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MICHAEL A. BAEDER, HOWARD S. COHL, ROBERTO S. COSTAS-SANTOS

AND WENQING XU

Abstract. We introduce the power collection method for easily deriving connection relations
for certain hypergeometric orthogonal polynomials in the (q -)Askey scheme. We summarize
the full-extent to which the power collection method may be used. As an example, we use the
power collection method to derive connection and connection-type relations for Meixner and
Krawtchouk polynomials. These relations are then used to derive generalizations of generating
functions for these orthogonal polynomials. The coefficients of these generalized generating
functions are in general, given in terms of multiple hypergeometric functions. From derived
generalized generating functions, we deduce corresponding contour integral and infinite series
expressions by using orthogonality.
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