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THE POWER COLLECTION METHOD FOR

CONNECTION RELATIONS: MEIXNER POLYNOMIALS

MICHAEL A. BAEDER, HOWARD S. COHL, ROBERTO S. COSTAS-SANTOS

AND WENQING XU

Abstract. We introduce the power collection method for easily deriving connection relations
for certain hypergeometric orthogonal polynomials in the (q -)Askey scheme. We summarize
the full-extent to which the power collection method may be used. As an example, we use the
power collection method to derive connection and connection-type relations for Meixner and
Krawtchouk polynomials. These relations are then used to derive generalizations of generating
functions for these orthogonal polynomials. The coefficients of these generalized generating
functions are in general, given in terms of multiple hypergeometric functions. From derived
generalized generating functions, we deduce corresponding contour integral and infinite series
expressions by using orthogonality.

1. Introduction

Orthogonal polynomials are a collection of polynomial families such that any two
different polynomials in that family are orthogonal to each other under some inner prod-
uct. This relation can sometimes be expressed discretely for a sequence of orthogonal
polynomials. For instance, given {Pn(x;a)} , n ∈ N0 , with discrete weight wx ∈ C , a
is a set of free parameters, and rn(a) ∈ C , then one may have the following discrete
orthogonality relation

∞

∑
x=0

Pm(x;a)Pn(x;a)wx(a) = rn(a)δm,n.

By connection relations for orthogonal polynomials (see for instance [1, Lecture 7],
[11, Section 13.3] and more recently [8, 9, 16, 19]), we mean a relation where the left-
hand side is an orthogonal polynomial with argument x and a set of parameters a , and
the right-hand side is given by a finite sum over coefficients (which do not depend on
x ) multiplied by a product of that same polynomial with a set of different parameters
b , namely

Pn(x;a) =
n

∑
k=0

αk,n(a,b)Pk(x;b).

By connection-type relations for orthogonal polynomials, we mean a relation where the
left-hand side is an orthogonal polynomial with argument x and set of parameters a ,
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and the right-hand side is given by a finite sum over coefficients which in general may
depend on x , multiplied by a product of that same polynomial with a set of different
parameters b , namely

Pn(x;a) =
n

∑
k=0

βk,n(x;a,b)Pk(x;b).

Connection-type relations are not connection relations (nor are they unique) because
the coefficients multiplying the orthogonal polynomials depend on the argument. For
connection relations, the coefficients of the orthogonal polynomials must not depend
on the argument. A generating function for an orthogonal polynomial is given as

f (x,t;a) =
∞

∑
n=0

cn(a)Pn(x;a)tn, (1)

where x, t ∈ C , |t| < 1.
In this paper we discuss connection and connection-type relations, and general-

izations of generating functions from these relations for a family of discrete hypergeo-
metric orthogonal polynomials, namely the Meixner and Krawtchouk polynomials [15,
Sections 9.10–11]. Note that we use the terminology that a double connection relation
is a connection relation with two free parameters, and a triple connection relation is a
connection relation with three free parameters.

The motivation for this paper is two fold, namely (1) to describe and elucidate the
powerful and simple method (power collection method) for deriving connection and
connection-type relations for (q -)hypergeometric orthogonal polynomials; and (2) to
show that the generalized generating functions that we present in our paper, are similar
to results recently appearing in the literature [13, Theorem 4.2].

The paper is organized as follows. In Section 2, some mathematical preliminaries
which are used in our proofs are introduced. In Section 3, the power collection method
for deriving connection relations is explained. Polynomials in which one can apply the
power collection method are also listed. In Section 4, connection and connection-type
relations are given for Meixner and Krawtchouk polynomials. In Section 5, generaliza-
tions of generating functions for Meixner and Krawtchouk polynomials are presented.
In Section 6, infinite series expressions are given which are derived using orthogonality
for Meixner and Krawtchouk polynomials.

2. Preliminaries: hypergeometric functions

Our generalizations of generating functions rely on Pochhammer symbols. The
Pochhammer symbol, also called the shifted factorial, is a special function that is used
to express coefficients of polynomials. They can be used to express binomial coeffi-
cients, coefficients of derivatives of polynomials, and are integral to the definition of
hypergeometric functions. The Pochhammer symbol is defined for a ∈ C , n ∈ N , such
that

(a)0 := 1, (a)n := (a)(a+1) · · ·(a+n−1). (2)
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Note that we assume (and throughout this paper) that the empty product is unity. Define

Ĉ := {z ∈ C : −z �∈ N0},
C0 := {z ∈ C : z �= 0},
C0,1 := {z ∈ C : z �∈ {0,1}}.

One has the following useful identities for Pochhammer symbols, namely for n ∈ N0 ,

(a)n =
Γ(a+n)

Γ(a)
, (3)

Γ(a−n) =
(−1)nΓ(a)
(−a+1)n

, (4)

where a ∈ Ĉ , and for k ∈ N0 , a ∈ C , one has

(a)n+k = (a)n(a+n)k = (a)k(a+ k)n. (5)

Another useful identity which we use is that for n,k ∈ N0 , then

(−n)k =
(−1)kn!
(n− k)!

,

if 0 � k � n , and zero otherwise.
Moreover, for many of the proofs in this paper, we will need the following in-

equalities for Pochhammer symbols [5, Lemma 12]. Let j ∈ N , k,n ∈ N0 , z ∈ C ,
u ∈ {z ∈ C : ℜz > 0} , v ∈ [0,∞) , w ∈ (−1,∞) . Then

|(u) j| � (ℜu)( j−1)!, (6)

(v)n

n!
� (1+n)v, (7)

(n+w)k � max{1,2w} (n+ k)!
n!

, (8)

(z+ k)n−k � n!
k!

(1+n)|z|. (9)

The generalized generating functions we present in this paper often have coefficients
which can be expressed in terms of generalized hypergeometric functions. Generalized
hypergeometric functions rFs are special functions which can be represented by a hy-
pergeometric series. These are solutions of a max(s+1,r) th order differential equation
with three regular singular points. The generalized hypergeometric function is defined
as [15, (1.4.1)]

rFs

(
a1, . . . ,ar

b1, . . . ,bs
;z

)
:=

∞

∑
k=0

(a1)k · · · (ar)k

(b1)k · · · (bs)k

zk

k!
. (10)

For instance, we often take advantage of the binomial theorem [15, (1.5.1)] which can
be expressed as

1F0

(
a
− ;z

)
= (1− z)−a, |z| < 1. (11)
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The q -Pochhammer symbol (q -shifted factorial) is defined for n ∈ N0 by

(a;q)0 := 1, (a;q)n := (1−a)(1−aq) · · ·(1−aqn−1), n � 1, (12)

where 0 < q < 1, a ∈ C . The basic hypergeometric series is defined as

rφs

(
a1, . . . ,ar

b1, . . . ,bs
;q,z

)
:=

∞

∑
k=0

(a1, . . . ,ar;q)k

(q,b1, . . . ,bs;q)k

(
(−1)kq(k

2)
)1+s−r

zk, (13)

where we have used multi q -Pochhammer notation, namely

(a1, . . . ,ar;q)k :=
r

∏
m=1

(am;q)k.

We have also taken advantage of the q -binomial theorem [15, (1.11.1)]

1φ0

(
a
− ;q,z

)
=

(az;q)∞

(z;q)∞
.

Sometimes, the coefficients of our generalized generating functions are given in
terms of double and triple hypergeometric functions. There exists a large classification
of such functions. The versions of these functions which we encounter are given as
follows. For double hypergeometric series we encounter the function F1 which is an
Appell series. These are hypergeometric series in two variables and are defined as [7,
(16.13.1)]

F1

(
a,b,b

′
;c;x,y

)
:=

∞

∑
m,n=0

(a)m+n(b)m(b
′
)n

(c)m+n

xm

m!
yn

n!
. (14)

We also encounter the function Φ2 , which is a Humbert hypergeometric series of two
variables defined as [18, p. 25]

Φ2

(
β ,β

′
;γ;x,y

)
:=

∞

∑
m,n=0

(β )m(β ′
)n

(γ)m+n

xm

m!
yn

n!
. (15)

The function F (3)
D , a hypergeometric function of three-variables, is a form of the triple

Lauricella series defined as [18, p. 33]

F (3)
D (a,b1,b2,b3;c;x,y,z) :=

∞

∑
m,n,p=0

(a)m+n+p (b1)m (b2)n (b3)p

(c)m+n+p

xm

m!
yn

n!
zp

p!
. (16)

The function Φ(3)
2 is a confluent form of the triple Lauricella series defined as [18,

p. 34]

Φ(3)
2 (b1,b2,b3;c;x,y,z) :=

∞

∑
m,n,p=0

(b1)m (b2)n (b3)p

(c)m+n+p

xm

m!
yn

n!
zp

p!
. (17)
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3. The power collection method and its orthogonal polynomials

In this section, we describe what we refer to as the power collection method. This
method, which has been used extensively in the literature (see for example [12, 13,
14]), can be used to easily derive connection relations for generalized hypergeometric
and basic hypergeometric orthogonal polynomials. For examples of where the power-
collection method is used to derive duplication formulas, see [3, 20]. The method starts
with a generating function for a (q -)hypergeometric orthogonal polynomial. For the
power collection method to work, f (x,t;a) in (1) must be in a particular elementary
form, namely that it contains a simple (q -)binomial product which can be expanded
using the (q -)binomial theorem. It is also furthermore crucial that if α ∈ a , then only
the binomial term in the generating function may contain α . If this is the case, then the
power collection method may be used to easily derive a connection relation for the free
parameter α . Generalized generating functions for hypergeometric orthogonal poly-
nomials (see for instance [2]) are produced by applying series rearragement to known
generating functions using derived connection relations. Hence the power collection
method is useful for obtaining identities such as these.

In the context of the generating function (1), consider free parameters α,β ∈ a ,
such that α,β are of the same type. The power collection method1 proceeds by mul-
tiplying the (q -)binomial on the left-hand side of the generating function by a similar
expression containing an alternate free parameter β instead of α . On the left-hand side,
utilizing the binomial theorem and rearranging the nested series, produces the original
generating function, however expressed in terms of β . If this method succeeds, by
collecting terms corresponding to t in the resulting expression, the coefficients of the
expansion produce a connection relation in terms of the free parameters α,β .

We now give an example of how the power collection method can be used for
Meixner polynomials to obtain the well known connection relation

Mn(x;α,c) =
1

(α)n

n

∑
k=0

(
n
k

)
(α −β )n−k(β )kMk(x;β ,c). (18)

In the following elementary generating function for Meixner polynomials [15, (9.10.11)],
the left-hand side is given in terms of a binomial expression, namely(

1− t
c

)x
(1− t)−x−α =

∞

∑
n=0

(α)n

n!
Mn(x;α,c)tn,

where |t| < |c| < 1. Multiplying the left-hand side by (1− t)−β /(1− t)−β , and ex-
pressing it in terms of the original generating function, produces

(1− t)β−α
∞

∑
n=0

(β )n

n!
Mn(x;β ,c)tn =

∞

∑
n=0

(α)n

n!
Mn(x;α,c)tn.

1Note that this simple method was originally described to H. S. Cohl by Mourad Ismail. Ismail has also
explained that this method is not new, and has been used previously in the literature.
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Applying the binomial theorem (11) to the above expression yields
∞

∑
k=0

(α −β )k

k!
tk

∞

∑
n=0

(β )n

n!
Mn(x;β ,c)tn =

∞

∑
n=0

(α)n

n!
Mn(x;α,c)tn,

and after collecting terms associated with t produces
∞

∑
n=0

tn
n

∑
k=0

(α −β )n−k(β )k

(n− k)!k!
Mk(x;β ,c) =

∞

∑
n=0

tn
(α)n

n!
Mn(x;α,c).

If we rearrange this expression, one arrives aarrives at

∞

∑
n=0

tn
(

(α)n

n!
Mn(x;α,c)−

n

∑
k=0

(α −β )n−k(β )k

(n− k)!k!
Mk(x;β ,c)

)
= 0.

Since each term corresponding to tn in the above expression is linearly independent,
the connection relation (18) naturally follows.

This method is quite powerful and can be applied in many different contexts of
basic and generalized hypergeometric orthogonal polynomials. Note that the contin-
uous q -Hermite and discrete q -Hermite I & II polynomials are not displayed in the
following list, even though these polynomials could potentially profit from use of the
power collection method. The reason is that these polynomials contain no free parame-
ters (other than q ), and hence ordinary connection relations for these polynomials (not
in terms of q ), do not exist. Furthermore, for the continuous q -ultraspherical/Rogers
polynomials, the generating function [15, (14.10.27)] may be used with the power col-
lection method to produce the connection relation for these polynomials. However, the
connection relation for these polynomials is well known. For the connection relation,
see for instance [11, Section 13.3], and for generalized generating functions see [4].

We now provide a list of generalized and basic hypergeometric orthogonal polyno-
mials in which one may apply the power collection method to easily obtain connection
relations. We also display the generating function for these polynomials, which is the
main vehicle for the method to work.

• Continuous dual Hahn polynomials.
The relevant generating function is [15, (9.2.12)]

(1− t)−c+ix
2F1

(
a+ ix,b+ ix

a+b
;t

)
=

∞

∑
n=0

Sn(x2;a,b,c)
(a+b)nn!

tn.

These polynomials have 3 free parameters and 5 known generating functions.
Note that the parameters a , b , and c are symmetrical. The power collection
method will produce 1 connection relation for each symmetric free parameter.
Combining these connection relations produces 3 double connection relations
and one triple connection relation, for a total of 7 connection relations.

• Dual Hahn polynomials.
The relevant generating function is [15, (9.6.11)]

(1− t)N−x
2F1

(−x,−x− δ
γ +1

;t

)
=

N

∑
n=0

(−N)n

n!
Rn(λ (x);γ,δ ,N)tn,



CONNECTION RELATIONS BY POWER COLLECTION: MEIXNER 113

where λ (x) := x(x+ γ + δ +1). These polynomials have 3 free parameters and
4 known generating functions. The power collection method will produce 1 con-
nection relation based on parameter N .

• Bessel polynomials.
The relevant generating function is [15, (9.13.10)]

(1−2xt)−
1
2

(
2

1+
√

1−2xt

)a

exp

(
2t

1+
√

1−2xt

)
=

∞

∑
n=0

yn(x;a)
n!

tn.

These polynomials have 1 free parameter and 2 known generating functions. The
power collection method will produce 1 connection relation for the free parame-
ter.

• Charlier polynomials.
The relevant generating function is [15, (9.14.11)]

et
(
1− t

a

)x
=

∞

∑
n=0

Cn(x;a)
n!

tn.

These polynomials have 1 free parameter and 1 known generating function. The
power collection method will produce 1 connection relation for the free parame-
ter, but no generalized generating functions since the above generating function
is the only known generating function for Charlier polynomials.

• Continuous dual q-Hahn polynomials.
The relevant generating function is [15, (14.7.11)]

(ct;q)∞

(eiθ t;q)∞
2φ1

(
aeiθ ,beiθ

ab
;q,e−iθ t

)
=

∞

∑
n=0

pn(x;a,b,c|q)
(ab,q;q)n

tn,

where x = cosθ . These polynomials have 3 free parameters and 4 known gener-
ating functions. Note that parameters a , b , and c are symmetrical. The power
collection method will produce 1 connection relation for each symmetric free pa-
rameter. Combining these connection relations will produce 3 double connection
relations and one triple connection relation, for a total of 7 connection relations.

• Dual q-Hahn polynomials.
The relevant generating function is [15, (14.7.11)]

2φ1

(
q−x,δ−1q−x

γq
;q,γδqx+1t

)
(q−Nt;q)N−x =

N

∑
n=0

(q−N ;q)n

(q;q)n
Rn(μ(x);γ,δ ,N|q)tn,

where μ(x) := q−x + γδqx+1 . These polynomials have 3 free parameters and 2
known generating functions. The power collection method will produce 1 con-
nection relation based on parameter N .
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• Al-Salam-Chihara polynomials.
The relevant generating function is [15, (14.8.13)]

(at,bt;q)∞

(eiθ t,e−iθ t;q)∞
=

∞

∑
n=0

Qn(x;a,b|q)
(q;q)n

tn,

where x = cosθ . These polynomials have 2 free parameters and 4 known gen-
erating functions. Note that parameters a and b are symmetrical. The power
collection method will produce 1 connection relation for each free parameter.
Combining these connection relations will produce 1 double connection relation
for a total of 3 connection relations.

• q-Meixner-Pollaczek polynomials.
The relevant generating function is [15, (14.9.11)]∣∣∣∣ (aeiφ t;q)∞

(ei(θ+φ)t;q)∞

∣∣∣∣= (aeiφ t,ae−iφ t;q)∞

(ei(θ+φ)t,e−i(θ+φ)t;q)∞
=

∞

∑
n=0

Pn(x;a,φ |q)tn,

where x = cos(θ + φ) . These polynomials have 2 free parameters and 2 known
generating functions. The power collection method will produce 1 connection
relation for each free parameter. Combining these connection relations will pro-
duce 1 double connection relation for a total of 3 connection relations.

• Big q-Laguerre polynomials.
The relevant generating function is [15, (14.11.11)]

(bqt;q)∞ 2φ1

(
aqx−1,0

aq
;q,xt

)
=

∞

∑
n=0

(bq;q)n

(q;q)n
Pn(x;a,b;q)tn.

These polynomials have 2 free parameters and 3 known generating functions.
Note that parameters a and b are symmetrical. The power collection method
will produce 1 connection relation for each free parameter. Combining these
connection relations will produce 1 double connection relation for a total of 3
connection relations.

• Affine q-Krawtchouk polynomials.
The relevant generating function is [15, (14.16.11)]

(q−Nt;q)N−x 1φ1

(
q−x

pq
;q, pqt

)
=

N

∑
n=0

(q−N ;q)n

(q;q)n
KAff

n (q−x; p,N;q)tn.

These polynomials have 2 free parameters and 2 known generating functions.
The power collection method will produce 1 connection relation based on pa-
rameter N .

• Dual q-Krawtchouk polynomials.
The relevant generating function is [15, (14.17.11)]

(cq−Nt;q)x(q−Nt;q)N−x =
N

∑
n=0

(q−N ;q)n

(q;q)n
Kn(λ (x);c,N|q)tn,
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where λ (x) := q−x + cqx−N . These polynomials have 2 free parameters and 1
known generating function. The power collection method will produce 1 con-
nection relation for each free parameter. Combining these connection relations
will produce 1 double connection relation for a total of 3 connection relations,
but no generalized generating functions since the above generating function is
the only known generating function for dual q -Krawtchouk polynomials.

• Continuous big q-Hermite polynomials.
The relevant generating function is [15, (14.18.13)]

(at;q)∞

(eiθ t,e−iθ t;q)∞
=

∞

∑
n=0

Hn(x;a|q)
(q;q)n

tn,

where x = cosθ . These polynomials have 1 free parameter and 3 known gener-
ating functions. The power collection method will produce 1 connection relation
for the free parameter.

• Al-Salam-Carlitz I polynomials.
The relevant generating function is [15, (14.24.11)]

(t,at;q)∞

(xt;q)∞
=

∞

∑
n=0

U (a)
n (x;q)
(q;q)n

tn.

These polynomials have 1 free parameter and 1 known generating function. The
power collection method will produce 1 connection relation for the free parame-
ter, but no generalized generating functions since the above generating function
is the only known generating function for Al-Salam-Carlitz I polynomials.

• Al-Salam-Carlitz II polynomials.
The relevant generating function is [15, (14.25.11)]

(xt;q)∞

(t,at;q)∞
=

∞

∑
n=0

(−1)nq(n
2)

(q;q)n
V (a)

n (x;q)tn.

These polynomials have 1 free parameter and 2 known generating functions. The
power collection method will produce 1 connection relation for the free parame-
ter.

4. Connection and connection-type relations

The Meixner polynomials are defined as [15, (9.10.1)]

Mn(x;α,c) := 2F1

(−n,−x
α

;1− 1
c

)
. (19)

In this section we derive and discuss connection and connection-type relations for
Meixner polynomials. For the entire paper, we assume that x∈C , n∈N0 . Even though
the power collection method may be used to derive the following connection relations
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for Meixner polynomials, these can also be found (with proofs) in Gasper (1974) [10,
(5.2-5)].

THEOREM 1. Let α,β ∈ Ĉ, c,d ∈ C0,1 . Then

Mn(x;α,c) =
n

∑
k=0

(
n
k

)
(β )k

(α)k

(
d(1− c)
c(1−d)

)k

2F1

(−n+ k,k+ β
k+ α ;

d(1− c)
c(1−d)

)
Mk(x;β ,d).

(20)

By setting β = α in (20) one obtains the following specialized result. Let α ∈ Ĉ ,
c,d ∈ C0,1 . Then

Mn(x;α,c) =
(

c−d
c(1−d)

)n n

∑
k=0

(
n
k

)(
d(1− c)
c−d

)k

Mk(x;α,d). (21)

Furthermore by setting d = c in (20), and using the Gauss formula [7, (15.4.20)], one
also has the following specialized result. Let α,β ∈ Ĉ , c ∈ C0,1 . Then

Mn(x;α,c) =
1

(α)n

n

∑
k=0

(
n
k

)
(α −β )n−k(β )kMk(x;β ,c). (22)

REMARK 1. Note that even though Theorem 1 was originally stated in [10] for
α > 0, c ∈ (0,1) , one can extend [10, (5.9–12)] analytically for α,β ∈ Ĉ , c,d ∈ C0,1 ,
since, in such a case, one loses normality of the polynomials, i.e., degMn(x) < n for
some n . However, formally, Theorem 1 remains true for c = 1, and all β ,d in the
above domains.

We now derive a connection-type relation for Meixner polynomials corresponding
to the parameter c , using the power collection method.

THEOREM 2. Let α ∈ Ĉ , c,d ∈ C0,1 . Then

Mn(x;α,c) =
1

(α)n

n

∑
k=0

(
n
k

)
(α)k(x)n−k

dn−k 2F1

( −n+ k,−x
−x+ k−n+1

;
d
c

)
Mk(x;α,d). (23)

Proof. A generating function for Meixner polynomials is given as [15, (9.10.11)](
1− t

c

)x
(1− t)−x−α =

∞

∑
n=0

(α)n

n!
Mn(x;α,c)tn, |t| < |c| < 1. (24)

The above connection-type relation (23) can be derived by starting with (24), and mul-

tiplying the left-hand side by
(
1− t

d

)x/(
1− t

d

)x
, |t|< |d|< 1. Then, the left-hand

side becomes(
1− t

c

)x(
1− t

d

)−x(
1− t

d

)x
(1− t)−x−α

=
∞

∑
m=0

(−x)m

m!

( t
c

)m ∞

∑
s=0

(x)s

s!

( t
d

)s ∞

∑
k=0

(α)k

k!
Mk(x;α,d)tk, (25)



CONNECTION RELATIONS BY POWER COLLECTION: MEIXNER 117

where the first two terms have been replaced using the binomial theorem (11), and
the final two terms with the generating function (24) with c replaced by d . Let s =
n− k−m , and collect the terms associated with tn using (24) where the left-hand side
has been re-expressed using (25). Then (23) follows using analytic continuation in c ,
d , and (3), (4) and (10). �

We now derive an interesting connection-type relation for Meixner polynomials
corresponding to free parameters α , c . The theorem below is not a connection relation
because the coefficients multiplied by the Meixner polynomial depend on x .

THEOREM 3. Let α,β ∈ Ĉ , c,d ∈ C0,1 . Then

Mn(x;α,c) =
(α −β )n

(α)n

n

∑
k=0

(β )k(−n)k

k!(β −α −n+1)k

×F1

(
−n+ k,−x,x;β −α −n+ k+1;

1
c
,
1
d

)
Mk(x;β ,d), (26)

where F1 is given by (14).

Proof. We substitute the connection relation for the free parameter α (22) with
the connection-type relation for the free parameter d (23) to obtain the result

Mn(x;α,c) =
1

(α)n

n

∑
k=0

k!

(
n
k

)
(α −β )n−k

k

∑
m=0

(β )m(x)k−m

m!(k−m)!dm−k

×2F1

( −k+m,−x
−x+m− k+1

;
d
c

)
Mm(x;β ,d).

If we expand the hypergeometric, switch the order of summations twice, and use (3),
(4), (10), (14), the result follows. �

Krawtchouk polynomials are a particular case of Meixner polynomials. In fact,
they are related in the following way

Kn(x; p,N) = Mn

(
x;−N,

p
p−1

)
. (27)

Taking this into account, we can write them as a truncated hypergeometric series as [15,
(9.11.1)]

Kn(x; p,N) := 2F1

(−n,−x
−N

;
1
p

)
. (28)

The following connection results for Krawtchouk polynomials can be found in [10,
(5.9–10), (5.11–12)].

THEOREM 4. Let n,M,N ∈ N0 , n � N � M, p,q ∈ C0 . Then

Kn(x; p,N) =
n

∑
k=0

(
n
k

)
qk(−M)k

pk(−N)k
2F1

(−n+ k,k−M
k−N

;
q
p

)
Kk(x;q,M). (29)
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Setting M = N in (29) one obtains the following connection result. Let n,N ∈ N0 ,
n � N , p,q ∈ C0 . Then

Kn(x; p,N) =
(

p−q
p

)n n

∑
k=0

(
n
k

)(
q

p−q

)k

Kk(x;q,N). (30)

Furthermore by setting d = c in (29) and using the Gauss formula [7, (15.4.20)], one
obtains the following. Let n,M,N ∈ N0 , n � N � M , p,q ∈ C0 . Then

Kn(x; p,N) =
1

(−N)n

n

∑
k=0

(
n
k

)
(M−N)n−k(−M)kKk(x; p,M). (31)

REMARK 2. Observe that the results for Krawtchouk polynomials presented in
this paper may also be obtained by starting with (19), setting the right values, and using
the relation (27).

5. Generalized generating functions from connection(-type) relations

We now combine generating functions for Meixner and Krawtchouk polynomials
with the above connection and connection-type relations to derive generalized gen-
erating functions. First we derive generalized generating functions for the Meixner
polynomials.

THEOREM 5. Let α,β ∈ Ĉ , c,d ∈ C0,1 , x,t ∈ C . Then

1F1

(−x
α

;
t(1− c)

c

)
=

∞

∑
n=0

(β )n

(α)nn!

(
td(1− c)
c(1−d)

)n

1F1

(
β +n
α +n

;
−td(1− c)
c(1−d)

)
Mn(x;β ,d).

(32)

Proof. Using the generating function for Meixner polynomials [15, (9.10.12)]

et
1F1

(−x
α

;
t(1− c)

c

)
=

∞

∑
n=0

Mn(x;α,c)
tn

n!
(33)

and (20), we obtain

et
1F1

(−x
α

;
t(1− c)

c

)
=

∞

∑
n=0

tn

n!

n

∑
k=0

(
n
k

)
(β )k

(α)k

(
d(1− c)
c(1−d)

)k

2F1

(−n+ k,β + k
α + k

;
d(1− c)
c(1−d)

)
Mk(x;β ,d). (34)

Using for instance [17, Lemma 10, p. 56], we switch the order of the two summations
in (34), and shift the n index by k . The resulting inner sum over n can be easily
expressed, using series rearrangment, as

∞

∑
n=0

tn

n! 2F1

(−n,β + k
α + k

;
d(1− c)
c(1−d)

)
= et

1F1

(
β + k
α + k

;
−td(1− c)
c(1−d)

)
,
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where we have used (3), (4), (10). In order to justify reversing the summation symbols,
it is enough to show that

∞

∑
n=0

|an|
∣∣∣∣∣ n

∑
k=0

ck,nMk(x;β ,d)

∣∣∣∣∣< ∞,

where |Mk(x,β ,d)| � K1(1+ k)σ2d−k , an = tn/n!, hence |an| � |t|n/n!, and

ck,n =
n−k

∑
s=0

(−1)k(−n)s+k(β )s+k

(α)s+kk!s!

(
d(1− c)
c(1−d)

)s+k

,

where K1 and σ2 are positive constants not depending on n . Then since

∞

∑
n=0

|an|
∣∣∣∣∣ n

∑
k=0

ck,nMk(x;β ,d)

∣∣∣∣∣� K1K2

∞

∑
n=0

(1+n)σ1+σ2+1

n!

∣∣∣ t
c

∣∣∣n ∣∣∣∣1+d−2c
1−d

∣∣∣∣n < ∞,

the result follows because all the sums connected with these coefficients converge. Note
that in the final result we have replaced k by n . �

A direct consequence of Theorem 5 with c = d , and [7, (13.2.39)] is given as
follows. Let x, t ∈ C , α,β ∈ Ĉ , c ∈ C0,1 . Then

et
1F1

(−x
α

;
t(1− c)

c

)
=

∞

∑
n=0

(β )n

(α)nn! 1F1

(
α −β
α +n

; t

)
Mn(x;β ,c)tn. (35)

We now combine Meixner generating function (33) with the connection-type rela-
tion (26) to derive a generalized generating function.

THEOREM 6. Let α ∈ Ĉ , c,d ∈ C0,1 , x,t ∈ C . Then

et
1F1

(−x
α

;
t(1− c)

c

)
=

∞

∑
n=0

1
n!

Φ2

(
x,−x;α +n;

t
c
,
t
d

)
Mn(x;α,d)tn, (36)

where Φ2 is given by (15).

Proof. Using (33) and (23), we obtain

et
1F1

(−x
α

;
t(1−c)

c

)
=

∞

∑
n=0

tn

(α)n

n

∑
k=0

(α)k(x)n−k

k!(n−k)!dn−k Mk(x;α,d)2F1

( −n+k,−x
−x+k−n+1

;
d
c

)
.

(37)
Switch the order of the summations based on n and k , shift the n variable by a factor
of k , expand the hypergeometric, and use (3), (4), (10), and (15). We can justify the
reversing the summation symbols since in this case

an =
tn

n!
, and ck,n =

(
n
k

)
(α)k(x)n−k

dn−k 2F1

( −n+ k,−x
−x+ k−n+1

;
d
c

)
.
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Therefore
∞

∑
n=0

|an|
∣∣∣∣∣ n

∑
k=0

ck,nMk(x;α,d)

∣∣∣∣∣� K3

∞

∑
n=0

(1+n)σ3

n!

∣∣∣ t
c

∣∣∣n ,

where K3 and σ3 are positive constants not depending on n , then the result holds since
all these sums connected with these coefficients converge. �

THEOREM 7. Let α,β ∈ Ĉ , c,d ∈ C0,1 , x,t ∈ C . Then

et
1F1

(−x
α

;
t(1− c)

c

)
=

∞

∑
n=0

(β )n

(α)nn!
Φ(3)

2

(
x,−x,α −β ;α +n;

t
c
,
t
d

, t
)

Mn(x;β ,d)tn,

(38)
where Φ(3)

2 is given in (17).

Proof. Using (33) and (26), we obtain

et
1F1

(−x
α

;
t(1− c)

c

)
=

∞

∑
n=0

tn

n!
(α −β )n

(α)n

n

∑
k=0

(β )k(−n)k

k!(β −α −n+1)k
Mk(x;β ,d)

×F1

(
−n+ k,−x,x;β −α −n+ k+1;

1
c
,
1
d

)
.

(39)

Switch the order of the summations based on n and k , shift the n variable by a factor
of k , expand the Appell series, switch the order of summations two more times, and
use (3), (4), (10), and (17). Indeed,

∞

∑
n=0

|an|
∣∣∣∣∣ n

∑
k=0

ck,nMk(x;β ,d)

∣∣∣∣∣� K4

∞

∑
n=0

(1+n)σ4

n!

∣∣∣∣ t(c+d)
cd

∣∣∣∣n < ∞,

where K4 and σ4 are positive constants not depending on n , then the result holds
since all these sums connected with these coefficients can be rearranged in the desired
way. �

We also have the connection relation with one free parameter given by (22). We
now combine this connection relation with the above referenced generating functions
to obtain new generalized generating functions for Meixner polynomials.

THEOREM 8. Let c ∈ C0,1 , γ,t ∈ C , |t| < 1 , |t(1− c)| < |c(1− t)| , α,β ∈ Ĉ .
Then

(1− t)−γ
2F1

(
γ,−x

α
;
t(1− c)
c(1− t)

)
=

∞

∑
n=0

(γ)n(β )n

(α)nn! 2F1

(
γ +n,α −β

α +n
; t

)
Mn(x;β ,c)tn.

(40)

Proof. Using the generating function for Meixner polynomials [15, (9.10.13)] and
(22), we obtain

(1− t)−γ
2F1

(
γ,−x

α
;
t(1− c)
c(1− t)

)
=

∞

∑
n=0

(γ)ntn

(α)n

n

∑
k=0

(α −β )n−k(β )k

(n− k)!k!
Mk(x;β ,c).
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If we switch the order of summations, shift the n variable by a factor of k and use (3),
(4), (10), then the result follows. Indeed, in this case an = tn(γ)n/n! , therefore

|an| � |t|n(1+n)|γ|.

So, we have

∞

∑
n=0

|an|
∣∣∣∣∣ n

∑
k=0

ck,nMk(x;β ,c)

∣∣∣∣∣� K5

∞

∑
n=0

(1+n)σ5

∣∣∣∣ t(1− c)
c(1− t)

∣∣∣∣n ,

where K5 and σ5 are positive constants not depending on n . Therefore if |t| < 1 and
|t(1− c)| < |c(1− t)| the sum converges, then the result holds since all these sums
connected with these coefficients can be rearranged in the desired way. �

THEOREM 9. Let c,d ∈ C0,1 , γ,t ∈ C , |t| < min{1, |c(1− d)|/|1 + d − 2c|} ,

α,β ∈ Ĉ . Then

(1− t)−γ
2F1

(
γ,−x

α
;
t(1− c)
c(1− t)

)
=

∞

∑
n=0

(γ)n(β )n

(α)nn! 2F1

(
γ +n,β +n

α +n
;

−dt(1− c)
c(1−d)(1− t)

)
×
(

d(1− c)
c(1−d)(1− t)

)n

Mn(x;β ,d)tn.

(41)

Proof. Using [15, (9.10.13)] and (20), we obtain

(1−t)−γ
2F1

(
γ,−x

α
;
t(1−c)
c(1−t)

)
=

∞

∑
n=0

(γ)n

n!
tn

n

∑
k=0

(β )kn!
k!(n−k)!(α)k

(
d(1−c)
c(1−d)

)k

Mk(x;β ,d)

×2F1

(−n+ k,β + k
α + k

;
d(1− c)
c(1−d)

)
.

If we switch the order of summations, shift the n variable by a factor of k , expand the
hypergeometric, switch the order of summations again, and use (3), (4), (10), then the
result holds since all these sums connected with these coefficients converge (it is similar
to the previous proof combined with the proof of Theorem 5) and can be rearranged in
the desired way. �

Above, we have found a finite expansion of the Meixner polynomials with free pa-
rameter c in terms of Meixner polynomials with free parameter d (see the connection-
type relation (23)). We now combine Meixner generating function [15, (9.10.13)] with
that connection-type relation to derive a generalized generating function whose coeffi-
cient is an Appell F1 double hypergeometric function.

THEOREM 10. Let α ∈ Ĉ , γ,t ∈ C , c,d ∈ C0,1 , |t| < min{1, |c|} . Then

(1− t)−γ
2F1

(
γ,−x

α
;
t(1− c)
c(1− t)

)
=

∞

∑
n=0

(γ)n

n!
F1

(
γ +n,x,−x;α +n;

t
c
,
t
d

)
Mn(x;α,d)tn.

(42)



122 M. A. BAEDER, H. S. COHL, R. S. COSTAS-SANTOS AND W. XU

Proof. Using [15, (9.10.13)] and (23), we obtain

(1− t)−γ
2F1

(
γ,−x

α
;
t(1− c)
c(1− t)

)
=

∞

∑
n=0

(γ)ntn

(α)nn!

n

∑
k=0

(α)k(x)n−k

k!(n− k)!dn−k Mk(x;α,d)

× 2F1

( −n+ k,−x
−x+ k−n+1

;
d
c

)
.

Switch the order of the summations based on n and k , shift the n variable by a factor
of k , expand the hypergeometric, and use (3), (4), (10), and (14), then the result holds
since all these sums connected with these coefficients converge (it is similar to the
proof of Theorem 8 combined with the proof of Theorem 6) and can be rearranged in
the desired way. �

THEOREM 11. Let α,β ∈ Ĉ , γ ∈C , c,d ∈C0,1 , |t|< min{1, |cd|/|c+d|} . Then

(1− t)−γ
2F1

(
γ,−x

α
;
t(1− c)
c(1− t)

)
=

∞

∑
n=0

(β )n(γ)n

(α)nn!
F(3)

D

(
γ +n,x,−x,α −β ;α +n;

t
c
,
t
d

,t
)

×Mn(x;β ,d)tn,
(43)

where F(3)
D is given in (16).

Proof. Using [15, (9.10.13)] and (26), we obtain

(1−t)−γ
2F1

(
γ,−x

α
;
t(1−c)
c(1−t)

)
=

∞

∑
n=0

(γ)ntn

n!
(α−β )n

(α)n

∞

∑
k=0

(β )k(−n)k

k!(β−α−n+1)k
Mk(x;β ,d)

×F1

(
−n+ k,−x,x;β −α −n+ k+1;

1
c
,
1
d

)
.

(44)

Switch the order of the summations based on n and k , shift the n variable by a factor
of k , expand the Appell series, switch the order of summations two more times, and
use (3), (4), (10), and (16), then the result holds since all these sums connected with
these coefficients converge (it is similar to the proof of Theorem 8 combined with the
proof of Theorem 12) and can be rearranged in the desired way. �

We have derived generalized generating functions for the free parameter c . How-
ever, since the coefficients of our connection-type relation is in terms of x , we cannot
use the orthogonality relation to create new infinite sums. Note that the application
of connection relations (22) and (23) to the rest of the known generating functions for
Meixner polynomials [15, (9.10.11–13)] leave these generating functions invariant.

We now derive generalized generating functions for the Krawtchouk polynomials,
where we will need a special notation for some of the generating functions. Therefore,
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let f ∈ C∞(C) , N ∈ N0 , t ∈ C . Define the truncated Maclaurin expansion of f as
(cf. [15, p. 6])

[ f (t)]N :=
N

∑
k=0

f (k)(0)
k!

tk.

THEOREM 12. Let p,q ∈ C0 , M,N ∈ N0 , N � M, x,t ∈ C . Then[
et

1F1

( −x
−N

;− t
p

)]
N

=
N

∑
n=0

(−M)n

(−N)nn!

(
tq
p

)n [
et

1F1

(
n−M
n−N

;
−tq
p

)]
N−n

Kn(x;q,M).

(45)

Proof. Using [15, (9.11.12)][
et

1F1

( −x
−N

;− t
p

)]
N

=
N

∑
n=0

tn

n!
Kn(x; p,N), (46)

and (30), we obtain[
et

1F1

( −x
−N

;− t
p

)]
N

=
N

∑
n=0

tn

n!

n

∑
k=0

(
n
k

)
(−M)k

(−N)k

(
q
p

)k

2F1

(−n+ k,k−M
k−N

;
q
p

)
Kk(x;q,M). (47)

If we switch the order of summations, shift the n variable by a factor of k , expand
the hypergeometric, then switch the order of summations again and shift the n variable
again, and use (3), (4), (10), the proof follows since all the series have finite number of
terms. �

Letting p = q in (45) yields the following result. Let p∈ C0 , M,N ∈ N0 , N � M ,
x,t ∈ C . Then[

et
1F1

( −x
−N

;− t
p

)]
N

=
N

∑
n=0

(−M)ntn

(−N)nn!

[
1F1

(
M−N
n−N

; t

)]
N−n

Kn(x; p,M). (48)

Furthermore, letting M = N in (45) produces the following. Let p,q ∈ C0 , N ∈ N0 ,
x,t ∈ C . Then[

et
1F1

( −x
−N

;− t
p

)]
N

=
N

∑
n=0

1
n!

(
tq
p

)n [
et(1−q/p)

]
N−n

Kn(x;q,N). (49)

THEOREM 13. Let p,q ∈ C0 , M,N ∈ N0 , N � M, t,γ ∈ C . Then[
(1− t)−γ

2F1

(
γ,−x
−N

;
t

p(t−1)

)]
N

=
N

∑
n=0

(
tq
p

)n (−M)n(γ)n

(−N)nn!

[
(1− t)−γ−n

2F1

(
γ +n,n−M

n−N
;

−qt
p(1− t)

)]
N−n

Kn(x;q,M).

(50)
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Proof. Using [15, (9.11.13)][
(1− t)−γ

2F1

(
γ,−x
−N

;
t

p(t−1)

)]
N

=
N

∑
n=0

(γ)ntn

n!
Kn(x; p,N), (51)

where γ ∈ C , and (30), we obtain[
(1− t)−γ

2F1

(
γ,−x
−N

;
t

p(t −1)

)]
N

=
N

∑
n=0

(γ)n

n!
tn

n

∑
k=0

(
n
k

)
(−M)kqk

(−N)k pk 2F1

(−n+ k,k−M
k−N

;
q
p

)
Kk(x;q,M).

(52)

If we switch the order of summations, shift the n variable by a factor of k , expand
the hypergeometric, then switch the order of summations again and shift the n variable
again, and use (3), (4), (10), the proof follows since all the series have finite number of
terms. �

If we let p = q in (50) and use [7, (15.8.1)], we obtain the following result. Let
p ∈ C0 , M,N ∈ N0 , N � M , x,t,γ ∈ C . Then[

(1− t)−γ
2F1

(
γ,−x
−N

;
t

p(t−1)

)]
N

=
N

∑
n=0

(−M)n(γ)ntn

(−N)nn!

[
2F1

(
γ +n,M−N

n−N
; t

)]
N−n

Kn(x; p,M).

If we let M = N in (50) we obtain the following. Let p,q ∈ C0 , N ∈ N0 , x,t,γ ∈ C .
Then [

(1− t)−γ
2F1

(
γ,−x
−N

;
t

p(t−1)

)]
N

=
N

∑
n=0

(γ)n

n!

(
qt
p

)n
[(

1+ t

(
q
p
−1

))−γ−n
]

N−n

Kn(x;q,N).

Note that the application of connection relations (30) and (31) to the generating func-
tions for Krawtchouk polynomials [15, (9.11.11–13)] leave these generating functions
invariant.

6. Results using orthogonality

We have derived generalized generating functions for the free parameter α . We
now combine this with the orthogonality relation for Meixner polynomials to produce
new results from our generalized generating functions. The well-known orthogonality
relation for Meixner polynomials for n,m ∈ N0 , α > 0, c ∈ (0,1) is [15, (14.25.2)]

∞

∑
x=0

Mn(x;α,c)Mm(x;α,c)
Γ(x+ α)cx

Γ(x+1)
= κnδm,n, (53)
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where

κn =
n!

cn(1− c)α(α)n
.

Note that this a particular case of a more general property of orthogonality fulfilled by
Meixner polynomials (see [6, Proposition 9]).

PROPOSITION 1. Let m,n∈N0 , α ∈ Ĉ , c∈C\ [0,∞) . The orthogonality relation
for Meixner polynomials can be given as∫

C
Mn(z;α,c)Mm(z;α,c)w(z;α,c)dz = κnδm,n, (54)

where
w(z;α,c) := Γ(−z)Γ(z+ α)(−c)z,

and C is a complex contour from −∞i to ∞i separating the increasing poles at z ∈ N0

from the decreasing poles at z ∈ {−α,−α −1,−α −2, . . .} .

In fact, observe that the case c > 0 cannot be considered by an integral of the form
(54) since it diverges. However, when |c| < 1, (54) is rewritten on the form (see [21,
Section 5.6] for details) presented in (53). With this result in mind, the following result
and corresponding consequences hold.

THEOREM 14. Let t ∈ C , α,β ∈ Ĉ , c ∈ C\ [0,∞) . Then∫
C

1F1

(−z
α

;
t(1− c)

c

)
Mn(z;β ,c)Γ(−z)Γ(z+ α)(−c)z dz

=
tn e−t

(1− c)β (α)ncn 1F1

(
α −β
α +n

;t

)
. (55)

Proof. From (35) we multiply both sides by Mm(z;β ,c)w(z;β ,c) , utilizing the
orthogonality relation (54), produces the desired result. �

COROLLARY 1. Let t ∈ C , α,β > 0 , c ∈ (0,1) . Then

∞

∑
x=0

1F1

(−x
α

;
t(1− c)

c

)
Mn(x;β ,c)

(β )xcx

x!
=

tn e−t

(1− c)β(α)ncn 1F1

(
α −β
α +n

; t

)
. (56)

COROLLARY 2. Let α,β ∈ Ĉ , γ ∈C , c,d ∈C\ [0,∞) , t ∈C , |t|< min{1, |c(1−
d)|/|1+d−2c|} . Then∫

C
1F1

(−z
α

;
t(1− c)

c

)
Mn(z;β ,d)Γ(−z)Γ(z+ β )(−d)z dz

=
tn(1− c)ne−t

(1−d)n+β(α)ncn 1F1

(
β +n
α +n

;
−dt(1− c)
c(1−d)

)
.

(57)
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Proof. From (32) we multiply both sides by Mm(z;β ,c)w(z;β ,c) , utilizing the
orthogonality relation (54). �

COROLLARY 3. Let t ∈ C , α,β > 0 , c,d ∈ (0,1) . Then

∞

∑
x=0

1F1

(−x
α

;
t(1− c)

c

)
Mn(x;β ,d)

dx(β )x

x!

=
tn(1− c)ne−t

cn(1−d)n+β(α)n
1F1

(
β +n
α +n

;
−dt(1− c)
c(1−d)

)
.

(58)

COROLLARY 4. Let c ∈ C\ [0,∞) , t ∈ C , |t| < 1 , |t(1− c)|< |c(1− t)| , α,β ∈
Ĉ , γ ∈ C . Then ∫

C
2F1

(
γ,−z

α
;
t(1− c)
c(1− t)

)
Mn(z;β ,c)Γ(z+ β )(−c)z dz

=
(1− t)γ(γ)ntn

(1− c)β (α)ncn 2F1

(
α −β ,γ +n

α +n
;t

)
.

(59)

Proof. From (40) we multiply both sides by Mm(z;β ,c)w(z;β ,c) , utilizing the
orthogonality relation (54). �

COROLLARY 5. Let c ∈ (0,1) , t ∈ C , |t| < 1 , |t(1− c)| < |c(1− t)| , α,β > 0 ,
γ ∈ C . Then

∞

∑
x=0

2F1

(
γ,−x

α
;
t(1− c)
c(1− t)

)
Mn(x;β ,c)

cx(β )x

x!
=

(1− t)γ(γ)ntn

(1− c)β (α)ncn 2F1

(
α −β ,γ +n

α +n
; t

)
.

(60)

COROLLARY 6. Let t ∈C , |t|< min{1, |c(1−d)|/|1+d−2c|},α,β ∈ Ĉ , γ ∈C ,
c,d ∈ C\ [0,∞) . Then∫

C
2F1

(
γ,−z

α
;
t(1− c)
c(1− t)

)
Mn(z;β ,d)Γ(z+ β )(−d)z dz

=
(γ)n

(1−d)n+β (α)n

(
t(1− c)
c(1− t)

)n

2F1

(
γ +n,β +n

α +n
;

−dt(1− c)
c(1−d)(1− t)

)
.

(61)

Proof. From (41) we multiply both sides by Mm(z;β ,c)w(z;β ,c) , utilizing the
orthogonality relation (53), produces the desired result. �

COROLLARY 7. Let c,d ∈ (0,1) , t ∈ C , |t|< min{1, |cd|/|c+d|},α,β > 0 , γ ∈
C . Then

∞

∑
x=0

2F1

(
γ,−x

α
;
t(1− c)
c(1− t)

)
Mn(x;β ,d)

dx(β )x

x!

=
(γ)n

(1−d)n+β (α)n

(
t(1− c)
c(1− t)

)n

2F1

(
γ +n,β +n

α +n
;

−dt(1− c)
c(1−d)(1− t)

)
.

(62)
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On the other hand, since the Krawtchouk polynomials satisfy the property of or-
thogonality

N

∑
x=0

(
N
x

)
px(1− p)N−xKm(x; p,N)Kn(x; p,N) =

(−1)n n!
(−N)n

(
1− p

p

)n

δm,n,

the following identities follow with proofs given as above, which we omit.

COROLLARY 8. Let p,q ∈ C0 , M,N ∈ N0 , N � M, t ∈ C . Then

M

∑
x=0

(
M
x

)
qx(1−q)M−x

[
et

1F1

( −x
−N

;− t
p

)]
N

Kn(x;q,M)

=
(

t(q−1)
p

)n 1
(−N)n

[
et

1F1

(
n−M
n−N

;
−tq
p

)]
N−n

.

COROLLARY 9. Let γ ∈ C , p,q,∈ C0 , M,N ∈ N0 , N � M, t ∈ C , |t| < 1 . Then

M

∑
x=0

(
M
x

)
qx(1−q)M−x

[
(1− t)−γ

2F1

(
γ,−x
−N

;
t

p(t−1)

)]
N

Kn(x;q,M)

=
(γ)n

(−N)n

(
t(q−1)

p

)n [
(1− t)−γ−n

2F1

(
γ +n,n−M

n−N
;

−qt
p(1− t)

)]
N−n

.
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