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NON–ARCHIMEDEAN HYPERSTABILITY OF A

CAUCHY–JENSEN TYPE FUNCTIONAL EQUATION

MUAADH ALMAHALEBI

Abstract. In this paper, we establish some hyperstability results concerning the following Cauchy
- Jensen functional equation

f

(
x+ y

2

)
+ f

(
x− y

2

)
= f (x)

in Non-Archimedean normed spaces.

1. Introduction

The starting point of studying the stability of functional equations seems to be
the famous talk of Ulam [33] in 1940, in which he discussed a number of important
unsolved problems. Among those was the question concerning the stability of group
homomorphisms.

Let G1 be a group and let G2 be a metric group with a metric d(., .) . Given
ε > 0 , does there exists a δ > 0 such that if a mapping h : G1 → G2 satisfies the in-
equality d

(
h(xy),h(x)h(y)

)
< δ for all x,y ∈ G1 , then there exists a homomorphism

H : G1 → G2 with d
(
h(x),H(x)

)
< ε for all x ∈ G1 .

The first partial answer, in the case of Cauchy’s equation in Banach spaces, to
Ulam’s question was given by Hyers [23]. Later, the result of Hyers was significantly
generalized by Aoki [6], Rassias [31] and Găvruţa [20]. Since then, the stability prob-
lems of several functional equations have been extensively investigated.
We say a functional equation is hyperstable if any function f satisfying the equation
approximately (in some sense) must be actually solutions to it. It seems that the first
hyperstability result was published in [12] and concerned the ring homomorphisms.
However, The term hyperstability has been used for the first time in [27]. Quite often
the hyperstability is confused with superstability, which admits also bounded functions.
Numerous papers on this subject have been published and we refer to [1]-[5], [11], [14]-
[19], [22], [27], [30], [32].

Throughout this paper, N stands for the set of all positive integers, N0 := N∪{0} ,
Nm0 the set of integers � m0 , R+ := [0,∞) and we use the notation X0 for the set
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X \ {0} .

Let us recall (see, for instance, [26]) some basic definitions and facts concerning
non-Archimedean normed spaces.

DEFINITION 1. By a non-Archimedean field we mean a field K equipped with a
function (valuation) | · | : K → [0,∞) such that for all r,s ∈ K , the following conditions
hold:

1. |r| = 0 if and only if r = 0,

2. |rs| = |r||s| ,
3. |r+ s| � max

{|r|, |s|} .

The pair (K, |.|) is called a valued field.

In any non-Archimedean field we have |1| = |−1| = 1 and |n| � 1 for n ∈ N0 . In any
field K the function | · | : K → R+ given by

|x| :=
{

0, x = 0,
1, x �= 0,

is a valuationwhich is called trivial, but the most important examples of non-Archimedean
fields are p -adic numbers which have gained the interest of physicists for their research
in some problems coming from quantum physics, p -adic strings and superstrings.

DEFINITION 2. Let X be a vector space over a scalar field K with a non-Archimedean
non-trivial valuation | · | . A function || · ||∗ : X → R is a non-Archimedean norm (valu-
ation) if it satisfies the following conditions:

1. ‖x‖∗ = 0 if and only if x = 0,

2. ‖rx‖∗ = |r| ‖x‖∗ (r ∈ K,x ∈ X) ,

3. The strong triangle inequality (ultrametric); namely

‖x+ y‖∗ � max
{‖x‖∗,‖y‖∗} x,y ∈ X .

Then (X ,‖ · ‖∗) is called a non-Archimedean normed space or an ultrametric normed
space.

DEFINITION 3. Let {xn} be a sequence in a non-Archimedean normed space X .

1. A sequence{xn}∞
n=1 in a non-Archimedean space is a Cauchy sequence iff the

sequence {xn+1− xn}∞
n=1 converges to zero;

2. The sequence {xn} is said to be convergent if, there exists x ∈ X such that, for
any ε > 0, there is a positive integer N such that ‖xn− x‖∗ � ε, for all n � N .
Then the point x ∈ X is called the limit of the sequence {xn} , which is denoted
by limn→∞xn = x ;
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3. If every Cauchy sequence in X converges, then the non-Archimedean normed
space X is called a non-Archimedean Banach space or an ultrametric Banach
space.

Let X , Y be normed spaces. A function f : X → Y is Cauchy-Jensen provided it
satisfies the functional equation

f

(
x+ y

2

)
+ f

(
x− y

2

)
= f (x) for all x,y ∈ X , (1)

and we can say that f : X →Y is Cauchy-Jensen on X0 if it satisfies (1) for all x,y∈X0 .
Recently, interesting results concerning the Cauchy-Jensen functional equation (1) have
been obtained in [7], [21], [25], [28] and [29].

In 2013, A. Bahyrycz and al. [8] used the fixed point theorem from [18, Theo-
rem 1] to prove the stability results for a generalization of p -Wright affine equation in
Non-Archimedean spaces. Recently, corresponding results for more general functional
equations (in classical spaces) have been proved in [9], [10], [14], [34] and [35].

In this paper, we make Non-Archimedean versions of results in [2]. Indeed, by
using the fixed point method derived from [11], [14] and [13], we present some hy-
perstability results for the equation (1) in Non-Archimedean Banach spaces. Before
proceeding to the main results, we state Theorem 1 which is useful for our purpose. To
present it, we introduce the following three hypotheses:

(H1) X is a nonempty set, Y is an Non-Archimedean Banach space over a non-
Archimedean field, f1, ..., fk : X −→ X and L1, ...,Lk : X −→ R+ are given.

(H2) T : YX −→ YX is an operator satisfying the inequality∥∥∥T ξ (x)−T μ(x)
∥∥∥∗

� max
1�i�k

{
Li(x)

∥∥∥ξ
(

fi(x)
)
− μ

(
fi(x)

)∥∥∥∗

}
, ξ ,μ ∈YX , x∈X .

(H3) Λ : R
X
+ −→ R

X
+ is a linear operator defined by

Λδ (x) := max
1�i�k

{
Li(x)δ

(
fi(x)

)}
, δ ∈ R

X
+, x ∈ X .

Thanks to a result due to J. Brzdȩk and K. Ciepliñski [18, Remark 2], we state a
slightly modified version of the fixed point theorem [17, Theorem1] in Non-Archimedean
spaces. We use it to assert the existence of a fixed point of operator T : YX −→ YX .

THEOREM 1. Let hypotheses (H1)-(H3) be valid and functions ε : X −→ R+
and ϕ : X −→ Y fulfil the following two conditions

‖T ϕ(x)−ϕ(x)‖∗ � ε(x), x ∈ X ,

lim
n→∞

Λnε(x) = 0, x ∈ X .
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Then there exists a fixed point ψ ∈ YX of T with

‖ϕ(x)−ψ(x)‖∗ � sup
n∈N0

Λnε(x), x ∈ X .

Moreover
ψ(x) := lim

n→∞
T nϕ(x), x ∈ X .

2. Main results

In this section, using Theorem 1 as a basic tool to prove the hyperstability results
of Cauchy functional equation in Non-Archimedean Banach spaces.

THEOREM 2. Let (X ,‖·‖) and (Y,‖·‖∗) be normed space and Non-Archimedean
Banach space respectively, c � 0 , p,q ∈ R , p+q < 0 and let f : X → Y satisfy∥∥∥∥ f

(
x+ y

2

)
+ f

(
x− y

2

)
− f (x)

∥∥∥∥∗
� c ‖x‖p ‖y‖q, (2)

for all x,y ∈ X0 . Then f is Cauchy-Jensen on X0 .

Proof. Take m ∈ N such that

αm :=
∣∣∣∣1−m

2

∣∣∣∣
p+q

< 1 and m � m0.

Since p+q < 0, one of p,q must be negative. Assume that q < 0 and replace y
by mx in (2). Thus∥∥∥∥ f

((
1+m

2

)
x

)
+ f

((
1−m

2

)
x

)
− f (x)

∥∥∥∥∗
� cmq‖x‖p+q, x ∈ X0. (3)

Define operators Tm : YX0 → YX0 and Λm : R
X0
+ → R

X0
+ by

Tmξ (x) := ξ
((

1+m
2

)
x

)
+ ξ

((
1−m

2

)
x

)
, ξ ∈ YX0 , x ∈ X0, (4)

Λmδ (x) := max

{
δ

((
1+m

2

)
x

)
, δ

((
1−m

2

)
x

)}
, δ ∈ R

X0
+ , x ∈ X0 (5)

and write
εm(x) := c mq‖x‖p+q, x ∈ X0. (6)

It is easily seen that Λm has the form described in (H3) with k = 2, f1(x) =
(

1+m
2

)
x ,

f2(x) =
(

1−m
2

)
x and L1(x) = 1, L2(x) = 1. Further, (3) can be written in the following

way
‖Tm f (x)− f (x)‖∗ � εm(x), x ∈ X0.
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Moreover, for every ξ ,μ ∈ YX0 , x ∈ X0

∥∥∥Tmξ (x)−Tmμ(x)
∥∥∥∗

=
∥∥∥∥ξ

((
1+m

2

)
x

)
+ ξ

((
1−m

2

)
x

)

−μ
((

1+m
2

)
x

)
− μ

((
1−m

2

)
x

)∥∥∥∥∗

� max

{ ∥∥∥∥ξ
((

1+m
2

)
x

)
− μ

((
1+m

2

)
x

)∥∥∥∥∗
,∥∥∥∥ξ

((
1−m

2

)
x

)
− μ

((
1−m

2

)
x

)∥∥∥∥∗

}
.

So, (H2) is valid.
By using mathematical induction, we will show that for each x ∈ X0 we have

Λn
mεm(x) = c mq‖x‖p+q αn

m (7)

where αm =
∣∣ 1−m

2

∣∣p+q
. From (6), we obtain that (7) holds for n = 0. Next, we will

assume that (7) holds for n = k , where k ∈ N . Then we have

Λk+1
m εm(x) = Λm

(
Λk

mεm(x)
)

= max

{
Λk

mεm

((
1+m

2

)
x

)
, Λk

mεm

((
1−m

2

)
x

)}

= c mq‖x‖p+q αk
m max

{ ∣∣∣∣1+m
2

∣∣∣∣
p+q

,

∣∣∣∣1−m
2

∣∣∣∣
p+q

}

= c mq‖x‖p+q αk+1
m , x ∈ X0.

This shows that (7) holds for n = k + 1. Now we can conclude that the inequality (7)
holds for all n ∈ N0 . From (7), we obtain

lim
n→∞

Λnεm(x) = 0,

for all x ∈ X0 . Hence, according to Theorem 1, there exists a solution Jm : X0 →Y
of the equation

Jm(x) = Jm

((
1+m

2

)
x

)
+ Jm

((
1−m

2

)
x

)
, x ∈ X0 (8)

such that

‖ f (x)− Jm(x)‖∗ � sup
n∈N0

{
c mq‖x‖p+q αn

m

}
, x ∈ X0. (9)

Moreover,
Jm(x) := lim

n→∞
T n

m f (x)
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for all x ∈ X0 . Now we show that∥∥∥∥T n
m f

(
x+ y

2

)
+T n

m f

(
x− y

2

)
−T n

m f (x)
∥∥∥∥∗

� c αn
m‖x‖p ‖y‖q, (10)

for every x,y ∈ X0 . Since the case n = 0 is just (2), take k ∈ N and assume that (10)
holds for n = k and every x,y ∈ X0 . Then∥∥∥∥T k+1

m f

(
x+ y

2

)
+T k+1

m f

(
x− y

2

)
−T k+1

m f (x)
∥∥∥∥∗

=
∥∥∥∥T k

m f

((
1+m

2

)(
x+ y

2

))
+T k

m f

((
1−m

2

)(
x+ y

2

))

+T k
m f

((
1+m

2

)(
x− y

2

))
+T k

m f

((
1−m

2

)(
x− y

2

))

−T k
m f

((
1+m

2

)
x

)
−T k

m f

((
1−m

2

)
x

)∥∥∥∥∗

� max

{ ∥∥∥∥T k
m f

((
1+m

2

)(
x+ y

2

))

+ T k
m f

((
1+m

2

)(
x− y

2

))
−T k

m f

((
1+m

2

)
x

)∥∥∥∥∗
,∥∥∥∥T k

m f

((
1−m

2

)(
x+ y

2

))
+T k

m f

((
1−m

2

)(
x− y

2

))

−T k
m f

((
1−m

2

)
x

)∥∥∥∥∗

}

� max

{
c αk

m‖x‖p ‖y‖q

∣∣∣∣1+m
2

∣∣∣∣
p+q

, c αk
m‖x‖p ‖y‖q

∣∣∣∣1−m
2

∣∣∣∣
p+q

}

= c αk
m‖x‖p ‖y‖q max

{ ∣∣∣∣1+m
2

∣∣∣∣
p+q

,

∣∣∣∣1−m
2

∣∣∣∣
p+q

}

� c αk+1
m ‖x‖p ‖y‖q

for all x,y ∈ X0 . Thus, by induction we have shown that (10) holds for every n ∈ N0 .
Letting n → ∞ in (10), we obtain that

Jm

(
x+ y

2

)
+ Jm

(
x− y

2

)
= Jm(x),

for all x,y ∈ X0 . In this way we obtain a sequence {Jm}m�m0 of Cauchy-Jensen func-
tions on X0 such that

‖ f (x)− Jm(x)‖∗ � sup
n∈N0

{
c mq‖x‖p+q αn

m

}
, x ∈ X0,
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this implies that

‖ f (x)− Jm(x)‖∗ � c mq‖x‖p+q, x ∈ X0,

It follows, with m → ∞ , that f is Cauchy-Jensen on X0 .
In a similar way we can prove the following theorem.

THEOREM 3. Let (X ,‖·‖) and (Y,‖·‖∗) be normed space and Non-Archimedean
Banach space respectively, c � 0 , p,q ∈ R , p+q > 0 and let f : X → Y satisfy

∥∥∥∥ f

(
x+ y

2

)
+ f

(
x− y

2

)
− f (x)

∥∥∥∥∗
� c ‖x‖p ‖y‖q, (11)

for all x,y ∈ X0 . Then f is Cauchy-Jensen on X0 .

Proof. Take m ∈ N such that

αm :=
∣∣∣∣m+1

2m

∣∣∣∣
p+q

< 1 and m � m0.

Since p+q > 0, one of p,q must be positive; let q > 0 and replace y by 1
mx in

(11). Thus∥∥∥∥ f

((
m+1
2m

)
x

)
+ f

((
m−1
2m

)
x

)
− f (x)

∥∥∥∥∗
� c m−q‖x‖p+q, x ∈ X0. (12)

Write

Tmξ (x) := ξ
((

m+1
2m

)
x

)
+ ξ

((
m−1
2m

)
x

)
ξ ∈ YX0 , x ∈ X0, (13)

and

εm(x) := c m−q‖x‖p+q, x ∈ X0, (14)

then (12) takes form

‖Tm f (x)− f (x)‖∗ � εm(x), x ∈ X0.

Define

Λmδ (x) := max

{
δ

((
m+1
2m

)
x

)
, δ

((
m−1
2m

)
x

)}
, δ ∈ R

X0
+ , x ∈ X0. (15)

Then it is easily seen that Λm has the form described in (H3) with k = 2, f1(x) =(
m+1
2m

)
x , f2(x) =

(
m−1
2m

)
x and L1(x) = 1, L2(x) = 1.

Moreover, for every ξ ,μ ∈ YX0 , x ∈ X0
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∥∥∥Tmξ (x)−Tmμ(x)
∥∥∥∗

=
∥∥∥∥ξ

((
m+1
2m

)
x

)
+ ξ

((
m−1
2m

)
x

)

−μ
((

m+1
2m

)
x

)
− μ

((
m−1
2m

)
x

)∥∥∥∥∗

� max

{ ∥∥∥∥ξ
((

m+1
2m

)
x

)
− μ

((
m+1
2m

)
x

)∥∥∥∥∗
,∥∥∥∥ξ

((
m−1
2m

)
x

)
− μ

((
m−1
2m

)
x

)∥∥∥∥∗

}
.

So, (H2) is valid.
By using mathematical induction, we will show that for each x ∈ X0 we have

Λn
mεm(x) = c m−q‖x‖p+q αn

m (16)

where αm =
∣∣m+1

2m

∣∣p+q
. From (14), we obtain that (16) holds for n = 0. Next, we will

assume that (16) holds for n = k , where k ∈ N . Then we have

Λk+1
m εm(x) = Λm

(
Λk

mεm(x)
)

= max

{
Λk

mεm

((
m+1
2m

)
x

)
, Λk

mεm

((
m−1
2m

)
x

)}

= max

{
c m−q‖x‖p+q αk

m

∣∣∣∣m+1
2m

∣∣∣∣
p+q

, c m−q‖x‖p+q αk
m

∣∣∣∣m−1
2m

∣∣∣∣
p+q

}

= c m−q‖x‖p+q αk
m max

{ ∣∣∣∣m+1
2m

∣∣∣∣
p+q

,

∣∣∣∣m−1
2m

∣∣∣∣
p+q

}

= c m−q‖x‖p+q αk+1
m , x ∈ X0.

This shows that (16) holds for n = k+1. Now we can conclude that the inequality (16)
holds for all n ∈ N0 . From (16), we obtain

lim
n→∞

Λnεm(x) = 0,

for all x ∈ X0 . Hence, according to Theorem 1, there exists a solution Jm : X0 →Y
of the equation

Jm(x) = Jm

((
m+1
2m

)
x

)
+ Jm

((
m−1
2m

)
x

)
, x ∈ X0 (17)

such that

‖ f (x)− Jm(x)‖∗ � sup
n∈N0

{
c m−q‖x‖p+q αn

m

}
, x ∈ X0. (18)

Moreover,
Jm(x) := lim

n→∞
T n

m f (x)
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for all x ∈ X0 . We show that∥∥∥∥T n
m f

(
x+ y

2

)
+T n

m f

(
x− y

2

)
−T n

m f (x)
∥∥∥∥∗

� c αn
m‖x‖p ‖y‖q, (19)

for every x,y ∈ X0 . Since the case n = 0 is just (11), take k ∈ N and assume that (19)
holds for n = k and every x,y ∈ X0 . Then∥∥∥∥T k+1

m f

(
x+ y

2

)
+T k+1

m f

(
x− y

2

)
−T k+1

m f (x)
∥∥∥∥∗

=
∥∥∥∥T k

m f

((
m+1
2m

)(
x+ y

2

))
+T k

m f

((
m−1
2m

)(
x+ y

2

))

+T k
m f

((
m+1
2m

)(
x− y

2

))
+T k

m f

((
m−1
2m

)(
x− y

2

))

−T k
m f

((
m+1
2m

)
x

)
−T k

m f

((
m−1
2m

)
x

)∥∥∥∥∗

� max

{ ∥∥∥∥T k
m f

((
m+1
2m

)(
x+ y

2

))
+T k

m f

((
m+1
2m

)(
x− y

2

))

−T k
m f

((
m+1
2m

)
x

)∥∥∥∥∗
,∥∥∥∥T k

m f

((
m−1
2m

)(
x+ y

2

))
+T k

m f

((
m−1
2m

)(
x− y

2

))

−T k
m f

((
m−1
2m

)
x

)∥∥∥∥∗

}

� max

{
c αk

m‖x‖p ‖y‖q

∣∣∣∣m+1
2m

∣∣∣∣
p+q

, c αk
m‖x‖p ‖y‖q

∣∣∣∣m−1
2m

∣∣∣∣
p+q

}

= c αk
m‖x‖p ‖y‖q max

{ ∣∣∣∣m+1
2m

∣∣∣∣
p+q

,

∣∣∣∣m−1
2m

∣∣∣∣
p+q

}

� c αk+1
m ‖x‖p ‖y‖q

for all x,y ∈ X0 . Thus, by induction we have shown that (19) holds for every n ∈ N0 .
Letting n → ∞ in (19), we obtain that

Jm

(
x+ y

2

)
+ Jm

(
x− y

2

)
= Jm(x),

for all x,y ∈ X0 . In this way we obtain a sequence {Jm}m�m0 of Cauchy-Jensen func-
tions on X0 such that

‖ f (x)− Jm(x)‖∗ � sup
n∈N0

{
c m−q‖x‖p+q αn

m

}
, x ∈ X0,

this implies that
‖ f (x)− Jm(x)‖∗ � c m−q‖x‖p+q, x ∈ X0.
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It follows, with m → ∞ , that f is Cauchy-Jensen on X0 .
In the following theorem, we prove the hyperstability of the Cauchy-Jensen equa-

tion (1) on the set containing 0.

THEOREM 4. Let (X ,‖·‖) and (Y,‖·‖∗) be normed space and Non-Archimedean
Banach space respectively, c � 0 , p,q > 0 , and let f : X → Y satisfy∥∥∥∥ f

(
x+ y

2

)
+ f

(
x− y

2

)
− f (x)

∥∥∥∥∗
� c ‖x‖p ‖y‖q, (20)

for all x,y ∈ X . Then f is Cauchy-Jensen on X .

Proof. Putting y = 0 in (20), we get that

f
( x

2

)
=

1
2

f (x), x ∈ X .

The function f satisfies (20) and

f (x) = 2 f
( x

2

)
, x ∈ X . (21)

Replacing x by 2x in (21) we get

f (x) =
1
2

f (2x), x ∈ X . (22)

Using (20) and (22) we can prove by induction that for every n ∈ N0∥∥∥∥ f

(
x+ y

2

)
+ f

(
x− y

2

)
− f (x)

∥∥∥∥∗
� c

(
1

2p+q

)n

‖x‖p ‖y‖q (23)

for all x,y ∈ X .
Indeed, for n = 0 (23) is simply (20). So, take k ∈ N and assume that (23) holds for
n = k . Then using (22) to (23) we have

∥∥∥∥1
2

f (x+ y)+
1
2

f (x− y)− 1
2

f (2x)
∥∥∥∥∗

� c

(
1

2p+q

)k

‖x‖p ‖y‖q, x,y ∈ X ,

and

1
|2|

∥∥∥ f (x+ y)+ f (x− y)− f (2x)
∥∥∥∗

� c

(
1

2p+q

)k

‖x‖p ‖y‖q, x,y ∈ X .

Replacing x by x
2 and y by y

2 in the last inequality, we obtain∥∥∥∥ f

(
x+ y

2

)
+ f

(
x− y

2

)
− f (x)

∥∥∥∥∗
� c

(
1

2p+q

)k+1

‖x‖p ‖y‖q

for all x,y ∈ X , so (23) holds for every n ∈ N0 . With n → ∞ in the inequality (23), we
obtain that f is Cauchy-Jensen on X .

The above theorems imply in particular the following corollary, which shows their
simple application.
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COROLLARY 1. Let (X ,‖·‖) and (Y,‖·‖∗) be normed space and Non-Archimedean
Banach space respectively, G : X2 → Y and G(x,y) �= 0 for some x,y ∈ X and∥∥G(x,y)

∥∥∗ � c ‖x‖p ‖y‖q, x,y ∈ X (24)

where c � 0 , p,q ∈ R . Assume that the numbers p,q satisfy one of the following
conditions:

1. p+q < 0 , and (2) holds for all x,y ∈ X0 ,

2. p+q > 0 , and (11) holds for all x,y ∈ X0 ,

3. p,q > 0 and (20) holds for all x,y ∈ X .

Then the functional equation

g

(
x+ y

2

)
+g

(
x− y

2

)
= g(x)+G(x,y), x,y ∈ X (25)

has no solution in the class of functions g : X → Y .

Proof. Suppose that g : X → Y is a solution to (25). Then (1) holds, and conse-
quently, according to the above theorems, g is Cauchy-Jensen on X0 , which means that
G(x,y) = 0 for some x,y ∈ X . This is a contradiction.
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