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ANALYTICAL, ASYMPTOTIC AND INTEGRAL
REPRESENTATIONS FOR A DOUBLE SUM

CHAO-PING CHEN AND RICHARD B. PARIS

Abstract. We give an analytical representation for the double sum
z 1
I<i<j<n [(n+i)(n+ ])}k

in terms of the polygamma functions, where k is any given positive integer. Based on this result,
we present an asymptotic formula as n — oo and an integral representation for this sum.

1. Introduction

Izan Péraz, in a private communication to the first author, formulated the following
limit:

1 1
lim- Y —————=6-4V2. (1.1)
ey (e (n i) (n+ )

We give here a generalization of this limit by considering the double sum

1
S0 = X el (2

where in this section the index r > 0 is an arbitrary real quantity, but will subsequently
be restricted to be a positive integer.
It is easy to see that

2 2
n2r-2 — ! S ! = 1 S 71. .
lzijzl [(n+i) n+j)]r ( Z{(”*‘W) ("Z{(l—i-%)r)

By the definition of a definite integral, we therefore have
2
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(In2)? r=1.
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In a similar manner, we have
21—2r 1

l n -
= — _— l—2r
v ”Zi (1+4)” In2 F=1

as n — oo, which implies that

(1.4)

Let

ajj = (,j=1.2,...,n),

[(n+i)(n+j)]"
where r > 0. Then it follows that

Sen)=Y, aijj= —{

I<i<j<n

M:

i=1j=1 =1

~.

Noting that (1.4) holds, we have

lim n~ ZZa” =0.

n—oo =

Then from (1.3) and (1.5) we finally obtain

lim n*" 2§ (n):—hmnzr 2 —_——
fim 25 ) = 3 23 3
1 /207 —1\?
5( 1 ) r#17
=17 —r (1.6)
~(In2)? r=1,
2

which generalizes the formula (1.1). The choice r = 1/2 in (1.6) yields (1.1).

Now let r = k, where k is any given positive integer. In this paper, we establish an
analytical representation for the sum Si(n) defined in (1.2) in terms of the polygamma
functions. The polygamma functions " (x) for n = 1,2, ... are defined by

) dn+1 - n
WO () = o () =

where I'(x) is the gamma function, and y/(x) (also known as the digamma function) is
defined by

v(x),

y) = Sl and Y00 = ().

Based on this exact representation for S (n), we present an asymptotic formula as n —
oo in Section 2 and an integral representation for this sum in Section 3.
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2. An asymptotic formula as n —

We first show how the double sum Si(n) can be evaluated in terms of polygamma
functions. We have the following theorem.

THEOREM 2.1. For positive integer k, the sum Si(n) has the following analytical
representation:

Si(n) = 1{ (W("”(ZH D -yt 1))2

k—1)!

(2k—1) _ gy 2k=1)
v 2n+1)—y (n+1)
+ ) }. 2.1)

Proof. The polygamma function has the expression (see [2, Eq. 1.2(54)] and [3,
Eq. 1.3(54)])

V/(") (x+m) — W(”) n' 2

W, m,n=0,1,2,.... (22)

The choice (x,m,n) = (n+1,n,k— 1) in (2.2) yields

L1 yED2n+1) — y*Dm+1)
Z‘l n 'k_ l)k 1 (k—1)! '
We then obtain
2
n n n 1
i:zl,; [n+z)(n+j)]k - (,zzl (n+j>">

- yED2n+1) =y D(n+1) : 23)
B (k—1)! ' ’
The choice (x,m,n) = (n+ 1,n,2k—1) in (2.2) yields
n (2k—1) _ o (2k=1)
2 Vv 2n+1)—y (n+1)' 2.4)
~ n+] (2k—1)!

We then obtain from (2.3) and (2.4)

1 11 & & 1 1 1
B Tor 2 {2121 e & <"+f'>2k}

2
! <w<"—”(2n+1>—w<"‘”(n+l>> LY@+ D) -y 1)

2 (k—1)!

This completes the proof.
We now give the asymptotic expansion of Si(n).
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THEOREM 2.2. For k=1,2,..., the sum Si(n) has the asymptotic expansion

Si(n) = Wlk_z {Co(k) + Clrsk) + Ci(zk) + 0(n3)} 2.5)

as n — oo, where the coefficients Cs(k) (s <2)when k > 2 are given by

1217\ (1-27%)(1 -2k 121~
W= () an--UE 0D

Gy (k) =

A=k \2 A2k A—l-k\(1 _ ~l—k
(1 2 >+1 2 k(1 —2717k) (1 =21k 26)

2 2 6(k—1)
When k=1, we have

Co(1) = (In2)?, Cl(l):—%(l+ln2), Cz(l):11—6(7+21n2). (2.7)

Proof. To demonstrate (2.5), we require the asymptotic formula [1, Eq. (6.4.11)]

(=D (x) v +2xk+1+s=2132s (25) 25tk (2.8)

for x — oo, where B, are the Bernoulli numbers defined by
t N

—— =) B,— t| <2m).

T Xy (<20

The expansion (2.8) shows that

EDm41) (=D 1 1 k -
. k-1 aF ] {k—l_ﬂ+ﬁ+0(n 3)} (n =)

upon using the fact that B, = % . Thus we find

y D 2n41) -y U+ 1)

‘Pl(n,k) = (k— 1)'
= (_’121{1_1 {Ao(k) + AIT(k) + Ai—(zk) + O(n—3)}
and
=D 2n+1) -y D(n+1)
Po(n,k) = ¥ "’!

(2k—1)
= n;{—fl {Ao(zk) + A1(2K) + 0(n2)}

n
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as n — oo, where

_nl—k
Aok = s AR =—50-29, Ak = -2,

It then follows that

1

Wi (n,k) + P2 (n, k) = W{Co(k) +

where

_Al—k\2
b =P = (2 )
_ 2—k)(1 _ 2l—k) 1— 21—2k

Cl(k)ZZAO(k)Al(k)_AO(Zk):_(1 k—1 T 2k—1

Ca(k) = A1 (k)* +240(k)Ax (k) — Ay (2K)

1-27F\* 1272 g(1—271k)(1 21k
( 2 >+ 2 6tk 1)

Substitution of this expansion into (2.1) then yields (2.5).
In the case k = 1, we proceed in the same manner making use of the expansion [1,
Eq. (6.4.11)]

W~ oY ()
to find
¥ (n,1) :1n2—i+L+0(n‘3), ¥y (n,1) = —i+i+0(n—3).
4n  16n2 2n  8n?
Hence we obtain
§1(n) = (1n22)2 B 11112 N 74;227112112 () ()

This completes the proof.

REMARK 2.1. Noting that

Al-k
lim
k—1 k—

=In2,

we see that the limiting values of the coefficients Cy(k) in (2.6) as k — 1 agree with
those given in (2.7).
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3. An integral representation of Sy (n)

In this section we obtain an integral representation for the sum Sy (n). We have

THEOREM 3.1. For k =2,3,... we have the integral representation for Si(n)
given by

Si(n) = %{12 (n,k) +1(n,2k) } (3.1)

where

Loy 2t 1 k=1 —nt
I(n’k)_l“(k)/o {ef/2—1_ef—1}t e "dr.

Proof. Using the representation [1, Eq. (6.4.1)] for positive integer n

n n - tn67XT
YO = [ e o),
0 e
we find
oo 4N ,—XI
w<">(x+1):(_1)"+1/ L (3.2)
0o e —1
and
n+1 oo 4N ,—Xt
(n) :(—1)+/ t
yO e =g | S (3.3)

We then obtain

o — 2
W2 (n,k) +¥r(n,k) = ! / 2t ] e dr
’ ’ L(k)Jo le/2—1 e —1

—1 - _272]( 1 2k—1 _—nt 4
F(2k)/o a1 a-1(f ¢ 4 (3.4)

Finally, substituting the expression (3.4) into (2.1) yields (2.5). This completes the
proof.
The case k =1 is covered by the following theorem.

THEOREM 3.2. . When k = 1, we have the representation

U, e 1 .
S =3 | {23 | gy +/ St

(3.5)
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Proof. Tt follows from (3.2) and (3.3) that

/ / - 1 1 —nt
l[/(2n—|—1)—l[/(n—|—1):/0 [4(ef/2—1)_et—l}te dr. (3.6)

Using the recurrence formula y(x+ 1) = y(x) + 1/x, the duplication formula [I,
Eq. (6.3.8)]:

1 1 1
y(2x) = EW(X) + 4 <x+ 5) +1n2
and the representation [1, Eq. (6.3.21)]:

=3 e*l 67XI
v = | (T - 1_—) @,

l//(2n+1)—l//(n—|—1):1n2—|—%{l//<n—|—%> —l//(n+1)}

1 o e—nt

=In2— dr. 3.7
ST N 3-7)

‘We then obtain from (2.1), (3.6) and (3.7)

Si(n) = % { (W(2n+ D)= y(nt 1))2—|—l///(2n—|— D)~y (n+ 1)}

1 1 />~ e 1
=—|<In2— ——dr — te "dt
2 {n 2Jo ¢2+1 } +/ { (et/2—1) e’—l} ¢

This completes the proof.

we find
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