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EVALUATION OF APÉRY–LIKE SERIES

THROUGH MULTISECTION METHOD

WENCHANG CHU AND FLAVIA LUCIA ESPOSITO

Abstract. By combining the multisection series method with the power series expansion of
arcsin -function, we investigate Apéry-like infinite series involving the central binomial coef-
ficients in denominators. By constructing and resolving systems of linear equations, numerous
remarkable infinite series formulae (generated by using an appropriate computer algebra system)
for π and special values of the logarithm function are established, including some recent results
due to Almkvist et al. (2003) and Zheng (2008).

1. Introduction and motivation

In 1979, Apéry [2] (cf. [20] also) proved the irrationality of ζ (2) and ζ (3) by
making use of the following formulae

ζ (2) = 3
∞

∑
n=1

1

n2
(2n

n

) and ζ (3) =
5
2

∞

∑
n=1

(−1)n−1

n3
(2n

n

) .

Since then, much research interests have turned to investigate the Apéry-like series for
values of Riemann zeta function (cf. [5, 7, 8, 9, 14, 25]), Ramanujan-like series for π
(cf. [4, 10, 16, 17] and other infinite series involving central binomial coefficients (cf. [6,
11, 15, 21, 23, 22]. Recently, special attention has been paid to find fast convergent
series for evaluating π [1, 3, 24]. For example, both Almkvist et al. [1] and Zheng [24]
found several infinite series expressions of the following type for π

∞

∑
n=0

Pm(n)(2mn
mn

) αn,

where α ∈ R and Pm(n) is a polynomial of degree m in n .
For a nonnegative integer n and an indeterminate x , define the falling factorial by

〈x〉0 := 1 and 〈x〉n :=
n−1

∏
k=0

(x− k), n ∈ N.

In this paper, we will investigate the following expressions of Apéry-like infinite series
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for π and special values of the logarithm function

Ωγ
m(x) :=

∞

∑
n=0

Λm(n)(2mn+2γ
mn+γ

)xn, (1)

where Λm(n) is a polynomial of degree m in n , expressed through the real connection
coefficients {λk}m

k=0 in terms of falling factorials:

Λm(n) :=
m

∑
k=0

λk〈2mn+2γ〉k. (2)

Numerous remarkable multisection series for Ωγ
m(x) are expressed in terms of π

and special values of the logarithm function, constitute several classes of identities for
Apéry-like series. They not only recover, in particular for γ = 0, the results obtained
previously by Almkvist et al. [1] and Zheng [24], but also discover numerous infinite
series identities involving the central binomial coefficients

(2mn+2γ
mn+γ

)
covering all the

residue classes of γ modulo m . It is remarkable that for these formulae corresponding
to γ �≡ 0 (mod m) , there has not been hitherto even a single example in mathematical
literature.

The rest of the paper will be organized as follows. In the next section, we shall
present, as preliminaries, higher order derivatives of the arcsin-function, the multisec-
tion series method and special values tabulated for the function hyp(y) (see (3) for its
definition). Then in Section 3, we shall transform the Ωγ

m(x)-series, for odd m , into a
finite sum associated with a linear system that will be resolved to give six examples of
infinite series identities. A similar approach will be employed in Section 4 to examin-
ing the alternating series that will lead to further fifteen examples of alternating series
for π and for special values of the logarithm function. Finally in Section 5, we record
the Mathematica commands that have been utilized by the authors to produce infinite
series identities.

Throughout the paper, we shall utilize the following usual Kronecker symbol δi, j

with δi, j = 1 for i = j and δi, j = 0 for i �= j .

2. Preliminary background

As preliminaries, we discuss below higher order derivatives of the function h(x)
(see equation (4) for definition) related to the arcsin-function, multisection series method
and special values of the function hyp(y) defined by

hyp(y) :=
arcsin(y)

y
√

1− y2
. (3)
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2.1. Higher order derivatives of h(x)

For the reciprocals of central binomial coefficients, there exists the following in-
teresting generating function [18, eq. (15)]

h(x) := Dx
arcsin(x)√

1− x2
=

1
1− x2 +

xarcsin(x)√
(1− x2)3

=
∞

∑
n=0

(2x)2n(2n
n

) , (4)

where |x| < 1. Several variants of this expansion and applications to infinite series
involving reciprocals of central binomial coefficients can be found in [6, 11, 13, 19, 25].

LEMMA 1. For the k -th derivative of the function h(x) , there exist polynomials
{Pk,Qk} such that

Dk
x h(ex) =

ekPk(ex)
(1− e2x2)k+1 +

ekQk(ex)
(1− e2x2)k+1 · arcsin(ex)√

1− e2x2
, (5)

where {Pk,Qk} satisfy the recurrence relations

Pk+1(y) =(1− y2)P′
k(y)+ (2k+2)yPk(y)+Qk(y), (6)

Qk+1(y) =(1− y2)Q′
k(y)+ (2k+3)yQk(y); (7)

with the initial conditions
P0(y) = 1, Q0(y) = y. (8)

Proof. This can be done by the induction principle. When k = 0, the statement
of the lemma is true because in this case, the equality (5) is equivalent to the initial
conditions given by (8) in view of (4). Suppose that the statement of the lemma is
valid for k . We have to verify it for k+1 by differentiating the right member of (5) as
follows:

Dk+1
x h(ex) = D

{
ekPk(ex)

(1− e2x2)k+1

}
+D

{
ekQk(ex)

(1− e2x2)k+1 · arcsin(ex)√
1− e2x2

}

= ek+1 (1− e2x2)P′
k(ex)+ (2k+2)exPk(ex)+Qk(ex)

(1− e2x2)k+2

+ ek+1 (1− e2x2)Q′
k(ex)+ (2k+3)exQk(ex)
(1− e2x2)k+2 · arcsin(ex)√

1− e2x2
.

However, by (6) and (7), one can rewrite the last expression for Dk+1
x h(ex) as

Dk+1
x h(ex) =

ek+1Pk+1(ex)
(1− e2x2)k+2 +

ek+1Qk+1(ex)
(1− e2x2)k+2 · arcsin(ex)√

1− e2x2
,

which is exactly formula (5) when writing k+1 instead of k . This concludes the proof
by induction. �
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2.2. Multisection series

In classical combinatorics, there is the following useful expression of multisection
series for formal power series (cf. Comtet [12, p. 84] for example). Let f (x) be a
formal power series with complex coefficients defined by f (x) := ∑∞

n=0 Anxn . Then
for a natural number m and an integer γ subject to 0 � γ < m , the following formula
holds:

∞

∑
n=0

Amn+γx
mn+γ =

1
m

m

∑
k=1

ω−kγ
m f (xωk

m), (9)

where ωm := exp(2π i/m) is the m-th root of unity. It is not hard to check that for an
even function g(x) := ∑∞

n=0 Bnx2n , there holds similarly the formula

∞

∑
n=0

Bmn+γx
2mn+2γ =

1
m

m

∑
k=1

ω−2kγ
2m g(xωk

2m). (10)

In fact, writing the right-hand side of (10) as a double series and then interchanging the
summation order, we have

1
m

m

∑
k=1

ω−2kγ
2m g(xωk

2m) =
1
m

m

∑
k=1

∞

∑
n=0

Bnx
2nω2k(n−γ)

2m

=
1
m

∞

∑
n=0

Bnx
2n

m

∑
k=1

ω2k(n−γ)
2m .

Then the identity (10) follows from the almost trivial sum

m

∑
k=1

ω2k(n−γ)
2m =

{
m, n ≡ γ (mod m);
0, n �≡ γ (mod m).

In an analogous manner, one can verify that (10) admits the following counterpart

∞

∑
n=0

Bmn+γx
2mn+2γ =

1
m

m

∑
k=1

ω−2kγ
m g(xωk

m) for an odd m ∈ N. (11)

It should be pointed out that under the replacements g → h and Bn → 4n/
(2n

n

)
,

both (10) and (11) remain valid because the h -series defined by (4) represents an even
function.

2.3. Special function values

Recall that Ωγ
m(x) introduced in (1) results in a multisection series related to h -

series given by (4). In order to evaluate Ωγ
m(x) for specific integers m, γ and a real

number x , it will be necessary for us to know special values of the function hyp(y)
defined in (3). They are tabulated below for our later needs.



EVALUATION OF APÉRY-LIKE SERIES THROUGH MULTISECTION METHOD 59

Special values for hyp
(
x · eiθ )

x

∖
θ π π

2
π
4

π
8

1
2

2π
3
√

3
4√
5
ln 1+

√
5

2

1√
2

π
2

ln(2+
√

3)√
3

√
3

2
4π

3
√

3
2√
21

ln 5+
√

21
2

4−2i
15

√
3

{
π +3i ln(2+

√
3)

}
1
4√2

√
2

1+
√

2
ln 1+

√
1+

√
2

4√2

π+2i ln(1+
√

2)
2
√

2

1
4√8

√
8

1+2
√

2
ln 1+

√
1+2

√
2

4√8

√
2−i

6
√

2

{
π +4i ln(1+

√
2)

}
1

4√32

√
32

1+4
√

2
ln 1+

√
1+4

√
2

4√32
3−i
10

(
π +2i ln2

)

These particular values can be realized by routine calculations, or simply by exe-
cuting Mathematica command ‘FunctionExpand’.

3. Summation formulae for m odd

Let γ and m be nonnegative integers with m being odd and 0 � γ < m . This
section will be devoted to examining the Ω-series (1) by determining the Λm(n)-
polynomials (2) so that the series have closed forms in terms of π and special values
of the logarithm function. This will be carried out by constructing and then resolving
special systems of linear equations.

Combining (5) with (11), we can reformulate the following series

Ωγ
m

(
(2x)2m)

=
m

∑
k=0

xk−2γ λk

4γ Dk
x

∞

∑
n=0

(2x)2mn+2γ(2mn+2γ
mn+γ

)
=

m

∑
k=0

λkxk−2γ

4γm
Dk

x

m

∑
�=1

ω−2�γ
m h(xω�

m)

=
m

∑
k=0

λk

4γm

m

∑
�=1

(xω�
m)k−2γPk(xω�

m)
(1− x2ω2�

m )k+1

+
m

∑
k=0

λk

4γm

m

∑
�=1

(xω�
m)k−2γQk(xω�

m)
(1− x2ω2�

m )k+1 · arcsin(xω�
m)√

1− x2ω2�
m

.

Interchanging the summation order, we get the following equation:

Ωγ
m

(
(2x)2m)

=
m

∑
k=0

λk

4γm

m

∑
�=1

(xω�
m)k−2γPk(xω�

m)
(1− x2ω2�

m )k+1
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+
m

∑
�=1

hyp(xω�
m)

m

∑
k=0

λk

4γm
· (xω�

m)1+k−2γQk(xω�
m)

(1− x2ω2�
m )k+1 .

From the last expression, we may construct the system of linear equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V0 =
m

∑
k=0

λk

4γm

m

∑
�=1

(xω�
m)k−2γ

(1− x2ω2�
m )k+1 Pk(xω�

m),

V� =
m

∑
k=0

λk

4γm
· (xω�

m)1+k−2γ

(1− x2ω2�
m )k+1 Qk(xω�

m), � = 1,2, · · · ,m.

(12)

By resolving this system of equations with m + 1 variables {λk}m
k=0 , we derive

the following general identity.

THEOREM 2. For any given m+1 constants {Vk}m
k=0 , let {λk}m

k=0 be the solution
of the linear system (12). Then for an arbitrary odd m∈N and a real x subject to |x|<
1 , the Ω-series (1) determined by the corresponding Λ-polynomial (2) is evaluated by

Ωγ
m

(
(2x)2m)

= V0 +
m

∑
�=1

V� ·hyp(xω�
m).

It is not hard to check, by means of D’Alembert’s test, that the above Ω-series is
convergent for all the real x subject to |x| < 1. Observe further that

hyp(xωm
m ) = hyp(x) =

arcsin(x)
x
√

1− x2

is always real and can be expressed in terms of π or special values of the logarithm
function for some properly chosen x . Therefore for the fixed constants V� = δ�,m with
0 � � � m , the corresponding solution of the last linear system will lead to the evalua-
tion Ωγ

m
(
(2x)2m

)
= Vm ·hyp(x).

We shall provide six examples for the multisection series Ωγ
m(x) with m = 3 and

5, where each example will be derived from Theorem 2 by specifying parameters as
highlighted in its header.

3.1. Formulae corresponding to m = 3

According to hyp( eiπ

2 ) = 2π
3
√

3
, we can work out the first example.

EXAMPLE 1. (Theorem 2: m = 3, x = 1/2 and Vi = δi,3 for i = 0, · · · ,3)

(a)
200π
81

√
3
=

∞

∑
n=0

Λ3(n)(6n
3n

) , where Λ3(n) = −8+103n−273n2+378n3;

(b)
40π

81
√

3
=

∞

∑
n=0

Λ3(n)(6n+2
3n+1

) , where Λ3(n) = 2+29n+168n2−189n3;

(c)
80π

81
√

3
=

∞

∑
n=0

Λ3(n)(6n+4
3n+2

) , where Λ3(n) = −56−75n+882n2+1701n3.
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Analogously according to hyp( eiπ√
2
) = π

2 , we get the second example.

EXAMPLE 2. (Theorem 2: m = 3, x = 1/
√

2 and Vi = δi,3 for i = 0, · · · ,3)

(a)
75π
2

=
∞

∑
n=0

Λ3(n)(6n
3n

) 8n, where Λ3(n) = −162+850n−2961n2+1638n3;

(b)
15π
4

=
∞

∑
n=0

Λ3(n)(6n+2
3n+1

)8n, where Λ3(n) = 168+674n+1512n2−1449n3;

(c)
5π
8

=
∞

∑
n=0

Λ3(n)(6n+4
3n+2

)8n, where Λ3(n) = −244−564n+21n2+756n3.

Finally according to hyp(
√

3
2 eiπ) = 4π

3
√

3
, we have the third example.

EXAMPLE 3. (Theorem 2: m = 3, x =
√

3/2 and Vi = δi,3 for i = 0, · · · ,3)

(a) 1200
√

3π =
∞

∑
n=0

Λ3(n)(6n
3n

) 27n,

where Λ3(n) = −7668+5827n−110145n2+27306n3;

(b) 240
√

3π =
∞

∑
n=0

Λ3(n)(6n+2
3n+1

)27n,

where Λ3(n) = 33966+117259n+166104n2−54279n3;

(c)
160π
3
√

3
=

∞

∑
n=0

Λ3(n)(6n+4
3n+2

)27n,

where Λ3(n) = −19872−46589n−24778n2+12099n3.

3.2. Formulae corresponding to m = 5

According to hyp( eiπ

2 ) = 2π
3
√

3
, we can work out the first example.

EXAMPLE 4. (Theorem 2: m = 5, x = 1/2 and Vi = δi,5 for i = 0, · · · ,5)

(a)
7840π
81

√
3

=
∞

∑
n=0

Λ5(n)(10n
5n

) ,

where Λ5(n) =−324+9348n−79475n2

+331250n3−570625n4+426250n5;

(b)
7840π
81

√
3

=
∞

∑
n=0

Λ5(n)(10n+2
5n+1

) ,

where Λ5(n) =−288+8046n+76925n2

−398875n3+818125n4−213125n5;
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(c)
2240π
81

√
3

=
∞

∑
n=0

Λ5(n)(10n+4
5n+2

) ,

where Λ5(n) =−1224−882n+68275n2

−121625n3−611875n4+1491875n5;

(d)
224π
81

√
3

=
∞

∑
n=0

Λ5(n)(10n+6
5n+3

) ,

where Λ5(n) =936+5250n+34895n2

+64150n3−196625n4−426250n5;

(e)
896π
81

√
3

=
∞

∑
n=0

Λ5(n)(10n+8
5n+4

) ,

where Λ5(n) =−12096−41910n+255205n2

+1996525n3+4197875n4+2770625n5.

Analogously according to hyp( eiπ√
2
) = π

2 , we get the second example.

EXAMPLE 5. (Theorem 2: m = 5, x = 1/
√

2 and Vi = δi,5 for i = 0, · · · ,5)

(a)
59535π

2
=

∞

∑
n=0

Λ5(n)(10n
5n

) 32n,

where Λ5(n) =−104856+1545449n−9968350n2

+22046625n3−26065625n4+10191250n5;

(b)
6615π

4
=

∞

∑
n=0

Λ5(n)(10n+2
5n+1

)32n,

where Λ5(n) =61296+590656n+2340075n2

−4977500n3+16093125n4−9513125n5;

(c)
945π

8
=

∞

∑
n=0

Λ5(n)(10n+4
5n+2

)32n,

where Λ5(n) =−126648−674973n−1200250n2

−2000375n3−3235625n4+4805000n5;

(d)
567π
16

=
∞

∑
n=0

Λ5(n)(10n+6
5n+3

)32n,

where Λ5(n) =330816+1469380n+2816755n2

+2704200n3−1532125n4−4785625n5;

(e)
189π
32

=
∞

∑
n=0

Λ5(n)(10n+8
5n+4

)32n,
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where Λ5(n) =−187824−703285n−910170n2

+125375n3 +1592625n4+1201250n5.

Finally according to hyp(
√

3
2 eiπ) = 4π

3
√

3
, we have the third example.

EXAMPLE 6. (Theorem 2: m = 5, x =
√

3/2 and Vi = δi,5 for i = 0, · · · ,5)

(a)
√

3π =
∞

∑
n=0

Λ5(n)(10n
5n

) 35n

102876480
,

where Λ5(n) =−549773892+1921522776n−40788238625n2

+44230474250n3−95132351875n4+22597258750n5;

(b)
√

3π =
∞

∑
n=0

Λ5(n)(10n+2
5n+1

) 35n

3810240
,

where Λ5(n) =1058881248+7967417106n+23519492675n2

+15230532875n3+48362359375n4−15059144375n5;

(c)
√

3π =
∞

∑
n=0

Λ5(n)(10n+4
5n+2

) 35n

362880
,

where Λ5(n) =−2524970232−13752921654n−28705576275n2

−31929532375n3−22200688125n4+10040243125n5;

(d)
√

3π =
∞

∑
n=0

Λ5(n)(10n+6
5n+3

) 35n

36288
,

where Λ5(n) =2237207688+9899119050n+17463183815n2

+15225220000n3+4053902875n4−3346585000n5;

(e)
√

3π =
∞

∑
n=0

Λ5(n)(10n+8
5n+4

) 35n

16128
,

where Λ5(n) =−3361774752−12542542170n−18201581285n2

−11418939725n3−470993875n4+2231219375n5.

4. Alternating series identities

In this section, we are going to investigate the following alternating series

Ωγ
m

(− (2x)2m)
:=

∞

∑
n=0

(−1)n Λm(n)(2mn+2γ
mn+γ

) (2x)2mn.

Analogously, this series converges for all the real x subject to |x| < 1.
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Replacing g by h and x by x/ω4m in (10) yields an alternative relation

∞

∑
n=0

(−1)n (2x)2mn+2γ(2mn+2γ
mn+γ

) =
1
m

m

∑
k=1

ω2γ(1−2k)
4m h(xω2k−1

4m ).

Combining this with (5), we have the following expression

Ωγ
m

(− (2x)2m)
=

m

∑
k=0

xk−2γ λk

4γ Dk
x

∞

∑
n=0

(−1)n (2x)2mn+2γ(2mn+2γ
mn+γ

)
=

m

∑
k=0

λkxk−2γ

4γm
Dk

x

m

∑
�=1

ω2γ(1−2�)
4m h(xω2�−1

4m )

=
m

∑
k=0

λk

4γm

m

∑
�=1

(xω2�−1
4m )k−2γPk(xω2�−1

4m )
(1− x2ω4�−2

4m )k+1

+
m

∑
k=0

λk

4γm

m

∑
�=1

(xω2�−1
4m )k−2γQk(xω2�−1

4m )
(1− x2ω4�−2

4m )k+1
· arcsin(xω2�−1

4m )√
1− x2ω4�−2

4m

.

Interchanging the summation order, we get further the following equation:

Ωγ
m

(− (2x)2m)
=

m

∑
k=0

λk

4γm

m

∑
�=1

(xω2�−1
4m )k−2γPk(xω2�−1

4m )
(1− x2ω4�−2

4m )k+1

+
m

∑
�=1

hyp(xω2�−1
4m )

m

∑
k=0

λk

4γm
· (xω2�−1

4m )1+k−2γQk(xω2�−1
4m )

(1− x2ω4�−2
4m )k+1

.

From the last expression, we may construct the following system of equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W0 =
m

∑
k=0

λk

4γm

m

∑
�=1

(xω2�−1
4m )k−2γ

(1− x2ω4�−2
4m )k+1

Pk(xω2�−1
4m ),

W� =
m

∑
k=0

λk

4γm
· (xω2�−1

4m )1+k−2γ

(1− x2ω4�−2
4m )k+1

Qk(xω2�−1
4m ), � = 1,2, · · · ,m.

(13)

Resolving this system of equations will result in the following general identity.

THEOREM 3. For any given m+ 1 constants {Wk}m
k=0 , let {λk}m

k=0 be the solu-
tion of the linear system (13). Then for an arbitrary m∈N and a real subject to |x|< 1 ,
the Ω-series (1) determined by the corresponding Λ-polynomial (2) is evaluated by

Ωγ
m

(− (2x)2m)
= W0 +

m

∑
�=1

W� ·hyp(xω2�−1
4m ).

It should be pointed out that the last theorem cannot be deduced from Theorem 2
by simply replacing x by x/ω4m because Theorem 3 is valid for all the m ∈ N , instead
of odd m ∈ N .
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When hyp(xω2k−1
4m ) has a “good” expression in terms of π and special values

of the logarithm function given in Subsection 2.3, we may specify the corresponding
Wk = 1 and the others W� = 0 for � �= k . Resolving the corresponding linear system will
give rise to infinite series formulae concerning π and special values of the logarithm
function. We record fifteen examples as exemplification.

4.1. Formulae corresponding to m = 2

Firstly, by separating π from the logarithmic value in

hyp
(√

3
2

e
πi
4

)
=

4−2i

15
√

3

{
π +3i ln(2+

√
3)

}
(14)

we can work out the following two examples.

EXAMPLE 7. (Theorem 3: m = 2, x =
√

3/2 and Wk = δk,1 for k = 0,1,2)

(a) 36
√

3π=
∞

∑
n=0

Λ2(n)(4n
2n

) (−9)n, where Λ2(n) = −1341−1250n−4000n2;

(b) 2
√

3π =
∞

∑
n=0

Λ2(n)(4n+2
2n+1

) (−9)n, where Λ2(n) = 423+580n+700n2.

EXAMPLE 8. (Theorem 3: m = 2, x =
√

3/2 and Wk = δk,1 for k = 0,1,2)

(a) 27
√

3ln(2+
√

3)=
∞

∑
n=0

Λ2(n)(4n
2n

) (−9)n, where Λ2(n) = 153−25n+1000n2;

(b) 3
√

3ln(2+
√

3) =
∞

∑
n=0

Λ2(n)(4n+2
2n+1

) (−9)n, where Λ2(n) = −243−430n−325n2.

Then by separating π from the logarithmic value in

hyp
( e

πi
4

4
√

8

)
=

√
2− i

6
√

2

{
π +4i ln(1+

√
2)

}
(15)

we have similarly the next two examples.

EXAMPLE 9. (Theorem 3: m = 2, x = 1/ 4
√

8 and Wk = δk,1 for k = 0,1,2)

(a)
9π
2

=
∞

∑
n=0

Λ2(n)(4n
2n

) (−2)n, where Λ2(n) = −65+146n−576n2;

(b)
3π
4

=
∞

∑
n=0

Λ2(n)(4n+2
2n+1

) (−2)n, where Λ2(n) = 41+68n+180n2.
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EXAMPLE 10. (Theorem 3: m = 2, x = 1/ 4
√

8 and Wk = δk,1 for k = 0,1,2)

(a)
9 ln(1+

√
2)√

2
=

∞

∑
n=0

Λ2(n)(4n
2n

) (−2)n, where Λ2(n) = −2−79n+72n2;

(b)
3 ln(1+

√
2)

2
√

2
=

∞

∑
n=0

Λ2(n)(4n+2
2n+1

) (−2)n, where Λ2(n) = −13−40n−63n2.

4.2. Formulae corresponding to m = 3

According to hyp( eiπ/2

2 ) = 4√
5
ln 1+

√
5

2 , we get the following first example.

EXAMPLE 11. (Theorem 3: m = 3, x = 1/2 and Wk = δk,2 for k = 0, · · · ,3)

(a) 48
√

5ln
1+

√
5

2
=

∞

∑
n=0

(−1)n Λ3(n)(6n
3n

) ,

where Λ3(n) = −252−5809n+24291n2−26910n3;

(b)
48√

5
ln

1+
√

5
2

=
∞

∑
n=0

(−1)n Λ3(n)(6n+2
3n+1

) ,

where Λ3(n) = 222−205n−1512n2+9945n3;

(c)
32√

5
ln

1+
√

5
2

=
∞

∑
n=0

(−1)n Λ3(n)(6n+4
3n+2

) ,

where Λ3(n) = −208−1329n−4866n2−5265n3.

Then according to hyp( eiπ/2√
2

) = ln(2+
√

3)√
3

, we obtain the next example.

EXAMPLE 12. (Theorem 3: m = 3, x = 1/
√

2 and Wk = δk,2 for k = 0, · · · ,3)

(a)
25

3
√

3
ln(2+

√
3) =

∞

∑
n=0

Λ3(n)(6n
3n

) (−8)n,

where Λ3(n) = −52−452n+735n2−1026n3;

(b)
5

6
√

3
ln(2+

√
3) =

∞

∑
n=0

Λ3(n)(6n+2
3n+1

) (−8)n,

where Λ3(n) = 42+88n+48n2+297n3;

(c)
5

12
√

3
ln(2+

√
3) =

∞

∑
n=0

Λ3(n)(6n+4
3n+2

) (−8)n,

where Λ3(n) = −37−99n−153n2−81n3.

Finally according to hyp(
√

3
2 eiπ/2) = 2√

21
ln 5+

√
21

2 , we have the third example.
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EXAMPLE 13. (Theorem 3: m = 3, x =
√

3/2 and Wk = δk,2 for k = 0, · · · ,3)

(a)

√
7√
3

ln

√
3+

√
7

2
=

49
10800

∞

∑
n=0

Λ3(n)(6n
3n

) (−27)n,

where Λ3(n) = −3456−21815n+4377n2−30186n3;

(b)

√
7√
3

ln

√
3+

√
7

2
=

49
2160

∞

∑
n=0

Λ3(n)(6n+2
3n+1

) (−27)n,

where Λ3(n) = 7398+19159n+16632n2+20241n3;

(c)

√
7√
3

ln

√
3+

√
7

2
=

49
160

∞

∑
n=0

Λ3(n)(6n+4
3n+2

) (−27)n,

where Λ3(n) = −744−1399n−1334n2−39n3.

4.3. Formulae corresponding to m = 4

Firstly, by separating π from the logarithmic value in

hyp
(eiπ/8

4
√

2

)
=

π +2i ln(1+
√

2)
2
√

2

we can work out the following two examples, where the formula (a) in Example 14 is
due to Zheng [24, Example 4.1].

EXAMPLE 14. (Theorem 3: m = 4, x = 1/ 4
√

2 and Wk = δk,1 for k = 0, · · · ,4)

(a)
11025π
8
√

2
=

∞

∑
n=0

Λ4(n)(8n
4n

) (−64)n,

where Λ4(n) = −5856+17803n−223184n2+163232n3−133120n4;

(b)
225π
64

√
2

=
∞

∑
n=0

Λ4(n)(8n+2
4n+1

) (−64)n,

where Λ4(n) = 480+2611n+5630n2−544n3 +5440n4;

(c)
315π
64

√
2

=
∞

∑
n=0

Λ4(n)(8n+4
4n+2

) (−64)n,

where Λ4(n) = −10656−40305n−51512n2−33888n3−37120n4;

(d)
315π

256
√

2
=

∞

∑
n=0

Λ4(n)(8n+6
4n+3

) (−64)n,

where Λ4(n) = 12000+36211n+43900n2+34784n3+18560n4.

EXAMPLE 15. (Theorem 3: m = 4, x = 1/ 4
√

2 and Wk = δk,1 for k = 0, · · · ,4)

(a)
ln(3+2

√
2)

2
√

2
=

∞

∑
n=0

Λ4(n)(8n
4n

) (−64)n

11025
,
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where Λ4(n) = 14019−30932n+525856n2−293248n3+327680n4;

(b)
ln(3+2

√
2)

4
√

2
=

∞

∑
n=0

Λ4(n)(8n+2
4n+1

) (−64)n

1575
,

where Λ4(n) = −29595−159992n−341920n2+51968n3−327680n4;

(c)
ln(3+2

√
2)

4
√

2
=

∞

∑
n=0

Λ4(n)(8n+4
4n+2

) (−64)n

315
,

where Λ4(n) = 95715+363312n+468928n2+316416n3+343040n4;

(d)
ln(3+2

√
2)

8
√

2
=

∞

∑
n=0

Λ4(n)(8n+6
4n+3

) (−64)n

15
,

where Λ4(n) = −10415−31392n−37696n2−29184n3−15360n4.

Then by separating π from the logarithmic value in

hyp
(eiπ/8

4
√

32

)
=

3− i
10

(
π +2i ln2

)
we get the next two examples, where the formula (a) in the first example has previously
appeared in [1, Example 3.2] and [24, Example 3.1].

EXAMPLE 16. (Theorem 3: m = 4, x = 1/ 4
√

32 and Wk = δk,1 for k = 0, · · · ,4)

(a)
π
2

=
∞

∑
n=0

Λ4(n)(8n
4n

) (−1/4)n

11025
,

where Λ4(n) = −44643+1937974n−17485067n2

+55101236n3−57596800n4;

(b) π =
∞

∑
n=0

Λ4(n)(8n+2
4n+1

) (−1/4)n

1575
,

where Λ4(n) = −3405+239056n+2384255n2

−4060174n3−5403800n4;

(c) π =
∞

∑
n=0

Λ4(n)(8n+4
4n+2

) (−1/4)n

1260
,

where Λ4(n) = −26541+404190n+6175603n2

−877488n3−37375600n4;

(d) π =
∞

∑
n=0

Λ4(n)(8n+6
4n+3

) (−1/4)n

105
,

where Λ4(n) = 25610+136695n+1637332n2

+5851587n3+5571900n4.
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EXAMPLE 17. (Theorem 3: m = 4, x = 1/ 4
√

32 and Wk = δk,1 for k = 0, · · · ,4)

(a) ln2 =
∞

∑
n=0

Λ4(n)(8n
4n

) (−1/4)n

176400
,

where Λ4(n) = −88491−14550862n+122888096n2

−432150368n3+266598400n4;

(b) ln2 =
∞

∑
n=0

Λ4(n)(8n+2
4n+1

) (−1/4)n

12600
,

where Λ4(n) = −51465−783382n−3795860n2

−812072n3−29946400n4;

(c) ln2 =
∞

∑
n=0

Λ4(n)(8n+4
4n+2

) (−1/4)n

2520
,

where Λ4(n) = −13887−338820n−2605204n2

−6862416n3−5379200n4;

(d) ln2 =
∞

∑
n=0

Λ4(n)(8n+6
4n+3

) (−1/4)n

1260
,

where Λ4(n) = −22380−570260n−4486931n2

−12273646n3−10340200n4.

4.4. Formulae corresponding to m = 6

By separating π from the logarithmic value in (14), we get the next two examples.

EXAMPLE 18. (Theorem 3: m = 6, x =
√

3/2 and Wk = δk,2 for k = 0, · · · ,6)

(a)
2π√

3
=

∞

∑
n=0

Λ6(n)(12n
6n

) (−729)n

2593344600
,

where Λ6(n) = −5387310000+651979343999n−1261120210685n2

+14199336146970n3+413588141460n4

+102129696936n5+3808298851200n6;

(b)
2π√

3
=

∞

∑
n=0

Λ6(n)(12n+2
6n+1

) (−729)n

117879300
,

where Λ6(n) = 91789293960+940806119161n+3901783340435n2

+5542344867780n3+17690071993920n4

−7853003377056n5+7288661134800n6;

(c)
2π√

3
=

∞

∑
n=0

Λ6(n)(12n+4
6n+2

) (−729)n

2910600
,
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where Λ6(n) = −102492581310−750044788543n−2208603591930n2

−3497295656225n3−3039634783770n4

−51546143052n5−1512229073400n6;

(d)
2π√

3
=

∞

∑
n=0

Λ6(n)(12n+6
6n+3

) (−729)n

207900
,

where Λ6(n) = 90162698130+534126652561n+1300924281070n2

+1656674437695n3+1090050880050n4

+444261799764n5+445362283800n6;

(e)
2π√

3
=

∞

∑
n=0

Λ6(n)(12n+8
6n+4

) (−729)n

166320
,

where Λ6(n) = −436029305040−2219297544437n−4649560710464n2

−5110164469629n3−3290093603622n4

−1779805345500n5−918360585000n6;

(f)
2π√

3
=

∞

∑
n=0

Λ6(n)(12n+10
6n+5

) (−729)n

15400
,

where Λ6(n) = 128261863800+574203431967n+1062022202180n2

+1068407754575n3+701225415870n4

+369737572788n5+125525694600n6.

EXAMPLE 19. (Theorem 3: m = 6, x =
√

3/2 and Wk = δk,2 for k = 0, · · · ,6)

(a)
2√
3

ln(2+
√

3) =
∞

∑
n=0

Λ6(n)(12n
6n

) (−729)n

1945008450
,

where Λ6(n) = 10595832750+49798089833n+817260572230n2

+815892243615n3−693432589680n4

+953786473812n5−78652749600n6;

(b)
2√
3

ln(2+
√

3) =
∞

∑
n=0

Λ6(n)(12n+2
6n+1

) (−729)n

176818950
,

where Λ6(n) = −15770158110−149005318351n−565100692085n2

−246648769605n3−3657975117345n4

+1847707970796n5−1293585414300n6;

(c)
2√
3

ln(2+
√

3) =
∞

∑
n=0

Λ6(n)(12n+4
6n+2

) (−729)n

1091475
,
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where Λ6(n) = 7306203240+54411302972n+164720036220n2

+272113093525n3+243664907205n4

−6224902092n5+123240671100n6;

(d)
2√
3

ln(2+
√

3) =
∞

∑
n=0

Λ6(n)(12n+6
6n+3

) (−729)n

311850
,

where Λ6(n) = −31885057080−190348868126n−464930555495n2

−588548910120n3−384784965675n4

−162263479824n5−156644223300n6;

(e)
2√
3

ln(2+
√

3) =
∞

∑
n=0

Λ6(n)(12n+8
6n+4

) (−729)n

31185
,

where Λ6(n) = 16812253080+84112833224n+173205332153n2

+188379121608n3+121806913419n4

+65560363200n5+32555722500n6;

(f)
2√
3

ln(2+
√

3) =
∞

∑
n=0

Λ6(n)(12n+10
6n+5

) (−729)n

11550
,

where Λ6(n) = −15326028900−68789106111n−128385658315n2

−130058450725n3−84793886085n4

−44917548804n5−16004544300n6.

Finally, by separating π from the logarithmic value in (15), we can deduce two
further examples below.

EXAMPLE 20. (Theorem 3: m = 6, x = 1/ 4
√

8 and Wk = δk,2 for k = 0, · · · ,6)

(a)
π
2

=
∞

∑
n=0

Λ6(n)(12n
6n

) (−8)n

4002075
,

where Λ6(n) = −32011150−73727270n+1577312553n2

−27977606010n3+57401953020n4

−19518288120n5−18785945088n6;

(b)
π
4

=
∞

∑
n=0

Λ6(n)(12n+2
6n+1

) (−8)n

363825
,

where Λ6(n) = −3854690−23407438n+19118307n2

−2339283240n3+1285157880n4

+8008538688n5−8649007632n6;

(c)
π
4

=
∞

∑
n=0

Λ6(n)(12n+4
6n+2

) (−8)n

13475
,
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where Λ6(n) = −857640−6488388n−7686494n2

−241188885n3−377839170n4

+2190796308n5−1960969176n6;

(d)
π
8

=
∞

∑
n=0

Λ6(n)(12n+6
6n+3

) (−8)n

17325
,

where Λ6(n) = 17300680+104361526n+296658012n2

+191790855n3−1243291950n4

+517195044n5+6318382968n6;

(e)
π
8

=
∞

∑
n=0

Λ6(n)(12n+8
6n+4

) (−8)n

3465
,

where Λ6(n) = −16662380−83047832n−140221389n2

−74442132n3−665677008n4

−2634020208n5−2536395120n6;

(f)
π
16

=
∞

∑
n=0

Λ6(n)(12n+10
6n+5

) (−8)n

1925
,

where Λ6(n) = 10890740+47641520n+110751371n2

+374701950n3+1118189700n4

+1594640520n5+816433344n6.

EXAMPLE 21. (Theorem 3: m = 6, x = 1/ 4
√

8 and Wk = δk,2 for k = 0, · · · ,6)

(a)
ln(1+

√
2)√

2
=

∞

∑
n=0

Λ6(n)(12n
6n

) (−8)n

4002075
,

where Λ6(n) = 2918435−271350755n+5660009634n2

−35892192555n3+113980760820n4

−146537688060n5+65954251296n6;

(b)
ln(1+

√
2)

2
√

2
=

∞

∑
n=0

Λ6(n)(12n+2
6n+1

) (−8)n

363825
,

where Λ6(n) = −2000285−21263899n−95907309n2

+124700310n3+564955695n4

−604884996n5−560633076n6;

(c)
ln(1+

√
2)

2
√

2
=

∞

∑
n=0

Λ6(n)(12n+4
6n+2

) (−8)n

13475
,
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where Λ6(n) = −212205−2503944n−12153437n2

+7990605n3+99010260n4

−103699116n5−67149648n6;

(d)
ln(1+

√
2)

4
√

2
=

∞

∑
n=0

Λ6(n)(12n+6
6n+3

) (−8)n

17325
,

where Λ6(n) = −1573085−12501287n−46362354n2

−31045005n3+245791395n4

+71259912n5−836544996n6;

(e)
ln(1+

√
2)

2
√

2
=

∞

∑
n=0

Λ6(n)(12n+8
6n+4

) (−8)n

3465
,

where Λ6(n) = 6289325+28861733n+38190702n2

+16709787n3+285022206n4

+1000720980n5+901866312n6;

(f)
ln(1+

√
2)

4
√

2
=

∞

∑
n=0

Λ6(n)(12n+10
6n+5

) (−8)n

1925
,

where Λ6(n) = −2536835−12875405n−42055148n2

−128241225n3−286069140n4

−344692260n5−162222912n6.

5. Appendix: Mathematica commands

In order to evaluate the infinite series in Section 3, we have appropriately devised,
according to Theorem 2, the following Mathematica commands, where ‘hyp’ stands
for the “hyp”-function whose special values are given in Subsection 2.3, and ‘vpiv’
corresponds to the Λ-polynomials under the setting Vk = δk,m for k = 0,1, · · · ,m .

(*pp[k,y] and qq[k,y] polynomials*)
hh[x_]:=1/(1-x^2)+x*ArcSin[x]/(1-x^2)^(3/2)
pp[k_,x_]:=Factor[(1-y^2)^(k+1)*(D[ArcSin[y]/Sqrt[1-y^2],{y,k+1}]-

ArcSin[y]*D[1/Sqrt[1-y^2],{y,k+1}])/.y->x]
qq[k_,x_]:=Factor[(1-y^2)^(k+3/2)*D[1/Sqrt[1-y^2],{y,k+1}]/.y->x]

(*Special values for variable x*)
ww[m_]:=Exp[2Pi*I/m]
xx:={2^(-1),2^(-1/2),3^(1/2)/2,2^(-1/4),2^(-3/4),2^(-5/4)}
xy[k_]:=Part[xx,k]
hpy[y_]:=Normal[I/y*Log[Sqrt[1-y^2]-y*I]/Sqrt[1-y^2]]
hyp[m_,k_,x_]:=FunctionExpand[hpy[x*ww[m]^k]]
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(*Hyperbolic representations*)
pq[r_,k_,y_]:=pp[k,y]*y^(k-2r)/(1-y^2)^(k+1)
qp[r_,k_,y_]:=qq[k,y]*y^(1+k-2r)/(1-y^2)^(k+1)
uv[0,m_,r_,x_]:=Sum[mm[i]/(4^r*m)*Sum[pq[r,i,x*ww[m]^k],

{k,1,m}],{i,0,m}]
uv[k_,m_,r_,x_]:=Sum[mm[i]/(4^r*m)*If[k==m,qp[r,i,x*ww[m]^k],
If[k<m/2,-2Im[qp[r,i,x*ww[m]^k]],2Re[qp[r,i,x*ww[m]^k]]]],{i,0,m}]

(*Equation system and solutions*)
system[m_,r_,x_]:=FullSimplify[Table[uv[k,m,r,x]==0,{k,0,m}]]
wpiw[m_,r_,x_]:=Solve[ReplacePart[system[m,r,x],

uv[m,m,r,x]==1,1+m],Table[mm[k],{k,0,m}]]
weew[ee_,m_,r_,x_]:=Solve[ReplacePart[system[m,r,x],

uv[ee,m,r,x]==1,1+ee],Table[mm[k],{k,0,m}]]

(*Weight polynomials*)
vv[m_,r_,n_]:=Sum[k!*mm[k]*Binomial[2m*n+2r,k],{k,0,m}]
vpiv[m_,r_,n_,x_]:=

Factor[vv[m,r,n]/.Flatten[FullSimplify[wpiw[m,r,x]]]]
veev[ee_,m_,r_,n_,x_]:=

Factor[vv[m,r,n]/.Flatten[FullSimplify[weew[ee,m,r,x]]]]

For instance, we can confirm Example 1 by executing the command below

SequenceForm[hyp[3,3,xy[1]],": ",
ColumnForm[Table[vpiv[3,r,n,xy[1]],{r,0,2}]]]

that gives the following output:

2π
3
√

3
:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

27
100(378n3−273n2 +103n−8), r = 0;

27
20(−189n3 +168n2 +29n+2), r = 1;

27
40(1701n3 +882n2−75n−56, r = 2.

Instead, for the alternating series in Section 4, we have to first replace the two
functions “hyp” and “uv” in the above package by the following three commands:

hyp[m_, k_, x_] :=FullSimplify[hpy[x*ww[4m]^(2k - 1)]]
uv[0,m_,r_,x_]:=

Sum[mm[i]/(4^r*m)*Sum[pq[r,i,x*ww[4m]^(2k-1)],{k,1,m}],{i,0,m}]
uv[k_,m_,r_,x_]:=Sum[mm[i]/(4^r*m)*qp[r,i,x*ww[4m]^(2k-1)],{i,0,m}]

Then we run the commands ‘hyp’ and ‘veev’ to determine the hyp-values and the Λ-
polynomials. Finally, separating their real part from the imaginary part, we can derive,
in view of Theorem 3, the corresponding alternating series identities.

For example, by carrying out the command below



EVALUATION OF APÉRY-LIKE SERIES THROUGH MULTISECTION METHOD 75

SequenceForm[hyp[2,1,xy[3]],": ",
ColumnForm[Table[veev[1,2,r,n,xy[3]],{r,0,1}]]]

we get the following expressions

hyp
(√

3
2

e
πi
4

)
=

4+8i
5 ln

(
1−i
4

√
6+

√
4−3i
2

)
√

3
=

4−2i

15
√

3

{
π +3i ln(2+

√
3)

}
, (16)

Λ4(n) =

⎧⎨
⎩

2+i
162

{
(160+1120i)n2− (166−188i)n− (63−288i)

}
, r = 0;

− 2+i
9

{
(20+190i)n2+(68+196i)n+(27+126i)

}
, r = 1.

(17)

For the sake of brevity, let ℜ xx and ℑ xx stand, respectively, for the the real
part and the imaginary part of the expression displayed in equation (xx). By separating
the real part and the imaginary part in (16)

ℜ 16 =
4π +6ln(2+

√
3)

15
√

3
, ℑ 16 =

12ln(2+
√

3)−2π
15

√
3

;

we can combine them to express π and a special logarithmic value

2ℜ 16 −ℑ 16 =
2π

3
√

3
, (18)

ℜ 16 +2ℑ 16 =
2ln(2+

√
3)√

3
. (19)

Analogously, for the Λ-polynomial in (17), we have

ℜ 17 =

⎧⎨
⎩

1
81(−400n2−260n−207), r = 0;

2
3 (25n2 +10n+12), r = 1;

ℑ 17 =

⎧⎨
⎩

1
54(800n2 +70n+171), r = 0;

1
9 (−400n2−460n−279), r = 1.

Their linear combinations yield the following expressions

2ℜ 17 −ℑ 17 =

⎧⎨
⎩

−1
162(4000n2 +1250n+1341), r = 0;

1
9 (700n2 +580n+423), r = 1;

(20)

ℜ 17 +2ℑ 17 =

⎧⎨
⎩

2
81 (1000n2−25n+153), r = 0;

− 2
9 (325n2 +430n+243), r = 1.

(21)

According to Theorem 3, we obtain the four identities given in Examples 7 and 8
by relating (18) and (19), respectively, to (20) and (21).
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Concluding remarks. The multisection series method has been successfully used
to derive numerous formulae for π and special values of the logarithm function with
m = 2,3,4,5,6 and 0 � γ � m , where all the formulae corresponding to γ �= 0 seem
new. Following the procedure described in this paper, it is possible to work out further
formulae. However, we shall not produce them due to the space limitation.

Acknowledgement. The authors express sincerely their gratitude to the anonymous
referee for the careful reading, critical comments and constructive suggestions, that lead
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11–13.
[3] D. H. BAILEY et al., The quest for π , Mathematical Intelligencer 19:1 (1997), 50–57; MR1439159

(98b:01045).
[4] N. D. BARUAH et al., Ramanujan’s series for 1/π : a survey, American Mathematical Monthly 109:7

(2009), 567–587.
[5] J. M. BORWEIN et al., Central binomial sums, multiple Clausen values and zeta values, Experimental

Mathematics 10 (2001), 25–34.
[6] J. M. BORWEIN AND R. GIRGENSOHN, Evaluations of binomial series, Aequationes Mathemati-

cae 70 (2005), 25–36.
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EVALUATION OF APÉRY-LIKE SERIES THROUGH MULTISECTION METHOD 77

[23] B. SURY et al., Identities involving reciprocals of binomial coefficients, Journal of Integer Sequences 7
(2004), #Article 4.2.8.

[24] D. Y. ZHENG, Multisection method and further formulae for π , Indian Journal of Pure and Applied
Mathematics 39:2 (2008), 137–155.

[25] I. J. ZUCKER, On the series ∑∞
k=1

(2k
k

)−1
k−n , Journal of Number Theory 20:1 (1985), 92–102.

(Received December 17, 2017) Wenchang Chu
Dipartimento di Matematica e Fisica “Ennio De Giorgi”
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