- IL_J (t—0).
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Then, from (51), we obtain with 1 = zT

b—c ,z—p z
D, (b;csz) ~ 276)/0 Tc_b_lexp< T— —) dt

B(b,c—b
Zb—CeZ—P ) o . . .
= B e rp) (Rl R@)>0.p>0). (54

where y(a,x;p) is the extended incomplete gamma function defined in (1). We note
that the leading term is independent of the parameter v and that the factor e™” was
omitted in the case v =0 in [2, Eq. (8.7)]. In the limit p — 0, we recover the well-
known asymptotic behaviour of the ordinary confluent hypergeometric function

D(bye;z) ~ 20 ;;EZ’_C?’Z)) ~ II:EIC); 27 (2 = e, R(z) > 0).

For the function F), y(a,b;c;z), we apply a slight modification of the analysis de-
scribed in [16, §16.3] to the integral (42), where for simplicity in presentation we shall
suppose the parameters a, b, ¢ and Vv to be real. With & = —z, we write

F,,N(a,b;c;z):\/;B((bC) b>/0 tba=3 (1) b3 <1+€1 )%KH (ﬁ) dr,

where we employ the series expansion for positive integer n
L\ (D) )
1) =2 Sk i r.8)
(+5) - e

with

—1)"(a), —a /g -
Rn(t@):%(l—f—é) /0 w14+ u)*du.

The finite series yields the contribution to F}, \(a,b;c;z) given by

2p (=2 " (ak —k/l b—a—k—3 —h-3 )4
— — t 2(1—1)"2K dt
P B(b,c—b)Z ko (1-1) vis (1 -1

k=0

- if @48, (b—a— ke bip).

B(b,c—D) = k!
Now

|(a)n| 1 - /l/(l\zl) n—1 al

< —_

—1)lal |a

[(@)a] (14171 1

< 1 d

(n—1)!( \z|t sing)ld + Y

_ @] (1402
n!  (|z|t)"(sing)lal’
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where, with |z| > 1, |arg &| < m — €, we have used the bounds
L<T+EN)T <1+ (RE)20),  [14+(&n)7" | =sine (R(E) <0).

It then follows that, when |z| > 1,

/Olt”f‘l*%(l _t)cfb*%Rn(t,é)Kw% (z(lp— f)) “

(a AT ) b N
< e 00 P (G a0

since the integral is convergent when p > 0 and is independent of z. The constant
implied in the O-symbol becomes infinite as € — 0.
Hence, we obtain the following theorem:

THEOREM 13. For n € N and p > 0, we have the asymptotic expansion

Fmv(a,b;c;z):%:;(k?k 7*By(b—a—kc—bip)+0(E") (55

for |z| — o in |arg(—z)| < 7.

7. Mellin transforms representations

In this section, we obtain Mellin transform representations for the extended Gauss
hypergeometric and confluent hypergeometric functions as follows:

THEOREM 14. The following Mellin transformation formulas for the extended hy-
pergeometric functions in (40) and (41) hold true:

MAFyy(a,b;c;z):p— s}

27l s—v s+v+1\ B(b+s,c+s—0b)
= T T F(a,b+s; 2s; 56
N ( 5 ) ( 5 ) B c—b) (a,b+s;c+2s32)  (56)

and
MADyy (bic;2):p— s}

27l fs—v s+v+1\ B(b+s,c+s—b)
= r r o ; 2s; 7
NG ( 5 ) < 3 ) Blb.c—b) (b+s;¢+2532) (57)

R(s—v)>0, R(s+v)>—1),

provided that each member of (56) and (57) exists.
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Proof. Using the definition (28) of the Mellin transform, we find from (42) that
MAFyy (a,b;c;2): p—>s}

_/ { 217 IO b)/ b_%(1—t)c_b_%(1—zt)_“Kv+% (ﬁ)dr dp
s [ e am et oy (s b

Then, upon interchanging the order of integration by absolute convergence of the inte-
grals involved, we obtain

MAFyy(a,bic;z):p— s}

2 1 L3 1 p
— - - -3 1 c— b—— 1 / S— jK
V ch(b,c—b)/o er1-n —4) { o ? v+ (t(l—f))dp}dt
1 /2
:/ tb+s—l( t)c b+s— 1 / WS—%K ( )dW dt,
0

where we have set w = pr/(1 —1) in the inner p-integral. Then, upon use of (32) to
evaluate the inner integral followed by (7) (with p = 0), we finally obtain (56) subject
to the conditions stated. This completes our derivation of the Mellin transform Formula
asserted by Theorem 12.

A similar argument can be employed to establish (57) for the extended confluent
hypergeometric function. [
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