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BOUNDARY SCHWARZ INEQUALITIES

ARISING FROM ROGOSINSKI’S LEMMA

PETER R. MERCER

Abstract. We consider some Schwarz and Carathéodory inequalities at the boundary, as conse-
quences of a lemma due to Rogosinski.

1. Introduction

Denote by Δ ⊂ C the open unit disk. Schwarz’s Lemma, which is a consequence
of the Maximum Principle, says that if f : Δ → Δ is analytic with f (0) = 0, then

| f (λ )| � |λ | ∀λ ∈ Δ, and therefore | f ′(0)| � 1.

A sharpened version of this is Rogosinski’s Lemma (e.g. [3, 4]), which says that

| f (λ )− c1 | � r1 ∀λ ∈ Δ,

where

c1 =
λ f ′(0)(1−|λ |2)
1−|λ |2| f ′(0)|2 and r1 =

|λ |2(1−| f ′(0)|2)
1−|λ |2| f ′(0)|2 .

Consequently,

| f (λ )| � |c1|+ r1 = |λ | |λ |+ | f ′(0)|
1+ |λ || f ′(0)| ∀λ ∈ Δ. (1)

Now let us suppose that f : Δ → Δ is analytic and extends continuously to x∈ ∂Δ ,
say along a radius. By pre-composing with a rotation (if necessary) we may assume
that x = 1 and by post-composing with a rotation (if necessary) we may assume that
f (1) = 1. Suppose also that the radial derivative of f exists at 1 ∈ ∂Δ :

lim
r↗1

f (r)− f (1)
r−1

= f ′(1).

It is easily seen that if f is not constant, then | f ′(1)| > 0.
But if also f (0) = 0, Schwarz’s Lemma implies the boundary Schwarz estimate

| f ′(1)| � 1.
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Osserman [8] showed that in this case, we have in fact

| f ′(1)| � 1+
1−| f ′(0)|
1+ | f ′(0)| . (2)

Dubinin [2] incorporatedmore information about f , likewise assuming that f (0)=
0, in obtaining

| f ′(1)| � 1+
2(1−| f ′(0)|)2

1−| f ′(0)|2 + | f ′′(0)|/2
. (3)

A main ingredient in the proof of (2) is (1), though Rogosinski’s Lemma is not
explicitly mentioned there. The proof of (3) relies heavily on (2); it is a byproduct of a
rather complicated investigation which involves zeros of f other than just λ = 0.

Related to the Schwarz Lemma is Carathéodory’s Inequality (e.g. [1]), which says
that if f : Δ → C is analytic, with f (0) = 0 and Re( f ) � A . Then

| f (λ )| � 2A|λ |
1−|λ | ∀λ ∈ Δ, and therefore | f ′(0)| � 2A. (4)

Örnek [5] showed that if f also extends continuously to 1 ∈ ∂Δ , Re( f (1)) = A , and
f ′(1) exists, then

| f ′(1)| � A
2

. (5)

It is our purpose here to: provide an elementary argument, using (1), which yields
(3) without appealing to (2); to refine (4), again using (1); and to use (3) to improve (5)
and a related result along with it.

2. Direct Proof of (3)

If | f ′(0)| = 1, then (3) holds. Otherwise, as is customary, set

g(λ ) =
f (λ )

λ
(with g(0) := f ′(0)), and h(λ ) =

f ′(0)−g(λ )
1− f ′(0)g(λ )

.

Then h is analytic on Δ with h(0) = 0 and by Schwarz’s Lemma h : Δ → Δ , with

h′(0) =
− f ′′(0)

2(1−| f ′(0)|2) .

Applying estimate (1) to h and then isolating f (cf. [3, 4]) gives

| f (λ )− c2| � r2,

where

c2 =
λ | f ′(0)|(1−a2)
1−a2| f ′(0)|2 , r2 =

a|λ |(1−| f ′(0)|2)
1−a2| f ′(0)|2 , and a = |λ | |λ |+ |h′(0)|

1+ |λ ||h′(0)| .
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Therefore∣∣∣∣ f (λ )−1
λ −1

∣∣∣∣ � 1−|c2|− r2

|λ −1| =
1−a2| f ′(0)|2−|λ || f ′(0)|(1−a2)−a|λ |(1−| f ′(0)|2)

|λ −1|(1−a2| f ′(0)|2)
=

1
1+a| f ′(0)|

1+a| f ′(0)|−a|λ |− |λ || f ′(0)|
|λ −1| .

Now having λ = r→ 1 radially, so that |λ −1|= 1−r , an application of L’Hospital’s
Rule (while noticing that a = a(r) → 1 as r → 1) gives

| f ′(1)| � 3+ |h′(0)|+ | f ′(0)||h′(0)|− | f ′(0)|
(1+ | f ′(0)|)(1+ |h′(0)|) .

Finally, some more manipulations lead to

| f ′(1)| � 1+
1

1+ |h′(0)|
2(1−| f ′(0)|)2

(1−| f ′(0)|2) = 1+
4(1−| f ′(0)|)2

2(1−| f ′(0)|2)+ | f ′′(0)| ,

which is the same as (3). �
REMARK 2.1. Schwarz’s Lemma applied to h gives | f ′′(0)|/2 � 1− | f ′(0)|2 ,

from which we see that Dubinin’s estimate (3) improves (and implies) Osserman’s (2).

3. Refinement of (4)

LEMMA 3.1. Let f : Δ → C be analytic, with f (0) = 0 and Re( f ) � A. Then

| f (λ )| � |λ | 2A|λ |+ | f ′(0)|
1−|λ |2 ∀λ ∈ Δ.

Proof. Wherever Schwarz’s Lemma is used in the proof of (4), we instead use (1);
we omit some of the details (c.f. [1]). Set

g(λ ) =
f (λ )

2A− f (λ )
.

Then g : Δ → Δ is analytic, with g(0) = 0 and g′(0) = f ′(0)/(2A). (And consequently
| f ′(0)|� 2A , by Schwarz’s Lemma.) Applying (1), then the reverse triangle inequality,
then (1) again, we get

| f (λ )| = 2A|g(λ )|
|1+g(λ )| � 2A

|1+g(λ )| |λ |
|λ |+ | f ′(0)|/(2A)
1+ |λ | f ′(0)|/(2A)

� 2A|λ | |λ |+ | f ′(0)|/(2A)
1+ |λ | f ′(0)|/(2A)

1

1−|λ | |λ |+| f ′(0)|/(2A)
1+|λ | f ′(0)|/(2A)

= |λ | 2A|λ |+ | f ′(0)|
1−|λ |2 . �

REMARK 3.2. Lemma 3.1 is sharp – consider f (λ ) = 2Aλ
1+λ .



96 P. R. MERCER

4. Improvement of (5) and a related result

LEMMA 4.1. Let f : Δ → C be analytic, with f (0) = 0 and Re( f ) � A. Suppose
also that f extends continuously to 1 ∈ ∂Δ , say along a radius, that Re( f (1)) = A,
and that the radial derivative f ′(1) exists. Then

| f ′(1)| � A
2

+
A(2A−| f ′(0)|)2

4A2−| f ′(0)|2 + |A f ′′(0)+ ( f ′(0))2 | .

Proof. We rework the argument in [5], which uses (2), but instead we use (3). The
function g in the proof of Lemma 3.1 satisfies

g′′(0) =
A f ′′(0)+ ( f ′(0))2

2A2 .

Then from (3) applied to g we get

2A| f ′(1)|
| f (1)−2A|2 = |g′(1)| � 1+

2(2A−| f ′(0)|)2

4A2−| f ′(0)|2 + |A f ′′(0)+ ( f ′(0))2 | .

Now | f (1)| � A , and so 2| f ′(1)|/A � 2A| f ′(1)|
| f (1)−2A|2 . Therefore,

| f ′(1)| � A
2

+
A(2A−| f ′(0)|)2

4A2−| f ′(0)|2 + |A f ′′(0)+ ( f ′(0))2 | ,

as desired. �

REMARK 4.2. Lemma 4.1 (which is sharp – again consider f (λ ) = 2Aλ
1+λ ) may be

regarded as a companion to Theorem 1 of [6], wherein the the same hypotheses are in
play, but also f ′(0) = 0.

In a very similar way one can use (3) to obtain the following result which, as
Theorem 2.3 of [7], was obtained quite differently. We merely sketch the idea.

LEMMA 4.3. Let f : Δ → C be analytic, with f (0) = 0 , and |Re( f )| � 1 . Sup-
pose also that f extends continuously to 1∈ ∂Δ , say along a radius, that Re( f (1)) = 1 ,
and that the radial derivative f ′(1) exists. Then

| f ′(1)| � 2
π

(
1+

2(4−π | f ′(0)|)2

16−π2| f ′(0)|2 +2π | f ′′(0)|
)

.

Proof. As in [7], set

φ(λ ) =
e

iπ
2 f (λ )−1

e
iπ
2 f (λ ) +1

.

It is easily verified that φ : Δ → Δ is analytic, φ(0) = 0, |φ(1)| = 1, φ ′(0) = iπ
4 f ′(0) ,

φ ′′(0) = iπ
4 f ′′(0) , and |φ ′(1)|= π

2 | f ′(1)|. Then applying (3) to φ and writing the result
in terms of f , the inequality follows. �

REMARK 4.4. This result is sharp – consider f (λ ) = 2
iπ ln 1+λ

1−λ . By Remark 2.1,
Theorems 2.1 and 2.2 of [7] are simple corollaries of Theorem 2.3 there.
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