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MEHLER–HEINE TYPE FORMULAS FOR CHARLIER AND

MEIXNER POLYNOMIALS II. HIGHER ORDER TERMS

DIEGO DOMINICI

Abstract. We derive Mehler–Heine type asymptotic expansions for Charlier and Meixner poly-
nomials. These formulas provide good approximations for the polynomials in the neighborhood
of x = 0, and determine the asymptotic limit of their zeros as the degree n goes to infinity.

1. Introduction

Suppose that Pn(x) is a sequence of orthogonal polynomials and let xk,n denote
the zeros of Pn(x)

Pn(xk,n) = 0, x1,n < x2,n < · · · < xn,n.

Two standard approximations describing the asymptotic behavior of the polynomials
Pn(x) as the degree n tends to infinity are Mehler–Heine type formulas (in a region
around the smallest zero) and Plancherel-Rotach type formulas (in a region around the
largest zero)

x1,n < x2,n︸ ︷︷ ︸
Mehler-Heine

< · · · < xn−1,n < xn,n︸ ︷︷ ︸
Plancherel-Rotach

.

Mehler–Heine type formulas were introduced by Heinrich Heine in 1861 [3] and
Gustav Mehler [5] in 1868 to analyze the asymptotic behavior of Legendre polynomials.
See Watson’s book [8, 5.71] for some historical remarks.

In [2], we studied Mehler–Heine type formulas for the Charlier and Meixner poly-
nomials and obtained the following result (there are some minor differences in the for-
mulas because we use monic polynomials in this article):

PROPOSITION 1. Let

pFq

(
a1, . . . ,ap

b1, . . . ,bq
;z

)
=

∞

∑
k=0

(a1)k · · ·(ap)k

(b1)k · · ·(bq)k

zk

k!

denote the Generalized Hypergeometric Function [7, Chapter 16] and (u)k the Pochham-
mer symbol (or rising factorial) [7, 5.2.4],

(u)k = u(u+1)· · · (u+ k−1). (1)
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1) If Cn (x;a) denotes the monic Charlier polynomial defined by [4, 9.14.1]

Cn (x,a) = (−a)n 2F0

(−n,−x
− ;−1

a

)
, (2)

then, we have

lim
n→∞

(−1)n

Γ(n− x)
Cn (x,a) =

ea

Γ(−x)
, x ∈ C, (3)

where Γ(z) is the Gamma function [7, Chapter 5].
2) If Mn (x;β ,c) denotes the monic Meixner polynomial defined by [4, 9.10.1]

Mn (x;β ,c) = (β )n

(
c

c−1

)n

2F1

(−n,−x
β ;1− 1

c

)
, β > 0, (4)

then, for c ∈ C\ [1,∞) we have

lim
n→∞

(−1)n (1− c)n+x

Γ(n− x)
Mn (x;β ,c) =

(1− c)−β

Γ(−x)
, x ∈ C, (5)

where all functions assume their principal values.

We presented these results at the Special Session on Special Functions and Their
Applications, part of the Fall Eastern Sectional Meeting held at Dalhousie University,
Halifax, Canada on October 18–19, 2014. Professor Robert Milson was in the audience
and inquired about possible error terms of order n−1 in the formulas. The purpose of
this paper is to answer his question, and extend the previous limits (3) and (5) to full
asymptotic expansions.

2. Main results

The monic Charlier polynomials satisfy the orthogonality relation [4, 9.14.2]

∞

∑
x=0

Cn (x;a)Cm (x;a)
ax

x!
= n!aneaδn,m, a > 0.

PROPOSITION 2. We have

Cn (x;a) = (−1)n (−x)n ea
1F1

(
x+1

x−n+1
;−a

)
. (6)

Proof. Using the identity [7, 13.6.20 ]

zn
2F0

(−n,−x
− ;−1

z

)
= (−x)n 1F1

( −n
x+1−n

;z

)
,

in (2), we get

Cn (x;a) = (−1)n (−x)n 1F1

( −n
x+1−n

;a

)
. (7)
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Applying Kummer’s transformation [7, 13.2.39]

1F1

(
a
b
;z

)
= ez

1F1

(
b−a

b
;−z

)
,

we obtain our result. �

COROLLARY 3. For x,a = O(1), we have

Cn (x;a) = (−1)n (−x)n ea [
1+(x+1)an−1 +O

(
n−2)] , n → ∞. (8)

Proof. From (6), we have as n → ∞

Cn (x;a) ∼ (−1)n (−x)n ea
[
1+

x+1
n− x−1

a+
(x+1)(x+2)

(n− x−1)(n− x−2)
a2

2

]
,

and therefore

Cn (x;a) = (−1)n (−x)n ea

[
1+

x+1
n

a+
(x+1)2

n2 a+
(x+1)(x+2)

n2

a2

2
+O

(
n−3)] .

�

REMARK 1. If we use the formula [7, 5.2.5]

(x)n =
Γ(x+n)

Γ(x)
(9)

in (8), rearrange terms and take limits, we recover our previous result (3).

The monic Meixner polynomials satisfy the orthogonality relation [4, 9.10.2]

∞

∑
x=0

Mn (x;β ,c)Mm (x;β ,c) (β )x
cx

x!
= n!cn (β )n (1− c)−β−2n δn,m,

valid for β > 0 and 0 < c < 1.

PROPOSITION 4. For c ∈ C\ [1,∞), we have

Mn (x;β ,c) = (−1)n (−x)n (1− c)−n−x−β
2F1

(
x+1,x+ β
x+1−n

;
c

c−1

)
, (10)

where we choose the principal branch of (1− c)−n−x−β .

Proof. Using the identity [7, 15.8.6]

2F1

(−n,b
c

;z

)
=

(b)n

(c)n
(1− z)n 2F1

(−n,c−b
1−b−n

;
1

1− z

)
,
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in (4) we get

Mn (x;β ,c) = (−1)n (−x)n (1− c)−n
2F1

(−n,x+ β
x+1−n

;c

)
. (11)

Applying the rational transformation [7, 15.8.1]

2F1

(
a,b
c

;z

)
= (1− z)−b

2F1

(
c−a,b

c
;

z
z−1

)
, z ∈ C\ [1,∞),

where (1− z)−b assumes its principal value, the result follows. �

COROLLARY 5. For x = O(1) and 0 < c < 1, we have as n → ∞

Mn (x;β ,c) =
(−1)n (−x)n

(1− c)n+x+β

[
1+

(x+1)(x+ β )c
1− c

n−1 +O
(
n−2)] . (12)

Proof. From (10), we have as n → ∞

(1− c)n+x+β Mn (x;β ,c)
(−1)n (−x)n

∼ 1+
(x+1)(x+ β )

n− x−1
c

1− c

+
(x+1)2 (x+ β )2

(n− x−1)(n− x−2)
1
2

(
c

1− c

)2

,

and therefore

(1− c)n+x+β Mn (x;β ,c)
(−1)n (−x)n

∼ 1+
(x+1)(x+ β )

n
c

1− c

+
(x+1)2 (x+ β )

n2

c
1− c

+
1
2

(x+1)2 (x+ β )2
n2

(
c

1− c

)2

. �

REMARK 2. If we use (9) in (12), rearrange terms and take limits, we recover our
previous result (5).

3. Concluding remarks

We derived asymptotic expansions for the Charlier and Meixner orthogonal poly-
nomials. Our formulas extend the results that we previously obtained in [2] using Tan-
nery’s theorem [1]. Although surprisingly simple, these (convergent!) expansions pro-
vide excellent approximations for the Charlier and Meixner polynomials in the neigh-
borhood of x = 0.They are also very useful in the theory of Sobolev orthogonal poly-
nomials [6].

In a forthcoming sequel, we plan to apply our method to other families of orthog-
onal polynomials.
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