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ON GEOMETRICAL PROPERTIES OF

STARLIKE LOGHARMONIC MAPPINGS

ZAYID ABDULHADI AND LAYAN EL HAJJ

Abstract. In this paper, we find the radius of the disk Ωr such that every starlike logharmonic
mapping f (z) of order α , is starlike in |z|� r with respect to any point of Ωr . We also establish
a relation between the set of starlike logharmonic mappings and the set of starlike logharmonic
mappings of order α . Moreover, the radius of starlikeness and univalence for the set of close to
starlike logharmonic mappings of order α is determined.

1. Introduction

Let H(U) be the linear space of all analytic functions defined in the unit disk
U = {z : |z| < 1} of the complex plane C and let B denote the set of functions a ∈
H(U) satisfying |a(z)| < 1 in U. A logharmonic mapping defined on U is a solution
of the nonlinear elliptic partial differential equation

fz
f

= a
fz
f
, (1.1)

where the second dilatation function a belongs to the class B . Thus the Jacobian

Jf = | fz|2 (1−|a|2)
is positive and hence, all non-constant logharmonic mappings are sense-preserving and
open on U . If f is a non-constant logharmonic mapping of U and vanishes only at
z = 0, then f admits the representation

f (z) = zm|z|2βmh(z)g(z), (1.2)

where m is a nonnegative integer, Re(β ) > −1/2, and h and g are analytic functions
in U satisfying g(0) = 1 and h(0) �= 0 (see [1]). The exponent β in (1.2) depends only
on a(0) and can be expressed by

β = a(0)
1+a(0)

1−|a(0)|2 .

Note that f (0) �= 0 if and only if m = 0, and that a univalent logharmonic mapping on
U vanishes at the origin if and only if m = 1, that is, f has the form

f (z) = z|z|2β h(z)g(z),
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where Re(β ) > −1/2 and 0 /∈ (hg)(U). This class has been studied extensively in
recent years, for instance in [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 21, 22, 26]. As
further evidence of its importance, note that F(ζ ) = log f (eζ ) is a univalent harmonic
mapping of the half-plane {ζ : Re(ζ ) < 0} . Studies on univalent harmonic mappings
can be found in [10, 13, 14, 15, 16, 17, 18, 19, 20]. Such mappings are closely related to
the theory of minimal surfaces (see [24, 25]). When f is a nonvanishing logharmonic
mapping in U , it is known that f can be expressed as

f (z) = h(z)g(z),

where h and g are nonvanishing analytic functions in U. Let f = zh(z)g(z) be a uni-
valent logharmonic mapping. We say that f is a starlike logharmonic mapping of order
α if

∂ arg f (reiθ )
∂θ

= ℜ
z fz − z fz

f
> α , 0 � α < 1

for all z ∈ U. Denote by STLh(α) the set of all starlike logharmonic mappings of or-
der α. If α = 0, we get the class of starlike logharmonic mappings. We also denote
ST (α) = { f ∈ STLh(α) and f ∈ H(U)}. A detailed study of the class STLh(α) may
be found in [4]. In particular, the following are representation theorem and distortion
theorem for mappings in the set STLh(α) .

THEOREM A. (Representation Theorem) Let f (z) = zh(z)g(z) be a logharmonic
mapping on U , 0 /∈ hg(U). Then f ∈ STLh(α) if and only if ϕ(z) = zh(z)/g(z)∈ ST (α)
and it follows that

f (z) = ϕ(z)exp2ℜ
∫ z

0

a(s)ϕ ′(s)
ϕ(s)(1−a(s))

ds.

THEOREM B. (Distorsion Theorem) Let f (z) = zh(z)g(z)∈ STLh(α) with a(0)=
0 . Then for z ∈U we have

|z|
(1+ |z|)2α exp

(
(1−α)

−4|z|
1+ |z|

)
� | f (z)| � |z|

(1−|z|)2α exp

(
(1−α)

4|z|
1−|z|

)
.

The equalities occur if and only if f (z) = ζ f0(ζ z), where |ζ | = 1 and

f0(z) =
z(1− z)
(1− z)

1
(1− z)2α exp(1−α)ℜ

4z
1− z

.

Denote by PLh the set of all logharmonic mappings R defined on the unit disk U
which are of the form R = HG, where H and G are in H(U) , H(0) = G(0) = 1 and
such that Re(R(z)) > 0 for all z ∈U . In particular, the set P of all analytic functions
p(z) in U with p(0) = 1 and Re(p(z)) > 0 in U is a subset of PLh (for more details
see[2]).

In Section 2, we consider a relation between STLh(α) and STLh(β ) and obtain the
radius of the disk Ωr such that every starlike logharmonic mapping f (z) of order α , is
starlike in |z|< r with respect to any point of Ωr . In section 3, the radius of univalence
and starlikeness is determined for the set of close to starlike logharmonic mappings of
order α.
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2. Geometrical properties of the class STLh(α)

In the following propositionwe establish a relationship between the classes STLh(α)
and STLh(β ).

PROPOSITION 1. Let f (z) = zh(z)g(z) be a logharmonic mapping with respect to
a ∈ B and

K(z) = zexp2ℜ
∫ z

0

a(z)
1−a(z)

dz
z

.

If f ∈ STLh(α) then F(z) = f (z)δ K(z)γ ∈ STLh(β ), with β = δα +γ � 0, and δ +γ =
1.

Proof. K(z) = zexp2ℜ
∫ z
0

a(z)
1−a(z)

dz
z

is starlike logharmonic univalent with re-

spect to a .
Direct calculations yield

Fz

F
= δ

fz
f

+ γ
Kz

K
= δa

fz
f

+ γa
Kz

K
= a

Fz

F
.

Hence F is logharmonic with respect to the same a . Moreover,

ℜ
zKz − zKz

K
= ℜ

(
1+

a(z)
1−a(z)

− a(z)
1−a(z)

)
= 1.

It follows,

ℜ
zFz− zFz

F
= δ ℜ

z fz − z fz
f

+ γℜ
zKz − zKz

K
> δα + γ = β .

Thus, F ∈ STLh(β ). �

REMARK 1. Above proposition gives us in particular the following 2 special cases:

• If f (z)= zh(z)g(z)∈ STLh(α) with respect to a∈B then F(z)= f (z)
1

1−α K(z)
−α
1−α

∈ STLh(0).

• If f (z) = zh(z)g(z)∈ STLh(0) with respect to a∈B then F(z) = f (z)1−αK(z)α ∈
STLh(α).

In what follows next, our objective is to find the region Ωr in the w−plane such
that every f ∈ STLh(α) is starlike with respect to any point of Ωr. Since STLh(α) is
compact (see[4]), it follows that Ωr is a closed set. Therefore, Ωr is a closed disk with
center at w = 0 and the determination of Ωr is equivalent to the determination of the
radius of the disk Ωr .

Our main result is the following theorem
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THEOREM 1. Let f ∈ STLh(α) , then the radius of the disk Ωr such that f is
starlike with respect to any point of Ωr is given by

λα(r0) =
r0

(1+ r0)2α exp

(−(1−α)4r0

(1+ r0)

) (
α +(1−α)

1− r0

1+ r0

)
(

α +(1−α)
(

1+ r0

1− r0

))(
1+ r0

1− r0

) ,

where r0 ∈ (0,1) and r0 is the smallest positive root of the equation

8r5α3−12r5α2 +6r5α − r5−16r4α3 +12r4α2 +4r4α −3r4 +8r3α3 −36r3α2

+32r3α −8r3 +4r2α2−4r2α +4r2−6rα +9r−1 = 0.

Proof. Let Ur( f ) = f (|z| � r < 1), w = f (z) ∈ STLh(α). Ur( f ) is starlike with
respect to w0 if and only if

∂ arg
(
f (reiθ )−w0

)
∂θ

= ℜ
z fz(z)− z fz(z)

f (z)−w0
> 0 for |z| � r < 1.

This is equivalent to

ℜ
f (z)−w0

z fz(z)− z fz(z)
> 0 for |z| � r < 1,

or

ℜ
f (z)

z fz(z)− z fz(z)
> ℜ

w0

z fz(z)− z fz(z)
for |z| � r < 1. (2.1)

It follows from (2.1) that

| f (z)|2ℜ
z fz(z)− z fz(z)

f (z)
> |w0|2ℜ

z fz(z)− z fz(z)
w0

for |z| � r < 1. (2.2)

Now if f (z) ∈ STLh(α) , we have eiθ f (e−iθ z) ∈ STLh(α). It follows that if w0 ∈ Ωr

then ρeiθ ∈ Ωr, with ρ = |w0| and −π < θ � π . Therefore, if w0 ∈ Ωr, (2.2) must
holds for all points w = |w0|eiθ , −π < θ � π and so

∣∣ f (z)2
∣∣ℜ z fz(z)− z fz(z)

f (z)
� |w0| |z fz(z)− z fz(z)| for |z| � r < 1.

Hence ∣∣∣∣ f (z)2

z fz(z)− z fz(z)

∣∣∣∣ℜ z fz(z)− z fz(z)
f (z)

� |w0| for |z| � r < 1.

We next consider the function

Ψ( f ,z) =
∣∣∣∣ f (z)2

z fz(z)− z fz(z)

∣∣∣∣ℜ z fz(z)− z fz(z)
f (z)

, (2.3)
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where f ∈ STLh(α) and z is fixed, |z| = r. Clearly, min
f∈STLh(α)

Ψ( f ,z) is independent of

the choice of z = reiθ , −π < θ � π . Let |z|= r, r > 0. Then λα(r) = min
f∈STLh(α)

Ψ( f ,z)

is the radius of Ωr. Since f ∈ STLh(α) by Theorem A, there exists a ϕ ∈ ST (α) such
that

ℜ
z fz(z)− z fz(z)

f (z)
= ℜ

zϕ ′(z)
ϕ(z)

= ℜ((1−α)p(z)+ α), (2.4)

where p ∈ P. From Theorem B, it follows that if f ∈ STLh(α) then

| f (z)| � r
(1+ r)2α exp

(−(1−α)4r
(1+ r)

)
. (2.5)

Substituting (2.4) and (2.5) into (2.3), we get

Ψ( f ,z) =

∣∣∣∣∣∣∣∣
f (z)

z fz(z)− z fz(z)
f (z)

∣∣∣∣∣∣∣∣
ℜ

z fz(z)− z fz(z)
f (z)

� r
(1+r)2α exp

(−(1−α)4r
(1+r)

)
ℜ [α+(1−α)p(z)]∣∣∣∣ 1

1−a
[α+(1−α)p(z)]− a

1−a

[
α+(1−α)p(z)

]∣∣∣∣

� r
(1+r)2α exp

(−(1−α)4r
(1+r)

) [
α+(1−α)

1−r
1+r

]
∣∣∣∣ 1
|1−a| [α+(1−α)|p(z)|]+ |a|

|1−a| [α+(1−α) |p(z)|]
∣∣∣∣

� r
(1+ r)2α exp

(−(1−α)4r
(1+ r)

) (
α +(1−α)

1− r
1+ r

)
(

α +(1−α)
(

1+ r
1− r

))(
1+ r
1− r

) .

We set

λα(r) =
r

(1+ r)2α exp

(−(1−α)4r
(1+ r)

) (
α +(1−α)

1− r
1+ r

)
(

α +(1−α)
(

1+ r
1− r

))(
1+ r
1− r

) .

Then λα(r0) is the radius of Ωr, where r0 ∈ (0,1) and r0 is the smallest positive
root of the equation 8r5α3 − 12r5α2 + 6r5α − r5 − 16r4α3 + 12r4α2 + 4r4α − 3r4 +
8r3α3−36r3α2 +32r3α −8r3 +4r2α2−4r2α +4r2−6rα +9r−1 = 0. We note that

min
f∈STLh(α)

Ψ( f ,z) is attained in STLh(α) by a function of the form f (z) = η f0(ηz) ,

|η | = 1 and where

f0(z) =
z(1− z)
(1− z)

1
(1− z)2α exp(1−α)ℜ

4z
1− z

. � (2.6)
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For the particular case, where f ∈ STLh(0) we establish the following corollary.

COROLLARY 1. Let f ∈ STLh(0) , then f is starlike with respect to any point of
Ωr , where Ωr is a disk {w : |w| < λα(r0)} with λα(r0) = 8.7462×10−2.

Proof. Let Ur( f ) = f (|z| � r < 1), w = f (z) ∈ STLh(0). Proceeding in a similar
fashion as in the above proof, we show that Ur( f ) is starlike with respect to w0 if and
only if |w0| � Ψ( f ,z) , where

Ψ( f ,z) =

∣∣∣∣∣∣∣∣
f (z)

z fz(z)− z fz(z)
f (z)

∣∣∣∣∣∣∣∣
ℜ

z fz(z)− z fz(z)
f (z)

.

In particular |w0| � λα(r) = min
f∈STLh(0)

Ψ( f ,z), with z fixed, |z| = r . Since f ∈
STLh(0), we have

λα(r) � r

(
1− r
1+ r

)3

exp

( −4r
(1+ r)

)
.

We can minimize λα(r) by taking the smallest positive root of the equation

r3 +3r2 +9r−1 = 0

which is r0 = 0.10715. Hence λα(r0) = 8.7462×10−2. We note that min
f∈STLh(α)

Ψ( f ,z)

is attained in STLh(0) by a function of the form f (z) = η f0(ηz) , |η | = 1 and where

f0(z) =
z(1− z)
(1− z)

expℜ
4z

1− z
. � (2.7)

3. Close to starlike logharmonic mappings of order α

In this section, we consider the set of all logharmonic mappings F(z) which can
be factorized as the product of a logharmonic mapping f (z) ∈ STLh(α) with respect to
a ∈ B and a logharmonic mapping R(z) ∈ PLh with respect to the same a .

DEFINITION 1. We say F(z) is close to starlike of order α, if F(z) = f (z)R(z) ,
where f ∈ STLh(α) with respect to a ∈ B and R ∈ PLh with respect to the same a. We
denote by CSTLh(α) the set of all close to starlike logharmonic mappings of order α.

Note that, if α = 0, we get the class of close to starlike logharmonic mappings
and if R(z) = 1 then F ∈ STLh(α).

Close to starlike logharmonic mappings have the following geometrical property:
Under the mapping F(z) , the radius vector of the image of |z| = r < 1, never turns
back by an amount more than π . Observe that F is not necessarily univalent starlike
on U . For example, take F(z) = z(1− z), where z ∈ ST (α) and 1− z ∈ P.

In the next result we determine the radius of univalence and starlikeness for these
mappings F ∈CSTLh(α) .
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THEOREM 2. Let F ∈ CSTLh(α). Then F maps the disk |z| < ρ onto a starlike

domain, where ρ � 2−α −√
α2 −2α +3

1−2α
for α �= 1

2 , and ρ � 1
3 for α = 1

2 . The

upper bound is best possible for all a ∈ B.

Proof. Let F(z) = f (z)R(z) ∈CSTLh(α) , where f = zhg ∈ STLh(α) with respect
to a ∈ B and R = HG ∈ PLh with respect to the same a . F(z) is logharmonic with
respect to the same a and we have

ℜ
zFz(z)− zFz(z)

F(z)
= ℜ

z fz(z)− z fz(z)
f (z)

+ ℜ
zRz(z)− zRz(z)

R(z)
. (3.1)

From Theorem A, we have

f (z) = ϕ(z)exp2ℜ
∫ z

0

a(s)ϕ ′(s)
(1−a(s))ϕ(s)

ds, (3.2)

where ϕ(z) =
zh
g

∈ ST (α). Moreover, from [2] it follows that

R(z) = p(z)exp2ℜ
∫ z

0

a(s)p′(s)
(1−a(s))p(s)

ds, (3.3)

where p =
H
G

∈ P .

Substituting (3.2), (3.3) into (3.1), simple calculations lead to

ℜ
zFz(z)− zFz(z)

F(z)
= ℜ

z fz(z)− z fz(z)
f (z)

+ ℜ
zRz(z)− zRz(z)

R(z)

= ℜ
(

zϕ ′(z)
ϕ(s)

)
+ ℜ

(
zp′(z)
p(z)

)
.

But since

ℜ
(

zp′(z)
p(z)

)
� −2|z|

1−|z|2 , and ℜ
(

zϕ ′(z)
ϕ(s)

)
> (1−α)

1−|z|
1+ |z| + α,

we get

ℜ
zFz(z)− zFz(z)

F(z)
� (1−α)

1−|z|
1+ |z| + α − 2|z|

1−|z|2 =
(1−2α)|z|2 +(2α −4)|z|+1

1−|z|2 .

Hence, ℜ
zFz(z)− zFz(z)

F(z)
> 0 if

(1−2α)|z|2 +(2α −4)|z|+1 > 0.

In the case α = 1
2 , the above is satisfied for |z|< 1

3 , so the radius of starlikeness is ρ =
1
3 . For α �= 1

2 , the radius of starlikeness ρ is the smallest positive root(less than 1) of
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(1−2α)ρ2+(2α−4)ρ +1 = 0 which is
2−α −√

α2 −2α +3
1−2α

. Therefore, F is uni-

valent on |z| < 2−α −√
α2 −2α +3

1−2α
and maps

{
z : |z| < 2−α −√

α2−2α +3
1−2α

}

onto a starlike domain. We consider the analytic function F(z) =
z

(1− z)2−2α
1+ z
1− z

,

where f (z) =
z

(1− z)2−2α ∈ ST (α) ⊂ STLh(α) and p(z) =
1+ z
1− z

∈ P ⊂ PLh . We have

F ′
(

2−α −√
α2 −2α +3

1−2α

)
= 0 for α �= 1

2 and F ′(−1
3 ) = 0 for α = 1

2 . Hence, the

upper bound is best possible for the class STLh(α) and PLh. Since f (z) = zhg∈ STLh(α)
if and only if ϕ(z) = zh/g ∈ ST (α) and R(z) = HG ∈ PLh if and only if p = H/G ∈ P
(see[2]). The same bound is best possible for all a ∈ B. �

COROLLARY 2. Let F ∈CSTLh(α) , then F ∈ STLh(α) in |z| < ρ , for

ρ � 2−α −√−2α +3
1−α

.

Proof. F ∈ STLh(α) if ℜ
zFz(z)− zFz(z)

F(z)
> α . Using the proof of the previous

theorem, this will be satisfied for

(1−2α)|z|2 +(2α −4)|z|+1
1−|z|2 > α,

that is for (1−α)|z|2 + (2α − 4)|z|+ 1−α > 0. The radius of starlikeness ρ is the
smallest positive root (less than 1) of (1−α)|z|2 +(2α − 4)|z|+ 1−α = 0 which is
2−α −√−2α +3

1−α
. �

THEOREM 3. Let F ∈CSTLh(α) with respect to a∈B. Let f ∗ ∈ STLh(α) with re-
spect to the same a. Then Q(z) = F(z)λ f ∗(z)1−λ , 0 < λ < 1, is univalent and starlike
in

|z| < 1+ λ −α −√
α2 −2λ α + λ 2 +2λ
1−2α

for α �= 1
2 , and in

|z| < 1
2λ +1

,

for α = 1
2 . The bound is best possible for all a ∈ B.

Proof. Let Q(z) = F(z)
λ

f ∗(z)1−λ , 0 < λ < 1, where F(z) = f (z)R(z), f ∈
STLh(α) , R ∈ PLh, and f ∗ ∈ STLh(α). Q(z) is logharmonic with respect to the same



STARLIKE LOGHARMONIC MAPPINGS 23

a ∈ B. Moreover, we have

ℜ
zQz(z)− zQz(z)

Q(z)

= λ ℜ
z fz(z)− z fz(z)

f (z)
+ λ ℜ

zRz(z)− zRz(z)
R(z)

+ (1−λ )ℜ
z f ∗z (z)− z f ∗z (z)

f ∗(z)

� λ
(1−2α)|z|2 +(2α −4)|z|+1

1−|z|2 +(1−λ )
(

(1−α)
1−|z|
1+ |z| + α

)

=
(1−2α)|z|2 +2(α −λ −1)|z|+1

1−|z|2 .

Hence, ℜ
zQz(z)− zQz(z)

Q(z)
> 0 if

(1−2α)|z|2 +2(α −λ −1)|z|+1 > 0.

For α = 1
2 , the last inequality is satisfied for |z| < 1

1+2λ . Hence, Q(z) is univalent in

|z| < 1
1+2λ and maps that circle onto a starlike domain. For α �= 1

2 , the last inequality

is satisfied for |z| < 1+ λ −α −√
α2 −2λ α + λ 2 +2λ
1−2α

. Hence, Q(z) is univalent in

|z| < 1+ λ −α −√
α2 −2λ α + λ 2 +2λ
1−2α

and maps that circle onto a starlike domain.

We consider the function

Q(z) = F0(z)
λ

f ∗0 (z)1−λ ,

where

F0(z) =
z

(1− z)2−2α
1− z
1+ z

and

f ∗0 (z) =
z

(1+ z)2−2α .

Q(z) satisfies the hypothesis of the theorem since F0(z) is a product of an analytic
function which is starlike of order α and an analytic function with real part positive.
Also, f ∗0 (z) is starlike analytic function of order α and therefore, it belongs to the set

STLh(α). Moreover, Q′
(

1+ λ −α −√
α2−2λ α + λ 2 +2λ
1−2α

)
= 0 for α �= 1

2 and

Q′( 1
1+2λ ) = 0 for α = 1

2 . From Theorem A, it follows that the same bound is best
possible for all a ∈ B. �

For the particular case where f ∗ ∈ STLh(0), we have the following theorem:
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THEOREM 4. Let F ∈CSTLh(α) with respect to a ∈ B and let f ∗ ∈ STLh(0) with
respect to the same a. Then Q(z) = F(z)λ f ∗(z)1−λ , 0 < λ < 1, is univalent and star-

like in |z| < 1+ λ −λ α −√
λ 2α2 −2λ 2α + λ 2 +2λ
1−2λ α

for α �= 1
2λ , and in |z| < 1

2λ+1 ,

for α = 1
2λ . The bound is best possible for all a ∈ B.
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