
Journal of
Classical

Analysis

Volume 12, Number 1 (2018), 1–7 doi:10.7153/jca-2018-12-01

ANALYTICAL, ASYMPTOTIC AND INTEGRAL

REPRESENTATIONS FOR A DOUBLE SUM

CHAO-PING CHEN AND RICHARD B. PARIS

Abstract. We give an analytical representation for the double sum

∑
1�i< j�n

1
[(n+ i)(n+ j)]k

in terms of the polygamma functions, where k is any given positive integer. Based on this result,
we present an asymptotic formula as n → ∞ and an integral representation for this sum.

1. Introduction

Izán Péraz, in a private communication to the first author, formulated the following
limit:

lim
n→∞

1
n ∑

1�i< j�n

1√
(n+ i)(n+ j)

= 6−4
√

2. (1.1)

We give here a generalization of this limit by considering the double sum

Sr(n) = ∑
1�i< j�n

1[
(n+ i)(n+ j)

]r , (1.2)

where in this section the index r > 0 is an arbitrary real quantity, but will subsequently
be restricted to be a positive integer.

It is easy to see that

n2r−2
n

∑
i=1

n

∑
j=1

1[
(n+ i)(n+ j)

]r =

(
nr−1

n

∑
i=1

1
(n+ i)r

)2

=

(
1
n

n

∑
i=1

1(
1+ i

n

)r
)2

.

By the definition of a definite integral, we therefore have

lim
n→∞

n2r−2
n

∑
i=1

n

∑
j=1

1[
(n+ i)(n+ j)

]r =

(∫ 1

0

1(
1+ x

)r dx

)2

=

⎧⎪⎪⎨
⎪⎪⎩
(

21−r −1
1− r

)2

r �= 1

(ln2)2 r = 1.

(1.3)
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In a similar manner, we have

n2r−1
n

∑
i=1

1
(n+ i)2r =

1
n

n

∑
i=1

1(
1+ i

n

)2r −→

⎧⎪⎨
⎪⎩

21−2r −1
1−2r

r �= 1

ln2 r = 1,

as n → ∞ , which implies that

lim
n→∞

n2r−2
n

∑
i=1

1
(n+ i)2r = 0. (1.4)

Let

ai j =
1[

(n+ i)(n+ j)
]r (i, j = 1,2, . . . ,n),

where r > 0. Then it follows that

Sr(n) = ∑
1�i< j�n

ai j =
1
2

{ n

∑
i=1

n

∑
j=1

ai j −
n

∑
j=1

a j j

}
. (1.5)

Noting that (1.4) holds, we have

lim
n→∞

n2r−2
n

∑
j=1

a j j = 0.

Then from (1.3) and (1.5) we finally obtain

lim
n→∞

n2r−2Sr(n) =
1
2

lim
n→∞

n2r−2
n

∑
i=1

n

∑
j=1

1[
(n+ i)(n+ j)

]r

=

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
21−r −1

1− r

)2

r �= 1,

1
2
(ln2)2 r = 1,

(1.6)

which generalizes the formula (1.1). The choice r = 1/2 in (1.6) yields (1.1).
Now let r = k , where k is any given positive integer. In this paper, we establish an

analytical representation for the sum Sk(n) defined in (1.2) in terms of the polygamma
functions. The polygamma functions ψ(n)(x) for n = 1,2, . . . are defined by

ψ(n)(x) =
dn+1

dxn+1 lnΓ(x) =
dn

dxn ψ(x),

where Γ(x) is the gamma function, and ψ(x) (also known as the digamma function) is
defined by

ψ(x) =
d
dx

lnΓ(x) and ψ(0)(x) = ψ(x).

Based on this exact representation for Sk(n) , we present an asymptotic formula as n →
∞ in Section 2 and an integral representation for this sum in Section 3.
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2. An asymptotic formula as n → ∞

We first show how the double sum Sk(n) can be evaluated in terms of polygamma
functions. We have the following theorem.

THEOREM 2.1. For positive integer k , the sum Sk(n) has the following analytical
representation:

Sk(n) =
1
2

{(
ψ(k−1)(2n+1)−ψ(k−1)(n+1)

(k−1)!

)2

+
ψ(2k−1)(2n+1)−ψ(2k−1)(n+1)

(2k−1)!

}
. (2.1)

Proof. The polygamma function has the expression (see [2, Eq. 1.2(54)] and [3,
Eq. 1.3(54)])

ψ(n)(x+m) = ψ(n)(x)+ (−1)n n!
m

∑
j=1

1
(x+ j−1)n+1 , m, n = 0,1,2, . . . . (2.2)

The choice (x,m,n) = (n+1,n,k−1) in (2.2) yields

n

∑
j=1

1
(n+ j)k

= (−1)k−1 ψ(k−1)(2n+1)−ψ(k−1)(n+1)
(k−1)!

.

We then obtain

n

∑
i=1

n

∑
j=1

1[
(n+ i)(n+ j)

]k =

(
n

∑
j=1

1
(n+ j)k

)2

=

(
ψ(k−1)(2n+1)−ψ(k−1)(n+1)

(k−1)!

)2

. (2.3)

The choice (x,m,n) = (n+1,n,2k−1) in (2.2) yields

n

∑
j=1

1
(n+ j)2k = −ψ(2k−1)(2n+1)−ψ(2k−1)(n+1)

(2k−1)!
. (2.4)

We then obtain from (2.3) and (2.4)

∑
1�i< j�n

1[
(n+ i)(n+ j)

]k =
1
2

{
n

∑
i=1

n

∑
j=1

1[
(n+ i)(n+ j)

]k − n

∑
j=1

1
(n+ j)2k

}

=
1
2

⎧⎨
⎩
(

ψ(k−1)(2n+1)−ψ(k−1)(n+1)
(k−1)!

)2

+
ψ(2k−1)(2n+1)−ψ(2k−1)(n+1)

(2k−1)!

⎫⎬
⎭ .

This completes the proof.
We now give the asymptotic expansion of Sk(n) .
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THEOREM 2.2. For k = 1,2, . . . , the sum Sk(n) has the asymptotic expansion

Sk(n) =
1

2n2k−2

{
C0(k)+

C1(k)
n

+
C2(k)

n2 +O(n−3)
}

(2.5)

as n → ∞ , where the coefficients Cs(k) (s � 2 ) when k � 2 are given by

C0(k) =
(

1−21−k

k−1

)2

, C1(k) = − (1−2−k)(1−21−k)
k−1

− 1−21−2k

2k−1
,

C2(k) =
(

1−2−k

2

)2

+
1−2−2k

2
+

k(1−2−1−k)(1−21−k)
6(k−1)

. (2.6)

When k = 1 , we have

C0(1) = (ln 2)2, C1(1) = −1
2
(1+ ln 2), C2(1) =

1
16

(7+2ln 2). (2.7)

Proof. To demonstrate (2.5), we require the asymptotic formula [1, Eq. (6.4.11)]

(−1)k+1ψ(k)(x) ∼ (k−1)!
xk

+
k!

2xk+1 +
∞

∑
s=1

B2s
(2s+ k−1)!
(2s)!x2s+k

(2.8)

for x → ∞ , where Bn are the Bernoulli numbers defined by

t
et −1

=
∞

∑
n=0

Bn
tn

n!
(|t| < 2π).

The expansion (2.8) shows that

ψ(k−1)(n+1)
(k−1)!

=
(−1)k

nk−1

{
1

k−1
− 1

2n
+

k
12n2 +O(n−3)

}
(n → ∞)

upon using the fact that B2 = 1
6 . Thus we find

Ψ1(n,k) :=
ψ(k−1)(2n+1)−ψ(k−1)(n+1)

(k−1)!

=
(−1)k−1

nk−1

{
A0(k)+

A1(k)
n

+
A2(k)

n2 +O(n−3)
}

and

Ψ2(n,k) :=
ψ(2k−1)(2n+1)−ψ(2k−1)(n+1)

(2k−1)!

=
−1

n2k−1

{
A0(2k)+

A1(2k)
n

+O(n−2)
}
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as n → ∞ , where

A0(k) =
1−21−k

k−1
, A1(k) = −1

2
(1−2−k), A2(k) =

1
12

(1−2−1−k).

It then follows that

Ψ2
1(n,k)+ Ψ2(n,k) =

1
n2k−2

{
C0(k)+

C1(k)
n

+
C2(k)

n2 +O(n−3)
}

(n → ∞),

where

C0(k) = A0(k)2 =
(

1−21−k

k−1

)2

,

C1(k) = 2A0(k)A1(k)−A0(2k) = − (1−2−k)(1−21−k)
k−1

− 1−21−2k

2k−1
,

C2(k) = A1(k)2 +2A0(k)A2(k)−A1(2k)

=
(

1−2−k

2

)2

+
1−2−2k

2
+

k(1−2−1−k)(1−21−k)
6(k−1)

.

Substitution of this expansion into (2.1) then yields (2.5).
In the case k = 1, we proceed in the same manner making use of the expansion [1,

Eq. (6.4.11)]

ψ(x) ∼ ln x− 1
2x

−
∞

∑
s=1

B2s

2sx2s (x → ∞),

to find

Ψ1(n,1) = ln 2− 1
4n

+
1

16n2 +O(n−3), Ψ2(n,1) = − 1
2n

+
3

8n2 +O(n−3).

Hence we obtain

S1(n) =
(ln 2)2

2
− 1+ ln 2

4n
+

7+2ln 2
32n2 +O(n−3) (n → ∞).

This completes the proof.

REMARK 2.1. Noting that

lim
k→1

1−21−k

k−1
= ln 2,

we see that the limiting values of the coefficients Cs(k) in (2.6) as k → 1 agree with
those given in (2.7).
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3. An integral representation of Sk(n)

In this section we obtain an integral representation for the sum Sk(n) . We have

THEOREM 3.1. For k = 2,3, . . . we have the integral representation for Sk(n)
given by

Sk(n) =
1
2

{
I2(n,k)+ I(n,2k)

}
, (3.1)

where

I(n,k) =
1

Γ(k)

∫ ∞

0

{
2−k

et/2 −1
− 1

et −1

}
tk−1 e−ntdt.

Proof. Using the representation [1, Eq. (6.4.1)] for positive integer n

ψ(n)(x) = (−1)n+1
∫ ∞

0

tne−xt

1− e−t dt (x > 0),

we find

ψ(n)(x+1) = (−1)n+1
∫ ∞

0

tne−xt

et −1
dt (3.2)

and

ψ(n)(2x+1) =
(−1)n+1

2n+1

∫ ∞

0

tne−xt

et/2 −1
dt. (3.3)

We then obtain

Ψ2
1(n,k)+ Ψ2(n,k) =

(
1

Γ(k)

∫ ∞

0

{
2−k

et/2 −1
− 1

et −1

}
tk−1e−nt dt

)2

+
1

Γ(2k)

∫ ∞

0

{
2−2k

et/2 −1
− 1

et −1

}
t2k−1e−nt dt. (3.4)

Finally, substituting the expression (3.4) into (2.1) yields (2.5). This completes the
proof.

The case k = 1 is covered by the following theorem.

THEOREM 3.2. . When k = 1 , we have the representation

S1(n) =
1
2

[{
ln2− 1

2

∫ ∞

0

e−nt

et/2 +1
dt

}2

+
∫ ∞

0

{
1

4(et/2−1)
− 1

et −1

}
te−ntdt

]
.

(3.5)
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Proof. It follows from (3.2) and (3.3) that

ψ ′(2n+1)−ψ ′(n+1) =
∫ ∞

0

[
1

4(et/2 −1)
− 1

et −1

}
te−ntdt. (3.6)

Using the recurrence formula ψ(x + 1) = ψ(x) + 1/x , the duplication formula [1,
Eq. (6.3.8)]:

ψ(2x) =
1
2

ψ(x)+
1
2

ψ
(

x+
1
2

)
+ ln2

and the representation [1, Eq. (6.3.21)]:

ψ(x) =
∫ ∞

0

(
e−t

t
− e−xt

1− e−t

)
dt,

we find

ψ(2n+1)−ψ(n+1)= ln2+
1
2

{
ψ
(

n+
1
2

)
−ψ(n+1)

}

= ln2− 1
2

∫ ∞

0

e−nt

et/2 +1
dt. (3.7)

We then obtain from (2.1), (3.6) and (3.7)

S1(n) =
1
2

{(
ψ(2n+1)−ψ(n+1)

)2
+ ψ ′(2n+1)−ψ ′(n+1)

}

=
1
2

[{
ln2− 1

2

∫ ∞

0

e−nt

et/2 +1
dt

}2

+
∫ ∞

0

{
1

4(et/2−1)
− 1

et −1

}
te−ntdt

]
.

This completes the proof.
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