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BOHR RADIUS FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS

SARITA AGRAWAL AND MANAS RANJAN MOHAPATRA

Abstract. In this paper, we discuss Bohr’s inequality for certain classes of analytic functions
associated with q -function theory for q ∈ (0,1) . Interestingly, in particular cases when q → 1 ,
we obtain very fundamental theorems of univalent function theory such as covering and growth
theorems for starlike and convex functions. Subsequently, we obtain the Bohr radius for the
classes of starlike and convex functions.

1. Introduction

Let A denote the class of all functions analytic in the unit disk D := {z∈C : |z|<
1} . Given a power series

f (z) =
∞

∑
n=0

anz
n, (1)

its majorant series is given by

Mf (r) =
∞

∑
n=0

|an|rn (r = |z|). (2)

Note that both the series (1) and (2) converge or diverge together in open subsets of D .
However, the values of f (z) and Mf (r) and also the values of certain norms of these
two functions may differ. In this regard, function theorists started comparing the sup
norms of these two functions. The first step in this setting was taken by Bohr [14] in
1914. He proved that “if f (z) = ∑∞

n=0 anzn ∈ A and | f (z)| < 1 for all z ∈ D , then

Mf (r) � 1 (3)

for all z ∈D with |z|� 1/6.” Later on, Wiener, Riesz, and Schur independently proved
that inequality (3) holds true for |z| � 1/3 and the constant 1/3 is the best possible.
Obtaining the largest r such that (3) holds for all z ∈ D with |z| < r is called the Bohr
radius.

Initially, Bohr radius was obtained for the classes of mappings from unit disk onto
itself. Later, the notion of Bohr radius was generalized to the classes of mappings from
D into some other domain G ⊂ C (see, [8, 1, 2]). One way of the generalization is to
rewrite Bohr’s inequality in the equivalent form ∑∞

n=1 |anzn| � 1−|a0| . The right hand
side then can be written as the distance from f (0) to the boundary ∂D . In this form,
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the notion of Bohr’s radius can be generalized to the class of functions f (z) analytic in
D , which take values in a given domain G ⊂ C as follows:

For a given domain G ⊂ C , find the largest radius rG > 0 such that

dist

(
∞

∑
n=1

|anz
n|, | f (0)|

)
� dist( f (0),∂G) (4)

for all |z| < rG and for all functions f (z) analytic in D such that f (D) ⊂ G .
In [8], it is proved that if G is a convex domain, then the inequality (4) holds true

for |z|< 1/3 and the radius rG = 1/3 is the best possible. When G is any proper simply
connected domain and f (z) is analytic in D having values in G , then (4) holds true for
|z| < 3−2

√
2 and the radius is sharp [1]. Bohr radius for wedge domains, alternating

series, and even analytic functions are obtained in [11]. In addition, in [11], the authors
have obtained an upper and lower bound of Bohr’s radius for odd analytic functions
and posed an open problem regarding Bohr’s radius for odd analytic functions which is
recently settled by Kayumov and Ponnusamy in [20]. An improved version of Bohr’s
inequality is obtained by Kayumov and Ponnusamy in [21]. Bohr radius for lacunary
series and for locally univalent harmonic mappings are obtained respectively in [23]
and [22]. In recent years, many results related to Bohr’s theorem are obtained in the
setting of several complex variables. For example, Boas and Khavinson [13] obtained
some multidimensional generalizations of Bohr’s theorem and Aizenberg [5] extended
it for further studies on the topic. For recent developements on Bohr’s inequality we
refer to [6, 7, 8, 9, 24, 25, 26] and to the survey article by Ali et al. [10] and references
therein.

In this paper, we are interested to establish a connection between Bohr’s phe-
nomenon with the q -function theory. More precisely, we are interested in estimating
the Bohr inequality for q -starlike and q -convex functions which are generalizations of
the class of starlike and convex functions in terms of q . For definitions of starlike and
convex function we refer the classic book by Duren [15]. Recall that for 0 < q < 1, the
q-difference operator (see [18]), denoted as Dq f , is defined by the equation

(Dq f )(z) =
f (z)− f (qz)

z(1−q)
, z �= 0, (Dq f )(0) = f ′(0).

The class of q-starlike functions, denoted by S ∗
q , is defined as follows:

DEFINITION 1. [18, Definition 1.3] A function f ∈ A is said to be in the class
S ∗

q , if ∣∣∣∣ z(Dq f )(z)
f (z)

− 1
1−q

∣∣∣∣� 1
1−q

, z ∈ D.

In the light of the well-known Alexander’s theorem [15, Theorem 2.12], Baricz
and Swaminathan in [12] defined a q -analog of convex functions, denoted by Cq , in
the following way.

DEFINITION 2. [12, Definition 3.1] A function f ∈ A is said to belong to Cq if
and only if z(Dq f )(z) ∈ S ∗

q .
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We call the functions of the class Cq as q-convex functions. Note that the class
Cq is non-empty as shown in [12, Theorem 3.2] and as q → 1, the classes S ∗

q and Cq

reduce to S ∗ (the class of starlike functions) and C (the class of convex functions)
respectively.

We now state our main theorems. The Bohr inequality for the class S ∗
q is stated

as follows:

THEOREM 1. Let f (z) = z+ ∑∞
n=2 anzn = zexp[φ(z)] ∈ S ∗

q . Then

|z|exp

[
∞

∑
n=1

|φn||z|n
]

� d(0,∂ f (D))

for |z| � r f , where φ(z) = ∑∞
n=1 φnzn and r f is the unique root of

r exp[Fq(r)] = exp[Fq(−1)].

The radius is sharp and attained by suitable rotation of Gq(z) .

Here Gq(z) is the function defined in Lemma 2. Similarly, the Bohr inequality for
the class Cq is stated as follows:

THEOREM 2. Let f (z) = z+ ∑∞
n=2 anzn ∈ Cq . Then

r+
∞

∑
n=2

|an|rn � d(0,∂ f (D))

for |z| � r f , where r f is the unique root of

Iq(exp[Fq(r)]) = Iq(exp[Fq(−1)]).

The radius is sharp and attained by suitable rotation of Eq(z) .

Here Eq(z) is the function defined in Lemma 4.

2. Prerequisites

This section is devoted to the required preliminaries to prove our main theorems.
We begin this section with the Herglotz representation for the class S ∗

q .

LEMMA 1. [18, Theorem 1.15] Let f ∈ A . Then f ∈ S ∗
q if and only if there

exists a probability measure μ supported on the unit circle such that

z f ′(z)
f (z)

= 1+
∫
|σ |=1

σzF
′
q(σz)dμ(σ)

where

Fq(z) =
∞

∑
n=1

−2lnq
1−qn zn, z ∈ D. (5)
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The Bieberbach-type theorem for the class S ∗
q is states as follows:

LEMMA 2. [18, Theorem 1.18] Let

Gq(z) := z exp[Fq(z)] = z+
∞

∑
n=2

cnz
n. (6)

Then Gq ∈ S ∗
q . Moreover, if f (z) = z+ ∑∞

n=2 anzn ∈ S ∗
q , then |an| � cn with equality

holding for all n if and only if f is a rotation of Gq .

The Herglotz representation theorem and the Bieberbach-type theorem for the
class Cq(α) , 0 � α < 1, are respectively stated in [3, Theorem 2.8] and [3, Theo-
rem 2.9]. The substitution α = 0 in [3, Theorem 2.8] gives the Herglotz representation
theorem for the class Cq stated as follows:

LEMMA 3. Let f ∈ A . Then f ∈ Cq if and only if there exists a probability
measure μ supported on the unit circle such that

z(Dq f )′(z)
(Dq f )(z)

=
∫
|σ |=1

σzF
′
q(σz)dμ(σ).

The substitution α = 0 in [3, Theorem 2.9] gives the Bieberbach-type theorem for
the class Cq which is stated as follows:

LEMMA 4. Let

Eq(z) := Iq (exp[Fq(z)]) = z+
∞

∑
n=2

(
1−q
1−qn

)
cnz

n (7)

where cn is the n-th coefficient of the function zexp[Fq(z)] . Then Eq ∈ Cq . Moreover,
if f (z) = z + ∑∞

n=2 anzn ∈ Cq , then |an| � ((1− q)/(1− qn))cn with equality holding
for all n if and only if f is a rotation of Eq .

Here Iq is called the q -integral. Recall that Thomae introduced the q -integral [27]

∫ 1

0
f (t)dqt = (1−q)

∞

∑
n=0

qn f (qn),

provided the q -series converges. In 1910, Jackson defined the general q -integral [19]
(see also [16, 27]) in the following manner:

∫ b

a
f (t)dqt :=

∫ b

0
f (t)dqt−

∫ a

0
f (t)dqt,

where

Iq( f (x)) :=
∫ x

0
f (t)dqt = x(1−q)

∞

∑
n=0

qn f (xqn),
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provided the q -series converges. Observe that

DqIq f (x) = f (x) and IqDq f (x) = f (x)− f (0),

where the second equality holds if f is continuous at x = 0.
We now prove the main result of this section which is a key result to obtain Bohr’s

inequality for the classes S ∗
q and Cq . We call it as a distortion theorem for the class

S ∗
q .

LEMMA 5. (Distortion theorem) Let f (z) = zh(z) ∈ S ∗
q . Then

exp[Fq(−r)] � |h(z)| � exp[Fq(r)].

Equality occurs if and only if h(z) is a suitable rotations of exp[Fq(z)] .

Proof. Since f (z) ∈ S ∗
q , by Lemma 1, there exists a probability measure μ sup-

ported on the unit circle such that

z f ′(z)
f (z)

= 1+
∫
|σ |=1

σzF
′
q(σz)dμ(σ).

Simple computation yields

f (z) = zexp

[∫
|σ |=1

Fq(σz)dμ(σ)
]

or,

|h(z)| = exp

[
Re
∫
|σ |=1

Fq(σz)dμ(σ)
]
.

Hence,

ln |h(z)| = Re
∫
|σ |=1

Fq(σz)dμ(σ)

= Re
∫
|σ |=1

−2lnq
1−q

[σzΦ(q,q,q2,q,σz)]dμ(σ)

=
−2lnq
1−q

Re
∫ 2π

0
[(eiθ z)Φ(q,q,q2,q,(eiθ z))]dμ(θ )

=
−2lnq
1−q

Re
∫ 2π

0
[wΦ(q,q,q2,q,w)]dμ(θ ), w = eiθ z ∈ D

=
−2lnq
1−q

Re
∫ 2π

0

wΦ(q1,q1,q2,q,w)
Φ(q0,q1,q2,q,w)

dμ(θ ),

where Φ(a,b;c;q,z) is called the basic hypergeometric function. For the definition of
basic hypergeometric function we refer [4]. By [4, Theorem 2.5], we get the integral
representation for the ratio of basic hypergeometric as follows:

wΦ(q1,q1,q2,q,w)
Φ(q0,q1,q2,q,w)

=
∫ 1

0

w
1− tw

dμ(t).
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The minimum of the function Re (w/(1− tw)) for |w|= |z|� r is attained at the point
w = −r and maximum is attained at the point w = r . So

ln |h(z)| � −2lnq
1−q

[−rΦ(q,q,q2,q,−r)]

= Fq(−r)

and

ln |h(z)| �
∫
|σ |=1

Fq(r)dμ(σ)

= Fq(r).

Hence,
exp[Fq(−r)] � |h(z)| � exp[Fq(r)].

The proof is complete. �
As q → 1, Lemma 5 gives the following well-known theorem for starlike func-

tions.

COROLLARY 1. [17, Theorem 8] Let f (z) ∈ S ∗ . Then

r
(1+ r)2 � | f (z)| � r

(1− r)2 , |z| = r < 1.

Equality occurs for a suitable rotation of the Koebe function z/(1− z)2 .

Proof. When q→ 1, exp[Fq(r)]→ 1/(1− r)2 and exp[Fq(−r)]→ 1/(1+ r)2 and
hence the proof follows from Lemma 5. �

LEMMA 6. Let f (z) = zh(z) ∈ S ∗
q . Then

exp[Fq(−1)] � d(0,∂ f (D)).

Equality occurs if and only if f (z) is a suitable rotation of Gq(z) .

Proof. By Lemma 5,

d(0,∂ f (D)) = liminf
|z|→1

| f (z)− f (0)| = liminf
|z|→1

| f (z)|
|z| = liminf

|z|→1
|h(z)| � exp[Fq(−1)].

The proof is complete. �
As q → 1, Lemma 6 gives the Koebe One-Quarter theorem for starlike functions.

COROLLARY 2. [15, Theorem 2.3] The range of every function of class S con-
tains the disk {w : |w| < 1/4} .
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Proof. As q → 1, exp[Fq(−r)] → 1/(1+ r)2 . Hence exp[Fq(−1)] → 1/4. �
We obtain similar results related to the class Cq .

LEMMA 7. Let f (z) ∈ Cq . Then

Iq (exp[Fq(−r)]) � | f (z)| � Iq(exp[Fq(r)]).

Equality occurs if and only if f (z) is a suitable rotations of Eq(z) .

Proof. Let f (z) ∈ Cq . By definition, z(Dq f )(z) ∈ S ∗
q . Hence, from Lemma 5,

we conclude that
exp[Fq(−r)] � |(Dq f )(z)| � exp[Fq(r)].

The required inequalities will follow by taking q -integral of the above inequalities. �
As q → 1, Lemma 7 gives the following well-known theorem for convex func-

tions.

COROLLARY 3. [17, Theorem 9] Let f (z) ∈ C . Then

r
(1+ r)

� | f (z)| � r
(1− r)

, |z| = r < 1.

Equality occurs for a suitable rotation of the function z/(1− z) .

Proof. When q→ 1, Iq(exp[Fq(r)])→ r/(1−r) and Iq(exp[Fq(−r)])→ r/(1+r)
and hence the proof follows from Lemma 7. �

LEMMA 8. Let f (z) ∈ Cq . Then

Iq(exp[Fq(−1)]) � d(0,∂ f (D)).

Equality occurs if and only if f (z) is a suitable rotation of Eq(z) .

Proof. By Lemma 7,

d(0,∂ f (D)) = liminf
|z|→1

| f (z)− f (0)| = liminf
|z|→1

| f (z)| � Iq(exp[Fq(−1)])

and hence the proof is complete. �
As q → 1, Lemma 8 gives the following covering theorem for the class C .

COROLLARY 4. [15, Theorem 2.15] The range of every function f ∈ C contains
the disk |w| < 1/2 . In other language it can be written as for f ∈ C ,

1
2

� d(0,∂ f (D)).

Proof. As q→ 1, Iq(exp[Fq(−r)])→ r/(1+r) . Hence Iq(exp[Fq(−1)])→ 1/2. �
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3. Proof of main theorems

In this section, we prove our main theorems.

Proof of Theorem 1. Suppose that f ∈S ∗
q . Then by proof of [18, Theorem 1.18],

f can be written as
f (z) = zexp[φ(z)],

where, φ(z) = ∑∞
n=1 φnzn and

|φn| � −2lnq
1−qn

which is the sharp bound. Now,

rexp

[
∞

∑
n=1

|φn|rn

]
� rexp

[
∞

∑
n=1

−2lnq
1−qn rn

]
= rexp[Fq(r)] � exp[Fq(−1)] � d(0,∂ f (D))

if and only if
rexp[Fq(r)] � exp[Fq(−1)].

Hence, the Bohr radius r f is the positive root of the equation

rexp[Fq(r)] = exp[Fq(−1)].

This completes the proof of the theorem. �

As q → 1, Theorem 1 leads to the Bohr radius for the class S ∗ which is also
mentioned in [11, p. 156].

COROLLARY 5. Let f (z) = z+ ∑∞
n=2 anzn ∈ S ∗ . Then

r+
∞

∑
n=2

|an|rn � 1
4

for |z| = r � 3− 2
√

2 . The radius is sharp and attained by suitable rotation of the
Koebe function z/(1− z)2 .

Proof. Letting q → 1 in Theorem 1, we get r (0 < r < 1) as the Bohr radius for
the class S ∗ , where r is the solution of the equation

r
(1− r)2 =

1
4
.

Solving for r we get r = 3−2
√

2 and hence the proof is complete. �
Proof of Theorem 2. Suppose that f ∈ Cq . Then Lemma 4 and Lemma 7 yields

r+
∞

∑
n=2

|an|rn � r+
∞

∑
n=2

(
1−q
1−qn

)
cnr

n = Iq(exp[Fq(r)])

� Iq(exp[Fq(−1)]) � d(0,∂ f (D))
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if and only if
Iq(exp[Fq(r)]) � Iq(exp[Fq(−1)]).

Hence, the Bohr radius r f is the positive root of the equation

Iq(exp[Fq(r)]) = Iq(exp[Fq(−1)]).

The proof is complete. �

Note that when q → 1, Theorem 2 gives the Bohr radius for the class C (see, [11,
p. 156]).

COROLLARY 6. Let f (z) = z+ ∑∞
n=2 anzn ∈ C . Then

r+
∞

∑
n=2

|an|rn � 1
2

for |z| = r � 1/3 . The radius is sharp and attained by suitable rotation of the function
z/(1− z) .

Proof. In the limiting sense when q → 1, Theorem 2 leads to the Bohr radius
r (0 < r < 1)) for the class C , where r is the solution of the equation

r
(1− r)

=
1
2
.

That is, r = 1/3. The proof is complete. �
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