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UNCOVERING FUNCTIONAL RELATIONSHIPS AT ZEROS WITH

SPECIAL REFERENCE TO RIEMANN’S ZETA FUNCTION

M. L. GLASSER AND MICHAEL MILGRAM

Abstract. A Master equation has been previously obtained which allows the analytic integration
of a fairly large family of functions provided that they possess simple properties. Here, the
properties of this Master equation are explored, by extending its applicability to a general range
of an independent parameter. Examples are given for various values of the parameter using
Riemann’s Zeta function as a template to demonstrate the utility of the equation. The template is
then extended to the derivation of various sum rules among the zeros of the Zeta function as an
example of how similar rules can be obtained for other functions.

1. Introduction

In a previous work [1], several “Master” equations were presented that permit the
analytic integration of suitably restricted, but otherwise arbitrary, functions. In general,
any integral of the form ∫ ∞

−∞
f (v)dv (1.1)

where f (v) is suitably bounded as v →±∞ and satisfies

f (v)+ f (−v− i) = 0 (1.2)

can be written in terms of the sum of its residues residing in the region

S ≡−1 < Im(v) < 0 .

For the remainder of this paper, we define

z = 4av(v+ i) ; (1.3)

and, in addition, use h, j,k,m,n, p,q∈N unless otherwise specified, and set 0 � w � 1,
w ∈ R . Assuming that F(z) is regular in S , for small, real values of the parameter
a > 0, a very simple example of such a Master equation is∫ ∞

−∞

wv(v+i)F (z)
cosh(π v)

dv = w1/4F (a) . (1.4)

The main motivation for this work is to investigate the conditions under which
poles of the function F(z) in the complex z-plane will contribute to poles in S in the
complex v-plane by choosing as an appropriate example, the function F(z) = 1/ζ (z) ,
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Riemann’s zeta function (e.g. [2]). The goal is to identify terms that must be included
in the right-hand side of (1.4) for various choices of the parameter a , and, at the same
time, demonstrate how to uncover new functional relationships that may exist between
the integral and residue representations inherent in (1.4) for any particular choice of
F(z) .

In [1], the variable a was treated as a real, positive parameter; here we intend
to investigate the effect of extending a to the complex domain and, from that basis,
following [3] we further show how to develop functional relationships among complex
zeros of any function F(z), using the Riemann function ζ (z) as an interesting, and
challenging, example.

Fundamental to the analysis is the requirement that properties of F(z) first be
known in S , which in turn suggests that the geometry of the mapping (1.3) be exam-
ined. This is done in Section 2 for various general ranges of real and imaginary values
of the parameter a . Armed with an understanding of the nature of (1.3), it is then
possible to judiciously translate contours of integration, making allowance for residues
associated with poles for a particular choice of F(z) , wherever they may lie. This is
done in Section 3 for special choices of the parameter a . In Section 4, we broaden
our horizons by choosing more varied examples for F(z) , restricted to variants of ζ (z)
in order to demonstrate the type of results that can emerge for other choices of F(z) .
The choice F(z) = 1/ζ (z) was motivated by general interest in the properties of the
complex zeros of ζ (z) , since the complexity and distribution of it’s zeros allows us to
demonstrate many of the intricacies that can be dealt with using the methods established
here. The results obtained here differ from those usually found in the literature because
they generally demonstrate a relationship among function values at the zeros of ζ (z) ,
rather than a relationship that may exist among the values of the zeros themselves as is
usual (e.g. [2, Eqs. 3.2(7) and 3.8(4)], [4], [5], [6]). This comment likely applies to any
other choice of F(z) [7], [8].

1.1. Notation and assumptions

Since we will be utilizing the properties of Riemann’s ζ function intensively, for
the sake of completeness, we remind the reader that ζ (z) = 0 when z =−2n (so-called
trivial zeros) and z = τ (non-trivial zeros). The general non-trivial zeros ζ (τ) = 0 are
indexed by τ = σ + iρ without reference to location within the critical strip, defined by
0 < σ < 1 with ρ � 0. When referring to zeros on the critical line, we write τ = 1

2 + iρ
in general (ρ > 0), and τn = 1

2 + iρn in particular. When used in this form to index
a sum over all non-trivial zeros, the implication is that τ spans all possible zeros with
which it is associated, those being τ,τ ,1− τ and 1− τ . In some cases, the indexing
over non-trivial zeros is constrained to a particular range, and this will be denoted by
constraints on τ (e.g. ℑ(τ) > 0). Throughout, we also follow the usual assumption
that zeros of ζ (τ) are simple (e.g. [9]); consequently we always employ ζ ′(τ) �= 0
(see [17, Theorem 10.1]).

Finally, the appearance of ζ ′(−2n) is frequently replaced by a well-known iden-
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tity [10, Eq. 25.6.13]

ζ ′(−2n) =
1
2

(−1)n ζ (2n+1)(2n)!
(2π)2n . (1.5)

2. The nature of the transform (1.3)

Figure 1 illustrates how horizontal lines spanning S in the v-plane (separated
by units of 0.1 along the ℑ(v) axis) transform into parabolas in the complex z-plane
if a ∈ ℜ , a > 0. The range ℜ(v) < 0 corresponds to the lower branch of each of
the curves, the range ℜ(v) > 0 to the upper branch. In other words, the integration
region S upon which (1.4) is based transforms into the interior of the parabolic region
bounded by the solid curve in Figure 1. If F(z) is singularity free in this region, (1.4) is
valid. Otherwise modifications must be made. In the remainder of this work, we will
be considering the case where F(z) is replaced by its reciprocal, so (1.4) becomes∫ ∞

−∞

wv(v+i)

F (z)cosh(π v)
dv =

w1/4

F (a)
(2.1)

subject to the requirement that F(z) has no zeros in S . This simple strategy allows us
to relate residues of F(z) if zeros of F(z) do happen to arise in S , to values of the
same function as determined by the parameter a . As stated, in most of the remainder
of this work we shall, in (2.1), use F(z) = ζ (z) .

Figure 1: Showing the trajectory of 6 parabolas in the complex z-plane corresponding to 12
horizontal lines in the complex v-plane that cover the complex strip 0 � ℑ(v) � 1 in 0.1 steps,
with a = 2 .

With reference to Figure 1 where we have used a = 2, as the magnitude of a
increases, (a ∈ R , a > 0) the width of the parabolic region increases, and eventu-
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ally swallows the first known complex conjugate zero pair of ζ (z) at z = 1/2± iρ1

(ρ1 = 14.134725142 . . .) when a = ρ2
1/2 ≈ 100. In the complex v-plane, for the

case z = 1/2 + iρ1 corresponding poles appear at complex points v = ( 1
2ρ1

,0) and

v = (− 1
2ρ1

,−1) . For the associated complex conjugate zero at z = 1/2− iρ1 , the same

occurs when v = (− 1
2ρ1

,0) and v = ( 1
2ρ1

,−1) . Thus two complex poles, corresponding
to two complex zeros of ζ (z) in the z plane, are reflected in (2.1) by four complex poles
of 1/ζ (z) in the v plane and so (2.1) must be modified accordingly when a � ρ2

1/2.
This will be explored in the next section.

In the case that a ∈ ℜ , a < 0, the parabola in Figure 1 becomes its mirror image
reflected about the vertical axis, and so the parabolic region in the z-plane correspond-
ing to S in the v-plane always encloses the ‘trivial’ zeros of ζ (z) at z = −2n . In the
case that n < −a/2, the pole belonging to 1/ζ (z) at z = −2n generates two sets of
poles in the v-plane at

v− = (0, − 1
2 ± 1

2

√
1+ 2n

a ) (2.2)

and for the case n > −a/2, two similar sets of poles appear at

v+ = (± 1
2

√
−1− 2n

a , − 1
2) . (2.3)

To generalize, when a < 0, the result (2.1) must always be corrected for the presence
of singularities, if F(z) has zeros anywhere on the negative real z-axis.

In the case that a = iβ , β ∈ℜ , the family of parabolas in Figure 1 rotates, opening
upward (β > 0) or downward (β < 0). In these two cases, corrections must be made for
complex poles lying in the upper (lower) half z-plane respectively, but not in the form
of complex conjugate pairs. Specifically, for the case β > 0, as the magnitude of β
increases from zero, the parabola opens wider to envelop more (lower-lying) poles; the
final singularity in the z-plane occurs when the upward facing parabola envelopes the
first (lowest) zero of ζ (z) at z = 1/2+ iρ1 . This happens when β increases through the
value 1/(16ρ1) , yielding the last entry of a family of poles in the v-plane terminating
at the points

v1 = (2ρ1,−1) (2.4)

and
v2 = (−2ρ1,0). (2.5)

A similar result holds for the case β < 0 where the conjugate zero z = 1/2− iρ1

generates two similar points in the v-plane. Notice that in these cases, conjugate zeros
of ζ (z) can never contribute in pairs, but individually, each pole belonging to a zero
in the z-plane that does contribute, will generate two contributing poles in the v-plane.
In the general case, these observations would apply to any function F(z) that might
possess conjugate zeros in the upper and lower z half-plane.

Finally, we turn our attention to the general case a = α + iβ , and consider a variety
of cases that depend on the magnitude of α relative to β relative to the location of the
pole of F(z) in the z-plane. With reference to Figure 1, the parabolic region of interest
will be oriented off the coordinate axes, depending on the sign of α and β and their
relative magnitudes, but the vertex remains at the origin. Consider (2.1), and suppose

F(σ + iρ) = 0 . (2.6)
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There are several cases to consider.

2.1. Case 1: αρ +(σ −2α)β > 0

If the parabolic boundary of the region in the z-plane defined by some choice of
α + iβ passes through the complex point (σ ,ρ) , then two corresponding points exist
in the complex v-plane. The first, defined by (v1,R,v1,I) is given by co-ordinates

v1,R =
α
√

2X +2Y + β
√

2X −2Y
4(α2 + β 2)

(2.7)

v1,I = −1
2

+
α
√

2X −2Y −β
√

2X +2Y
4(α2 + β 2)

(2.8)

where

X =
√

(α2 + β 2)
(
(α −σ)2 +(β −ρ)2

)
(2.9)

and

Y = β 2 −α2−β ρ + ασ . (2.10)

It is worth noting that, in the real plane, these co-ordinates satisfy

v1,R
2 +(v1,I +1/2)2 =

1
4

√
(α −σ)2 +(β −ρ)2

α2 + β 2 (2.11)

and

v1,R
2− (v1,I +1/2)2 = −1

4
+

ασ
4(α2 + β 2)

+
β ρ

4(α2 + β 2)
, (2.12)

leading to

(v1,I +1/2)2 =
1
8

√
(α −σ)2 +(β −ρ)2

α2 + β 2 +
α (α −σ)+ β (β −ρ)

8(α2 + β 2)
. (2.13)

The condition that the point (v1,R,v1,I) in the complex v-plane lies inside S is that the
imaginary coordinate v1,I satisfies −1 � v1,I � 0, equivalent to the requirement that

−1 � 1
2

√
(α −σ)2 +(β −ρ)2

α2 + β 2 +
α (α −σ)+ β (β −ρ)

2(α2 + β 2)
� 1 . (2.14)

As noted, this case possesses a second solution defined by the complex point
(v2,R,v2,I) given by

v2,R = −v1,R

v2,I = −v1,I −1 (2.15)

which shares the same condition (2.14) in order that this point lies inside S .
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2.2. Case 2: αρ +(σ −2α)β < 0

In this case, the corresponding complex points (v1,R,v1,I) in the v-plane are given
by

v1,R =
α
√

2X +2Y −β
√

2X −2Y
4(α2 + β 2)

(2.16)

and

v1,I = −1
2
− α

√
2X −2Y + β

√
2X +2Y

4(α2 + β 2)
, (2.17)

both of which obey the equivalent of (2.11) and (2.12), and hence the condition (2.14)
holds in this case. The second point belonging to this case obeys (2.15)

2.3. Case 3: αρ +(σ −2α)β = 0

Solving for β we have
β = αρ/(2α −σ) (2.18)

giving, for the case α < 0, α −σ < 0

v1,R =
ρ
√

σ −α
2
√−α

√
(2a−σ)2 + ρ2

(2.19)

v1,I = −1/2+1/2

√−α (−2α + σ)
√

σ −α

α
√

(2α −σ)2 + ρ2
(2.20)

or, if α > 0, α −σ > 0

v1,R =
ρ
√

α −σ
2
√

α
√

(2a−σ)2 + ρ2
(2.21)

v1,I = −1/2+1/2
(2α −σ)

√
α −σ√

α
√

(2α −σ)2 + ρ2
(2.22)

If α > 0, σ > α we find

v1,R = ±
(2a−σ)

√
−
(
(2α −σ)2 + ρ2

)
(α −σ)

2
√

α
(
(2α −σ)2 + ρ2

) (2.23)

v1,I = −1/2∓
ρ
√
−
(
(2α −σ)2 + ρ2

)
(α −σ)

2
√

α
(
(2α −σ)2 + ρ2

) (2.24)

according as σ < 2a or σ > 2a respectively. For completeness sake, we include the
case α < 0, σ < α , which does not apply to the choice F(z) = ζ (z) since it is known
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that ζ (σ + iρ) does not possess complex zeros when σ < 0. The corresponding results
are

v1,R = ∓
(2α −σ)

√(
(2α −σ)2 + ρ2

)
(α −σ)

2
√−α

(
(2α −σ)2 + ρ2

) (2.25)

v1,I = −1/2∓
ρ
√−α

√(
(2α −σ)2 + ρ2

)
(α −σ)

2α
(
(2α −σ)2 + ρ2

) (2.26)

again, according as σ < 2a or α > σ > 2a respectively. In all these cases, a second
set of solutions exists. Each set satisfies (2.15).

3. Consequences

3.1. The case 0 < a < ρ2
1/2 , a ∈ ℜ

With the caveats given and, because we have chosen F(z) = ζ (z) and ζ (z) con-
tains no zeros in S for 0 < a < ρ2

1/2 (see Section 2), (2.1) becomes

∫ ∞

−∞

wv(v+i)

ζ (4av(v+ i)) cosh(π v)
dv =

w1/4

ζ (a)
0 � w � 1 . (3.1)

A further variation can be obtained by shifting the contour of integration in (3.1)
upwards (parallel to the real v axis). In terms of Figure (1) the associated boundary
contour in the z-plane moves to the left and opens to swallow poles belonging to both
trivial zeros on the real axis, and non-trivial zeros in the critical strip as ℑ(v) increases.

The evaluation of (3.1) during translation, is achieved by identifying residues of
known singularities at v = (k+1/2) i, z =−2n and z = τ , encountered as the contour
progresses through the upper half of the v-plane. Noting that the integral itself vanishes
on the boundary ℑ(v) → ∞ , we find, for 0 � w � 1 , the sum rule [3]

∑
τ�τM

wτ/4a

√−a+ τ ζ ′(τ)sinh
(π
√−1+ τ/a

2

) = −2
√

aw1/4

π ζ (a)
+ S1 + S2

(3.2)

where

S1 ≡
∞

∑
n=1

w−n/2a

√
a+2nζ ′(−2n)sin

(π
√

1+2n/a

2

) (3.3)

S2 ≡−4
√

a
π

∞

∑
k=1

(−1)k w1/4−k2

ζ (a(1−4k2))
(3.4)

and we reiterate that ∑
τ�τM

represents the sum over all specified values of τm for which

ζ (τm) = 0 with m � M and for the moment we take M = 1 (see subsection 3.2). Each
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of the three summations in (3.2) corresponds to the sum over the named residues at-
tached to each set of poles with indices labelled corresponding to the discussion above.

3.2. Case a > ρ2
M/2 , a ∈ ℜ

As indicated in Section 2, if ρ2
2 > 2a > ρ2

1 the bounding parabola in the z-plane
encloses the pole of ζ (ρ1) , thereby generating a pole in the region S and violating
the premise of (2.1). To compensate, the residue of each such pole must be added to
the right-hand side of (3.1); similarly, if ρ2

M+1 > 2, a > ρ2
M , (where M labels a non-

trivial zero of ζ according to the order in which they will encounter the parabola in
the z-plane as a increases in magnitude), then the sum of the residues of all M poles
encountered must be added to the right-hand side of (3.1) in the form of a finite sum of
M terms equivalent to the left-hand side of (3.2). When the integration contour is moved
upwards according to the derivation of (3.2) new residues are encountered, such that a
sum over all non-trivial zeros in (3.2) effectively only includes contributions from zeros
lying outside the parabola. These contributions in turn, are dictated by the magnitude
of the parameter a ; this is indicated by setting M > 1 appropriately in (3.2).

3.3. Exceptional cases with a > 0

Examination of (3.3) indicates that scattered terms of the sum diverge when

1+2n/a = 4h2 ; (3.5)

similarly, scattered terms of (3.4) diverge when

a(4k2−1) = 2 j (3.6)

where h and j are positive integers. Both these Diophantine conditions are simultane-
ously fulfilled when a > 0 is of the form

ap,q =
2 p

4q2−1
. (3.7)

where p and q are positive integers. Specific diverging terms occur when the indices
n and k obey

n = j

k = h−1. (3.8)

Taking the limit a → ap,q shows that the nth indexed exceptional term of (3.3)
diverges as

w(− n
2a )

√
a+2nζ ′(−2n)sin

(π
√

1+2n/a

2

)
≈− 2(−1)h a(3/2) w(− n

2a )

nζ ′(−2n)π (a−ap,q)
− (−1)h w(− n

2a ) ln(w)√
aπ ζ ′(−2n)

− 1
4

(−1)h (a+3n)w(− n
2a )

√
anh2 π ζ ′(−2n)

(3.9)
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and the kth indexed exceptional term of (3.4), diverges as

4
√

a(−1)k

π w( (2k+3)(2k+1)
4 ) ζ (−a(2k+3)(2k+1))

≈−2(−1)(k) a(3/2)w(− j
2a )

jπ ζ ′(−2 j)(a−ap,q)
−

√
a(−1)k w(− j

2a )

jπ ζ ′(−2 j)

−2ζ ′′(−2 j)
√

a(−1)k w(− j
2a )

π ζ ′(−2 j)2

(3.10)

Following (3.8), we identify the index n of (3.9) with the parameter j of (3.10),
and the index k of (3.10) with the parameter h−1 of (3.9), and discover that divergent
terms of two different sums cancel pairwise and corresponding terms of the two sums
reduce to the 0th order (non-divergent) term(s) given in the respective equations (3.9)
and (3.10) whenever the corresponding summation index in either sum satisfies (3.5) or
(3.6). The general form of (3.2) is fairly lengthy in this case, but can be written with
recourse to (3.9) and (3.10). This is left as an exercise for the reader.

As an example, in the case a → ap,q = 2/35 ( p = 1, q = 3), divergent terms in
the sum (3.3) are indexed by n = 1,33,37,117 . . . and the corresponding cancelling
divergent terms of the sum (3.4) are indexed by k = 2,16,17,31 . . .. In terms of the
geometry of Figure (1), this case arises for special values of a (see (3.7)) when, first of
all, poles of 1/ζ (z) belonging to z =−2n and poles of 1/cosh(πv) at v = (2k+1) i/2
simultaneously lie on the integration contour in the v-plane. The residue singularity
becomes a dipole as the integration contour is shifted upward (see the derivation of
(3.2)) whenever these two poles occasionally coalesce, and the corresponding scattered
divergences in (3.2) reflect this eventuality.

A further solution of (3.5) and (3.6) exists when a = 2m , m = 1,2, . . . . A careful
derivation of this case following the above analysis by evaluating the limits as a → 2m
yields the results (3.9) and (3.10) with a → 2m except that divergent terms in both
results are each multiplied by a factor of two; they still cancel pairwise. For the sake of
brevity, we give here the sum rule corresponding to (3.2) when a = 2m and w = 1:

∑
τ

1
√−2m+ τ ζ ′(τ)sinh

(π
2

√−1+ τ/2m
)

=
1√
2

∑ ′

n=1

1

√
m+nζ ′(−2n)sin

(π
√

1+n/m

2

)
− π

8

√
2m ∑

n=1

� (−1)h (−1+12h2)
nh2 ζ ′(−2n)

−
√

2m
π

∞

∑
k=0

(−1)k

ζ ′(−2 j)

[1
j
+

2ζ ′ ′(−2 j)
ζ ′(−2 j)

]
− 2

√
2m

π ζ (2m)

(3.11)
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where ∑ ′

n=1

means that the summation index n excludes all instances in which n =

m(4h2−1) and ∑
n=1

� sums over all so-excluded values of n . In the final sum, the variable

j is defined by j = m(2k+3)(2k+1) = m(4(k+1)2−1) in terms of the summation
index k .

3.4. Case a < 0

In the case a < 0, the bounding parabola of Figure 1 opens to the left, and thereby
S always encloses all the poles of 1/ζ (−2n) . Therefore, the derivation conditions
of (3.1) are not satisfied, and (3.1) must be modified by adding all the poles that, in
this case reside in S , to the right-hand side (see Section 2). When this is done, (3.1)
becomes

∫ ∞

−∞

wv2+i v

ζ (4av(v+ i))cosh(π v)
dv

=
π
2

∞

∑
n=
−a/2�

w(−n/2a)

ζ ′(−2n)
√−a2−2ansinh

(π
√−a2−2an

2a

)
−π

2

�−a/2
∑
n=1

w(−n/2a)

ζ ′(−2n)
√

a2 +2ansin
(π

√
a2 +2an
2a

)+
w1/4

ζ (a)
, a < 0, a �= −1,−2, · · ·,

(3.12)
where �.. and 
..� signify the f loor and ceiling operators respectively. In the case
a = −2m,m = 1,2, . . . , the limiting variation becomes

∫ ∞

−∞

wv2+i v

ζ (−8mv(v+ i))cosh(π v)
dv

= −1
8

w1/4 ln(w)
mζ ′(−2m)

+
1
48

π2 w1/4

mζ ′(−2m)
− 1

2
w1/4 ζ ′ ′(−2m)

ζ ′(−2m)2

− π
4
√

m

∞

∑
n=0

w(n+1+m)/(4m)

√
n+1ζ ′(−2n−2m−2)sinh

(π
√

1+n
2
√

m

)
+

π
4

m−1

∑
n=1

wn/(4m)

ζ ′(−2n)
√

m2 −mnsin
(π

2

√
1−n/m

) .

(3.13)

If the integration contour in (3.13) is shifted upwards and parallel to the real v-axis,
the left-opening parabola in the z-plane shifts to the right and opens rapidly, thereby
enveloping any poles that are not already included. At v → v+ i∞ , contributions from
the integral vanish, leaving a sum of contributions from the specified poles. After eval-
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uating the corresponding residues, we are left with the sum rule

1√
2m

∑
τ

exp(−τ ln(w)/8m)

ζ ′(τ)
√

2m+ τ sin
(π

2

√
1+ τ/2m

)
= − π

24m
w1/4

ζ ′(−2m)
+

1
2
√

m

∞

∑
n=0

w(n+m+1)/(4m)

√
n+1ζ ′(−2n−2m−2)sinh

(π
√

n+1
2
√

m

)
−1

2

m−1

∑
n=1

wn/4m

ζ ′(−2n)
√

m2−mnsin
(π

2

√
1−n/m

)+
1
4

w1/4 ln(w)
πmζ ′(−2m)

+
w1/4ζ ′′(−2m)
πζ ′(−2m)2

+
4
π

∞

∑
k=0

(−1)k w−(2k+3)(2k+1)/4

ζ (2m(2k+3)(2k+1))
.

(3.14)

3.5. Case a = iβ , β > 0

In this case, the parabola in the z-plane opens upwards and envelopes all zeros of
ζ (z) at z = σ + iρ for all values of β > 1/(16ρM) (assuming σ = 1/2). However, all
zeros that lead to poles belonging to ℑ(τ) � 0 are excluded. This leaves the following
identity, valid for w � 1:

∫ ∞

−∞

wv(v+i)

ζ (4 iβ v(v+ i))cosh(π v)
dv

=
w1/4

ζ (iβ )
+

π
2
√

iβ ∑
ℑ(τ)>ρM

wτ/4 iβ√
τ − iβ ζ ′(τ)sinh

(π
2

√
−iτ/β −1

)
(3.15)

In the case that β < 1/(16ρM) (again, assuming σ = 1/2) corresponding to the
Mth zero (in ordered magnitude) of ζ (z) then all poles ℑ(τ) < ℑ(τM) must be ex-
cluded from the sum. Numerically, for large values of ρM , this is almost impossible
to detect because for correspondingly small values of β , the contribution of the sum
over τ is negligible. Also, the utility of (3.15) is limited, since any attempt to translate
the integration contour and transform the integration into a sum as done previously,
fails because the series S2 defined in (3.4) does not converge unless w > 1. Similar
considerations apply to the case β < 0.

3.6. Case a = α + iβ , α < 0 , β > 0

In the case of complex a = α + iβ , α < 0, β > 0, the bounding parabola of Figure
1, which originally opened to the left for α < 0, β = 0 (see above), rotates clockwise
about the origin as β increases, thereby truncating the infinite sum appearing in (3.12).
At the same time, it quickly encloses poles belonging to non-trivial zeros of ζ (z) ,
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yielding the following result,

∫ ∞

−∞

1
ζ (4av(v+ i))cosh(π v)

dv

=
1

ζ (a)
− π

2

N

∑
n=1

1

ζ ′(−2n)
√

a2 +2ansin

(
π
√

a2 +2an
2a

)

− π
2
√

a ∑
ℑ(τM− )�ℑ(τ)�ℑ(τM+)

1

√−a+ τ ζ ′(τ)sinh

(
π
√−a(a− τ)

2a

)

(3.16)

where

β �= −α
√−(4α +2L)α

2α +L
, (3.17)

L being a positive integer,

N =

⌊
−2α |a|2

β 2

⌋
, (3.18)

and the sum extends over values of τ labelling ζ (τ) = 0 that are interior to the parabola
for particular values of α and β bounded by ℑ(τM±) – see below. In the case that
(3.17) is false, the integral diverges and must be interpreted in the sense of a principal
value. In that case, (3.16) reduces to an identity between the residue of the integral
on the left, and a corresponding term on the right belonging to the residue of the pole
through which the contour of integration passes, related via the functional equation. For
example, if α = −1/2, β = −1/2, L = 2, the exceptional case reduces to

ζ (5) =
4
3

π4 ζ ′(−4) (3.19)

which can be independently obtained by once-differentiating the functional equation
for ζ (z) and evaluating the limit z → 5.

From Section 2, and assuming that all zeros lie on the critical line [11], these
limiting values of the τ sum in (3.16) are bounded by

τM± =
1
2

β (4 |a|2 + α)
α2 ± |a|2

√
4β 2 +2α
α2 (3.20)

As an example, for particular, carefully chosen values of α and β , both sums in
(3.16) will contain only one term, leading to interesting results such as, for the case
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α = −1/2, β = 1:

∫ ∞

−∞

1
ζ ((−2+4 i)v(v+ i))cosh(π v)

dv

=
1

ζ (i−1/2)
− 4π3

ζ (3)
√

4 i−7sin
(
( 1

10 + i
5)π

√−7+4 i
)

+
2π

√
2−4i+4τ1 ζ ′(τ1)sinh

(
(1/5+2 i/5)π

√
(1/2−i)(−1/2+i−τ1)

)√−2+4 i

(3.21)

where we have used the identity (1.5). We note that most of the numerical value of
the integrand is contained in the range 0 < v � 1 for this combination of α and β
which corresponds to the second quadrant of the z-plane bounded by −7 < ℜ(z) < 0
and 0 < ℑ(z) < 2. Thus the general result (3.16) defines a numerical relationship
between numerically dominant values of ζ (z) in one part of the complex z-plane and
zeros that appear elsewhere, without recourse to the functional equation. As previously
noted, it is possible to shift the integration contour parallel to the real v axis upwards
to infinity where the integral vanishes, adding terms corresponding to the residues of
poles encountered during transit. The result is the same as (3.2), except that the τ sum
extends over all zeros of ζ (τ) including ℑ(τ) < 0.

3.7. General case a = α + iβ

The above considerations lead to interest in the general case a = α + iβ , where,
for the remainder of this section, unless stated otherwise, we take α,β > 0. In this
case, the illustrative parabola shown in Fig. 1 will be skewed to the right or left, but
will open upward, and, depending on the relative magnitude of α and β , it may or
may not enclose poles of 1/ζ (z) . In general, the result (3.15) will apply, with the
replacement iβ → α + iβ , and the value of the parameter M which labels those poles
that are enclosed by the parabola must be determined by reference to Section 2. In
the following sections several examples will be given. Since the parameter α does not
vanish, when the integration contour of (3.15) is translated upwards to infinity in the v-
plane, the resulting series (3.4) now converges when w = 1. In addition, this translation
will envelop upper half-plane poles that were previously not enclosed, so that when
the residues are calculated, the resulting expressions will contain a sum over all poles
belonging to zeros of ζ (z) with the exception of those that were previously omitted.
Effectively this results in a term that cancels the extra (limited) sum that appears in
(3.15), and the sum rule is the same as (3.2), with the proviso that a is replaced by
α + iβ . In the case α > 0,β < 0 similar comments apply, except that the parabola
opens downward and to the right. In the end, the general result (3.2) applies; (3.15)
also follows except that the summation constraint ℑ(τ) > 0 becomes ℑ(τ) < ρM .
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4. Examples

In the following, we shall apply the principles enunciated above to a number of
different choices of function F(z) . To maintain clarity, the left-hand side of all results
represents contributions from singularities encountered when the integration contour is
translated to +i∞ parallel to the real v-axis, except where they may add to or cancel
contributions from poles already included in the right-hand side. Such occurrences will
be discussed in the text as they may appear. The right-hand side represents singularities
contributed by poles that originally resided in S .

4.1. Case a = 1/2+ iρm

With the knowledge that many points corresponding to ζ (τm) = 0 lie on the crit-
ical line [11], consider the case that the parameter a ≈ τm where τm = 1/2+ iρm , the
mth non-trivial zero of ζ (z) . First of all, we find that, for this case, a large number of
poles 1/ζ (τ) referenced in (3.1) are enclosed by the parabolic region in the z plane
(see Section 2), so an additional sum corresponding to the residues of such terms (re-
siding in S), must be added to (3.1) (similar to (3.12)). Specifically, and to maintain
simplicity by letting w = 1, we have, with a ≈ τm

∫ ∞

−∞

1
ζ (4av(v+ i))cosh(π v)

dv

= 1/ζ (a)+
π
2

τM

∑
ℑ(τ)>0

1√−a(a− τ)ζ ′(τ)sinh
(π
√−a(a− τ)

2a

)

(4.1)

where the summation index τ = σ + iρ extends over all zeros of ζ (τ) such that ρ > 0
and ℑ(τM) < ℑ(z) . In the case of equality (viz. a = 1/2+ iρ1 ), with τM = 1/2+ iρM

it turns out that ρM < 45,268, defined by the intersection of the integration contour
in the z-plane and the line ℜ(z) = 1

2 , corresponding to M = 56,791. Notice that the
bounding curves of the parabolic region in the z-plane enclose the poles in the opposite
direction to that in which poles are enclosed in S , hence the sign of the summation
term in (4.1). In the general case of equality, that is am ≡ τm = σm + iρm a limiting
cancellation exists between the first term on the right of (4.1) and the corresponding
term of the sum belonging to τ = τm . The result, again setting w = 1 for simplicity is

∫ ∞

−∞

1
ζ (4τm v(v+ i))cosh(π v)

dv

= − 1
24

π2 ζ ′(τm)+12ζ ′′(τm)τm

τm ζ ′(τm)2

+
π
2

τM

∑
ℑ(τ)>0

′ 1√−τm (τm − τ)ζ ′(τ)sinh
(π
√−τm (τm − τ)

2τm

)

(4.2)
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where the summation omits the index τ = τm , indicated by the ′ symbol. Seen another
way, the limiting cancellation of divergent terms to yield (4.2) corresponds to the coa-
lescence of two poles, one belonging to 1/cosh(π v) , the second to 1/ζ (z) , generating
a dipole at v = −i/2 inside S , when a = τm .

As in the previous sections, the contour on the left-hand side of (4.2) can be moved
upwards in the complex v-plane, and the residues of the poles encountered as it does so
must be added to the left-hand side. It turns out that the corresponding contour in the
z-plane now encloses poles belonging to complex conjugate zeros ζ (τ) as well as the
corresponding sums that have been seen previously. Hence a new sum including such
terms must be added to (4.2). Of interest, a lack of symmetry means that the limiting
index of the sums belonging to ζ (τ) and ζ (τ ) will differ, as the contour moves up the
imaginary v-axis. For example, for the case a = τ1 , when the contour reaches v = 15i
the upper limit M in (4.2) is approximately 7× 109 whereas the upper limit in the
corresponding sum containing residues belonging to ζ (τ ) is 14,438. Of course, when
the countour has been translated to infinity, the integral vanishes, and the corresponding
sums develop infinite limits. The final result is

∞

∑
ℑ(τ)>0

′
(

1

√−τm + τ ζ ′(τ)sinh
(1

2
π
√−τm (τm − τ)

τm

) +{τ → τ}
)

=
4
√

τm

π

∞

∑
k=0

(−1)k

ζ (−τm (2k+3)(2k+1))
+

∞

∑
n=1

1
√

τm +2nζ ′(−2n)sin

(
π
√

τm +2n
2
√

τm

)
− 1

√−τm+τm ζ ′(τm)sinh

(
π
√−τm (τm−τm)

2τm

)+
1
12

π
ζ ′(τm)

√
τm

+
√

τm ζ ′′(τm)
π ζ ′(τm)2

(4.3)
A few comments are relevant to (4.3). The sum on the left-hand side extends over
all indices τ labelling ζ (τ) = 0 except for the element τ = τm . In that case, the
singularity belonging to ℑ(τm) > 0 is cancelled as in (4.2) and the cancellation terms
have been written explicitly on the right. Since there is no singularity belonging to
ℑ(τm) ≡ ℑ(τm) < 0, that term has been removed from the sum and also explicitly
included on the right-hand side of (4.3). In that manner the sum on the left-hand side can
be written symmetrically, omitting only the index τ = τm , indicated by the ′ symbol.

A numerical study of this sum is interesting. For large values of ρ , it can be shown
that

T̂(τm,τ) ≡ 1

√−τm + τ sinh
(1

2
π
√−τm(τm − τ)

τm

) ≈
√

2(1− i)exp(−(c1 − ic2)π
√ρ)√ρ

(4.4)
and

T̂(τm, τ) ≈
√

2(1+ i) exp((c2 + ic1)π√ρ)√ρ
(4.5)
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where

c1 =
1
2

1+2z2
2 ρm

z2 (−z2
2 +2ρm)2

c2 =
1
2

1
(−z2

2 +2ρm)z2
(4.6)

z2 =

√√
4ρm

2 +1+2ρm

Figure 2: Fractional error in the Real (dotted) and Imaginary (solid) parts of the first 400,000
terms of the partial sum defined by the left-hand side of (4.3) for the case m = 1 .

Using ρm = ρ1 = 14.134725142, we find c1 = 0.418 and c2 =−0.00738, which
leads to reasonably quick convergence of the first terms inside the summation on the
left-hand side of (4.3). However, the conjugate term in this same sum is extraordinarily
slow to converge. Note that these observations do not include the effect of the denom-
inator function ζ ′(τ) in (4.3) whose absolute value more-or-less increases slowly with
ρ . Under the assumption that the zeros labelled by τ are to be found only on the critical
line [11], we have investigated the veracity of (4.3) for the case m = 1 courtesy of the
Mathematica [12] supplied database ZetaZero[. . . ] , finding, with default arithmetic
precision, that the series on the left shows signs of convergence when 400,000 terms
are included in the sum (see Figure 2). Similarly, if the integral on the left-hand side
of (4.1) is evaluated numerically for small values of upwards translation in the com-
plex v-plane, the sums labelled by k and n indices in (4.3) are also truncated because
the bounding contour in the z plane cuts the ℑ(v) = 0 axis. This has been verified
numerically for a small number of upward translations with 0 � ℑ(v) � 15i .
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4.2. Interesting variations

A number of interesting variations immediately arise from the foregoing. Consider
the case a = 1/2, and re-evaluate the left hand side of (3.2) by breaking it into its real
and imaginary parts. For the remainder of this subsection, we shall use τ = 1/2+ iρ ;
thus at a zero, τ0 = 1/2+ iρ0 and we also refer to [13] for the following

ζ (τ) = e−iφ(ρ)Z(ρ) (4.7)

and to [14] for
ζ (τ) = ζR(τ)+ iζI(τ) (4.8)

giving
φ(ρ) = −arctan(ζI(τ)/ζR(τ))± kπ . (4.9)

where k = 0,1, . . . and the equivalence between the two representations can be verified
by straightforward, but tedious calculation. It has been shown [14, Eq. (147)] that

ℜ(ζ ′(τ0))
ℑ(ζ ′(τ0))

=
N(ρ0)
DR(ρ0)

. (4.10)

where N(ρ) , DR(ρ) and various related symbols are defined in the Appendix. Define
T (a,τ) , a representative single term in the sum over zeros appearing in (3.2).

T (a,τ) ≡ 1

√−a+ τ ζ ′(τ)sinh
(π
√−a(a− τ)

2a

) +{τ → (τ)} (4.11)

After arduous calculation, using Maple [15], we arrive at

T (1/2,τ0) = 2
√

2ℜ(ζ ′(τ0))((U(ρ0)+1)cos(
π √ρ0

2 )sinh(
π√ρ0

2 )+(U(ρ0)−1)sin(
π √ρ0

2 )cosh(
π √ρ0

2 ))√ρ0 (cosh(π √ρ0)−cos(π√ρ0)) |ζ ′(τ0)|2
(4.12)

where in general

U(ρ) ≡cot
(
− 1

2
arg
(

Γ
(1

2
+ iρ

))
+

1
2

ρ ln(2π)+
1
2

arctan
(
tanh

(π ρ
2

)))
(4.13)

=cot(arg(ζ (1/2+ iρ)) . (4.14)

The second equality in the above ((4.14)) derives from [16, Eq. (4.5)]. Consistently,
reiterating that we are using the common assumption that ζ ′(z) does not vanish any-
where on the critical line, (it has been proven [17, Theorem 10.1] that ζ ′(z) �= 0 on
the perforated critical line), a potential inconsistency arises if U(ρ0) in (4.12) were to
diverge (equivalently arg(ζ (1/2+ iρ0)) = π ), since the right-hand side of (3.2) is finite
for a = 1/2 and the left-hand side would diverge. In [16, Eq. (4.29)] it was shown that
ζ (1/2+ iρ) = 0 is defined by the requirement that

arg(ζ (1/2+ iρ))−arg(ζ ′(1/2+ iρ)) =
π
2

(4.15)

Thus (4.15) predicts that if arg(ζ (τ0)) = π , then arg(ζ ′(τ0)) = π/2, which in turn
implies that ℜ(ζ ′(τ0)) = 0, thereby cancelling the hypothetical divergence. As well,
ℑ(ζ ′(τ0)) �= 0 for the same reason, and therefore |ζ ′(τ0)|2 �= 0. However, a scan of
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the first 10,000 zeros found no instances where this combination of values happened to
occur.

This is consistent with our use of the hypothesis that the zeros of ζ (1/2+ iρ) are
simple and, self-consistently, suggests the negative converse of Titchmarsh’s proposi-
tion quoted in [13, Proposition 10]: “If ζ ′(1/2+ iρ) = 0, then ζ (1/2+ iρ) = 0.” That
is: If ζ (1/2+ iρ) = 0 , then ζ ′(1/2+ iρ) �= 0.

Finally, considering the asymptotic properties of (4.12), it can be shown that for
ρ → ∞ ,

lim
ρ→∞

T( 1
2 , 1

2 + iρ0)

∼
√

2exp(−π
√

ρ/2)

2
√ρ ℜ

(
ζ ′
(1

2
+ iρ

))(− sin
(
−ρ ln

( 4π√
1+4ρ2

)
− π√ρ

2
−ρ +

1
2

arctan(2ρ)
)

+cos
(
−ρ ln

( 4π√
1+4ρ2

)
−π√ρ

2
−ρ+

1
2

arctan(2ρ)
)
−sin

(π√ρ
2

)
+cos

(π√ρ
2

))
(4.16)

which places a not-very-strong constraint on the asymptotic limit of ℜ(ζ ′(1/2+ iρ))
as ρ → ∞ , since the sum (3.2) must converge (under the weaker requirement that the
asymptotic limit of ζ (2ρ2) < exp(π ρ)/ρ implied in the derivation of (3.2)).

4.3. Ratios of ζ

Since the functional equation and other well-known results in the literature define
relationships between ratios of ζ functions of different argument, it is interesting to
explore (1.4) in this case. In (1.4) set

F(z) = ζ (4bv(v+ i))/ζ (4av(v+ i)) (4.17)

and for simplicity, let w = 1 and (a,b) > 0,∈ ℜ . Following the approach discussed in
the previous section, after translating the contour integral to infinity where it vanishes
for b < a , and evaluating the residues of the poles so-enclosed we find

∞

∑
k=0

ζ (−bK)(−1)k

ζ (−aK)
− π

4

∞

∑
n=1

ζ (−2bn/a)

ζ ′(−2n)
√−a2−2ansinh

(π
√−a2−2an

2a

)
=

π
4

1
√−b2 +bζ

(a
b

)
sinh

(π
√−b2 +b

2b

)
+

π
4 ∑

τ

ζ (bτ/a)

ζ ′(τ)
√−a2 +aτ sinh

(π
√−a2 +aτ

2a

) +
1
2

ζ (b)
ζ (a)

(4.18)

where
K = (2k+3)(2k+1) = 4(k+1)2−1 (4.19)
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and both sums on the left-hand side converge only if b < a . In the case that b = 2m ,
a positive even integer, the first sum on the left-hand side of (4.18) vanishes except for
the special case a = 2 j where j = m+1, . . . . In that case, a limiting process occurs in
both sums on the left-hand side of (4.18), the first occuring between the numerator and
denominator of the k sum, the second occuring when the summation index n equals
the special value n = jK , with K defined by (4.19). The result is

− 4
π

∞

∑
k=0

ζ ′(−2mK)(−1)k

ζ ′(−2m jK)
− 1

2

∞

∑
n=1

′ ζ (−2mn/ j)√
1+n/ j ζ ′(−2n)sin

( π
2

√
1+n/ j

)
− 4m

π

∞

∑
k=0

(−1)k ζ ′(−2mK)
ζ ′(−2K j)

= − 1
2 ∑

τ

ζ (mτ/ j)

ζ ′(τ)
√−1+ τ/(2 j)sinh

( π
2

√−1+ τ/(2 j)
)

+
1
2

j
√

2
√

m
√

2m−1sin
(1

2
π
√

1−1/(2m)
)

ζ ( j/m)
− 2 jζ (2m)

π ζ (2 j)

(4.20)
where ∑′ signifies that all terms satisfying 1+n/ j = 4h2 , with h = 1, . . . are omitted.
The limiting form of these terms is specifically represented by the third sum on the left
of (4.20). We note that from a numerical point of view, the two sums indexed by k on
the left of (4.20) contribute only a small amount to the sum, and that the second sum on
the left of this result contains scattered zero elements when mod(n, j) = 0. Further, the
k > 0 elements of both sums indexed by k on the left of (4.20) are, for various choices
of j and m , at least 25 orders of magnitude smaller than the k = 0 terms. This, to an
excellent degree of approximation, allows us to re-write the left-hand side of (4.20) in
the simplified form

−
4(−1)m

(
(2π)(6m j) (−1)(m j)

ζ (6m j +1)Γ(6m j +1)
+

m(−1) j (2π)(6 j)

ζ (6 j +1)Γ(6 j +1)

)
ζ (6m+1)Γ(6m+1)

π (2π)(6m)

−1
2

∞

∑
n=1

′ ζ (−2mn/ j)√
1+n/ j ζ ′(−2n)sin

( π
2

√
1+n/ j

)
(4.21)

Any attempt to evaluate the limit b→ a in (4.18) leads to a complicated difference
limit of diverging sums on the left-hand side (with a known result obtainable by setting
F(z) = 1 in (1.4)). However, by comparing the coefficients of the first order expansion
of each of the terms in this limit, a new, interesting sum emerges:



46 M. L. GLASSER AND M. MILGRAM

∞

∑
k=0

K ζ ′(−aK)(−1)k

ζ (−aK)
− π

2a

∞

∑
n=1

n
√−a2−2ansinh

(π
√−a2−2an

2a

)
= −1

2
ζ ′(a)
ζ (a)

+
1
4

π√−a(−1+a)asinh
(π

√−a2 +a
2a

)
− π

4a ∑
τ

τ
√−a2 +aτ sinh

(π
√−a2 +aτ

2a

)

(4.22)

valid for a < 0. From the properties of the ζ function, it is possible to show that for
large values of k with a < 0, the terms of the first sum on the left-hand side of (4.22)
asymptotically are approximated by

K ζ ′(−aK)
ζ (−aK))

≈− ln(2K)
2(−aK) (4.23)

so the corresponding series in (4.22) converges. Notice that neither the term involving
the sum over zeros of ζ (τ) nor the sum over the index n in (4.22) involve ζ (τ) or any
of its derivatives, in contrast to previous results. In the case that a = −1/K where K
labels one index of the first sum in (4.22), a limit exists between the divergent term and
the second term on the right of that equation. For example, in the case a = −1/3, we
find

∑
τ

τ
√−3τ −1sinh

(π
√−3τ −1

2

)
= − 4

9π

∞

∑
k=1

K ζ ′(K/3)(−1)k

ζ (K/3)
+2

∞

∑
n=1

n
√

6n−1sinh
(π

√
6n−1
2

)
+

4
9π

(39
16

−3γ
)
− 2

9
ζ ′(−1/3)
π ζ (−1/3)

.

(4.24)

As well, the first sum in (4.22) can be written in the interesting form
∞

∑
k=0

K ζ ′(−aK)(−1)k

ζ (−aK)
=

∂
∂a

ln

(
∞

∏
k=0

ζ (−a(4k+1)(4k+3))
ζ (−a(4k+3)(4k+5))

)
(4.25)

4.4. Derivative families of sum rules

From (3.1), new families of sum rules can be obtained. After the change of vari-
ables v = i t in (3.1), translate the resulting integration contour to the right by a small
amount δ , and, provided that the integrand contains no singularities for 0 � δ , the
value of the integral does not change and we have∫ i∞

−i∞

w(−4a (t+δ )(t+δ−1))

ζ (−4a(t + δ )(t + δ −1))cos(π (t + δ ))
dt =

iwa

ζ (a)
(4.26)
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or, equivalently

d
dδ

∫ i∞

−i∞

w(−4a (t+δ )(t+δ−1))

ζ (−4a(t + δ )(t + δ −1))cos(π (t + δ ))
dt = 0 . (4.27)

To zero’th order in δ as δ → 0 after setting w = 1, (and equivalent to integration
by parts), we find, for ℜ(a) > 0, the identity

∫ ∞

−∞

sinh(π v)
ζ (−4 iav(iv−1))cosh(π v)2 dv =

4 ia
π

∫ ∞

−∞

(2 iv−1)ζ ′(−4 iav(iv−1))
cosh(π v)ζ (−4 iav(iv−1))2 dv.

(4.28)
Unfortunately, the kernels in both integrals in (4.28) do not satisfy the requirements for
a new master equation of the type (1.4), (see [1, Eq. (2.5)] ), so neither can be evaluated
in analogy to (1.4). However, by translating the integration contour of both integrals
parallel to the real v axis to ℑ(v) = ∞ as in the previous sections, and evaluating the
residues of the poles encountered along the way, we find a new relationship among the
zeros of the ζ function:

∑
τ

1
2

coth
(π

√−a+ τ
2
√

a

)
+

√
a

π
√−a+ τ

ζ ′(τ)sinh
(π

√−a+ τ
2
√

a

)
(a− τ)

=
4a
π2

∞

∑
k=0

(−1)k ζ ′(−aK)
ζ (−aK)2 − 2aζ ′(a)

π2 ζ (a)2 +
∞

∑
n=1

√
a

2π
√

a+2n
+

1
4

cot
(π

√
a+2n

2
√

a

)
ζ ′(−2n)sin

(π
√

a+2n
2
√

a

)
(a+2n)

.

(4.29)

4.5. Application of the functional equation

Following the motivation of (4.17) for a > 0, we choose

F(z) = ζ (4av(v+ i))/ζ (1−4av(v+ i)) (4.30)

and, making allowance for singularities existing in S we obtain

∫ ∞

−∞

w(v(v+i)) ζ (4av(v+ i))
ζ (1−4av(v+ i))cosh(π v)

dv

=
w(1/4) ζ (a)
ζ (1−a)

− π w(1/4a)

√−a2 +asinh
(π

√−a2 +a
2a

)
− π

2

N

∑
n=1

w( 2n+1
4a ) ζ (2n+1)

ζ ′(−2n)
√−a2 +2an+asinh

(π
√−a2 +2an+a

2a

) .

(4.31)
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The result (4.31) is valid for a > 0, a ∈R with N → ∞ . In the case that a ∈ C the
value of N must be chosen as discussed in previous sections to include only those poles
lying in S for particular values of a . Notice that all residues attached to zeros of the
term ζ (1− 4av(v + i)) in the denominator of (4.31) are respectively proportional to
ζ (1− τ) and therefore vanish. Applying the functional equation for zeta functions to
(4.31) and employing well-known duplication and inversion formula for Γ functions,
eventually yields

∫ ∞

−∞

w(v(v+i)) (2π)(4av(v+i))

cos(2π av(v+ i))Γ(4av(v+ i))cosh(π v)
dv

=
w(1/4) (2π)a

cos
(π a

2

)
Γ(a)

−2π
N

∑
n=0

(−1)n w( 2n+1
4a ) (2π)(2n)

Γ(2n+1)
√−a2 +2an+asinh

(π
√−a2 +2an+a

2a

) ,

(4.32)
from which all reference to ζ (τ) has vanished. We note that the integrand of (4.32)
obeys (1.2), and therefore exists as a master kernel in its own right, in analogy to (1.4),
from which (4.32) could have been otherwise obtained. In contrast to previous sections,
the integrands of both integrals in (4.31) and (4.32) diverge as the integration contour
is translated to i∞ , which precludes the possibility of replacing the integrals by a sum
over the residues that may have been encountered.

4.6. Application of alternate master equations

As stated in section 1, any integral with infinite limits, whose integrand obeys
(1.2) and has appropriate asymptotic properties, can be analytically evaluated using
the analogue of (1.4), provided the residues of poles residing in S are added to the
right-hand side. In this example, we shall use

F(z) =
1

ζ (a(v+ i))ζ (−av)
(4.33)

in (2.1), set w = 1, assume a = α + iβ where necessary, and, with the requirement that
β �= 0 we obtain

∫ ∞

−∞

1
ζ (a(v+ i))ζ (−av)cosh(π v)

dv

=
1

ζ
( ia

2

)2 +
2 iπ
a

N

∑
n=1

1

ζ ′(−2n)ζ (ia+2n)cosh
(2π n

a

)
+

2 iπ
a ∑

ℑ(τ)>0

1
ζ ′(τ)ζ (ia− τ)cosh(π τ/a)

.

(4.34)

The terms appearing on the right-hand side of (4.34) follow in exact analogy to
similar terms appearing in previous examples. The first term corresponds to the residue
of 1/cosh(πv) as it appears in (1.4), the second sum is limited by the upper index N to



UNCOVERING FUNCTIONAL RELATIONSHIPS AT ZEROS 49

any residues belonging to the trivial zeros ζ (−2n) that may reside in S in the case that
β > 0 and the last term corresponds to similar residues that may need to be included in
the case β < 0. As an example, in the case a = 1−4i we find∫ ∞

−∞

1
ζ ((1−4 i)(v+ i))ζ ((−1+4 i)v)cosh(π v)

dv

=
1

ζ (2+ i/2)
2 +

2π (−4+ i)/17
ζ ′(1/2+ iρ1)ζ (7/2+ i− iρ1)cosh((1/34+2 i/17)π (1+2 iρ1))

.

(4.35)
Again, following the procedure used in previous sections, we translate the integration
contour to v = i∞ , adding residues of poles encountered, and after some re-arrangement,
eventually arrive at the sum rule

∑
τ

1
ζ ′(τ)ζ (ia− τ)cosh(π τ/a)

= −
∞

∑
n=1

1

ζ ′(−2n)ζ (ia+2n)cosh
(2π n

a

)
− ia

π

∞

∑
k=0

(−1)k

ζ (iak+3 ia/2)ζ (−iak− ia/2)
+

ia
2π ζ (ia/2)2 .

(4.36)

It is worth noting that for small values of α and β , the three component terms of
the right-hand side of (4.36) undergo severe numerical cancellation of significant digits,
and the left-hand side typically needs only one term to yield numerical equality to
several digits. As examples, we have, after some manipulation involving the functional
equation for the ζ function, duplication and reflection properties of the Γ-function
and the invocation of (1.5) the following results. For a = −i it turns out that residues
belonging to complex conjugate values of the summation index τ cancel one another,
so that the left-hand side of (4.36) vanishes, leading to the following transformation
rule between sums

√
2π

∞

∑
k=1

(−2π)k

ζ (k+3/2)
2
sin ((2k+1)π/4) Γ(k+3/2)

= − 4
ζ (3/2)2 − 1

2π
1

ζ (1/2)2 +2
∞

∑
n=1

(−1)n (2π)(2n)

ζ (1+2n)2 Γ(1+2n)
.

(4.37)

For the case a = 2 i we find

∑
τ

1
ζ ′(τ)ζ (−2− τ)cos(π τ/2)

= − 1
πζ (−1)2 −

2
ζ ′(−2)

−8π2
∞

∑
k=1

(2π)2k

(
2k+3

ζ (2k+3)ζ (2k)
− 2π

ζ (4+2k)ζ (2k+1)

)
Γ(4+2k)

(4.38)
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and for a = i we obtain

∑
τ

1
ζ ′(τ)ζ (−1− τ)cos(π τ)

= 8π2
∞

∑
k=1

(−1)k (2π)(2k)

ζ (2k+3)Γ(2k+3)ζ (2k+1)
+

1
ζ (−3/2)ζ (1/2)π

+ π
∞

∑
k=1

(−π)k Γ(−k/2−3/4)
Γ(5/4+ k/2)ζ (5/2+ k)ζ (k+1/2)

− 1
2π

1
ζ (−1/2)2 .

(4.39)

Continuing in the same vein, the case a = −i/2 yields the interesting result

∑
τ

1

ζ ′(τ)ζ (
1
2
− τ)cos(2π τ)

= −2
∞

∑
k=1

(−1)k (2π)(2k)

ζ (1/2+2k)ζ (2k+1)Γ(2k+1)

− 1
2π

∞

∑
k=0

(−1)k

ζ (k/2+3/4)ζ (−k/2−1/4)
+

1
4π

1
ζ (1/4)2

(4.40)

which, to an excellent degree of approximation, can be written

− 1
ζ ′(1/2+ iρ1)ζ (−iρ1)

− 1
ζ ′(1/2− iρ1)ζ (iρ1)

cosh(2π ρ1)

≈ 1
4π

1
ζ (1/4)2 −2

∞

∑
k=1

(−1)k (2π)(2k)

ζ (1/2+2k)ζ (2k+1)Γ(2k+1)

− 1
2π

∞

∑
k=0

(−1)k

ζ (k/2+3/4)ζ (−k/2−1/4)

(4.41)

because the contribution of the second, and higher values of τ in the left-hand sum
of (4.40) is at least 20 orders of magnitude smaller than the first, due to the reciprocal
term 1/cosh(2πρ1) appearing in (4.41). For the case a = i/2 we find the closely
related result

− 1
ζ ′(1/2+ iρ1)ζ (−1− iρ1)

− 1
ζ ′(1/2− iρ1)ζ (−1+ iρ1)

cosh(2π ρ1)

≈− 1
4π

1
ζ (−1/4)2 −2

∞

∑
k=1

(−1)k (2π)(2k)

ζ (−1/2+2k)ζ (2k+1)Γ(2k+1)

+
1

2π

∞

∑
k=0

(−1)k

ζ (−k/2−3/4)ζ (k/2+1/4)

(4.42)
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Unfortunately, the right-hand sides of these latter two equations are numerically
unstable, requiring extended precision arithmetic (at least 45 digits) and about 150
terms in the sums to achieve numerical equality to a reasonable number of significant
digits. This suggests the existence of an underlying simplification between the right-
hand side sums of which (4.37) may be a limiting case – parenthetically, we note that
the numerical evaluation of these sums appears to confound both the Maple [15] and
Mathematica [12] computer programs.

5. Summary

In this work we have summarized the applicability of the general master integra-
tion equation (1.4) to a range of values of a fundamental parameter a . Depending on the
value of a , extra terms need to be added to (1.4) as was pointed out in the first Section.
In Section 2, these extra terms were located for all possible ranges of the parameter a ,
and in the following Section, explicit examples were presented by employing different
values of this parameter. The results were then used to obtain a number of sum rules
among the zeros of Riemann’s Zeta function in Section 4. This was achieved by using a
number of different functions F(z) in (1.4) together with a judicious choice of the pa-
rameter a and application of the principles of the previous sections. It is believed that
these sum rules are new, and, represent a template for the derivation of similar rules for
a variety of functions using the methods presented here.

A. Appendix – Symbols

Various symbols used in the text are reproduced here (see [14]). Explicit depen-
dence on τ = 1/2+ iρ has been omitted from each, except where necessary to clarify
possible ambiguity. From the basic definitions that relate the real and imaginary parts
of ζ (τ)) on the critical line

ζR(τ) =
N
DR

ζI(τ) (A.1)

ζI(τ) =
N
DI

ζR(τ) (A.2)

we have

DR =
1
2
− 1

2
Cp cos(ρ ln(2π))+Cm sin(ρ ln(2π))√

π
DI = 1−DR

N2 = DR DI

Cp = ΓR cosh
(π ρ

2

)
+ΓI sinh

(π ρ
2

)
Cm = ΓI cosh

(π ρ
2

)
−ΓR sinh

(π ρ
2

)
(A.3)
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ΓR = ℜ
(

Γ
(1

2
+ iρ

))
ΓI = ℑ

(
Γ
(1

2
+ iρ

))
.

Furthermore,

D+ = Γ+cos(ρ ln(2π)) +Γ− sin(ρ ln(2π))−√
π (A.4)

D− = −Γ+ sin(ρ ln(2π)) +Γ− cos(ρ ln(2π))+
√

π
Γ+ = ΓR exp(−π ρ/2)+ΓI exp(π ρ/2) (A.5)

Γ− = −ΓR exp(π ρ/2)+ ΓI exp(−π ρ/2)

With reference to the alternative notation (see (4.7)) introduced in [13], it can also be
shown after considerable effort, by identifying

ζR(τ)
ζI(τ)

= −cot(φ(ρ)) (A.6)

where [13, Eq. (9)]

φ(ρ) = −1
2
(γ + log π +3 log 2+ π/2)ρ +

∞

∑
k=0

(
2ρ

4k+1
− arctan

( 2ρ
4k+1

))
, (A.7)

that the two representations are equivalent.
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