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FURTHER RESULTS ON VALUE DISTRIBUTION OF L–FUNCTIONS

HARINA P. WAGHAMORE AND S. H. NAVEENKUMAR

Abstract. With the aid of weighted sharing we study the uniqueness of meromorphic functions
concerning nonlinear differential polynomials that share a nonzero polynomial with the same of
L-functions. Our results in the paper will improve, extend a results due to Fang Liu, Xiao-Min
Li and Hong-Xun Yi [5].

1. Introduction

L -functions, with the Riemann zeta function as a prototype, are important objects
in number theory, and value distribution of L-functions has been studied extensively,
which can be found, for example in Steuding [25]. Value distribution of L -functions
concerns distribution of the zeros of L -functions L and, more generally, the c-points
of L , i.e., the roots of the equation L(s) = c, or the values in the preimage L−1 =
{s ∈ C : L(s) = c} , where and throughout the paper, s denotes the complex variable in
the complex plane C and c denotes a complex value. L -functions can be analytically
continued as meromorphic functions in C.

It is well-known that a nonconstant meromorphic function in C is completely
determined by five such preimages (cf. [8, 22, 28, 30], which is a famous theorem due
to Nevanlinna and often referred to as Nevanlinna’s uniqueness or unicity theorem. Two
meromorphic functions f and g in the complex plane are said to share a value c ∈ C∪
{∞} IM (ignoring multiplicities) if f−1(c) = g−1(c) as two sets in C. Moreover, f and
g are said to share a value c CM (counting multiplicities) if they share the value c and if
the roots of the equations f (s) = c and g(s) = c have the same multiplicities. In terms
of sharing values, two nonconstant meromorphic functions in C must be identically
equal if they share five values IM, and one must be a Möbius transform of the other if
they share four values CM.

Throughout the paper, an L -function always means an L -function L in the Selberg
class, which includes the Riemann zeta function ζ (s) = ∑∞

n=1 n−s, and essentially those
Dirichlet series where one might expect a Riemann hypothesis. Such an L -function is
defined to be a Dirichlet series L(s) = ∑∞

n=1 a(n)n−s, satisfying the following axioms
(cf. [24, 25]): (i) Ramanujan hypothesis. a(n) � nε for every ε > 0 (ii) Analytic
continuation. There is a non-negative integer k such that (s− 1)kL(s) is an entire
function of finite order. (iii) Functional equation. L satisfies a functional equation of
type

ΛL(s) = ωΛL(1− s),
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where

ΛL(s) = L(s)Qs
k

∏
j=1

Γ(λ js+ ν j)

with positive real numbers Q,λ j and complex numbers ν j,ω with Reν j � 0 and |ω |=
1. (iv) Euler product hypothesis. L(s) = ∏p exp

(
∑∞

k=1
b(pk)
pks

)
with suitable coefficients

b(pk) satisfying b(pk)� pkθ for some θ < 1
2 , where the product is taken over all prime

numbers p.

In this paper, a meromorphic function always mean a function which is meromor-
phic in the whole complex plane C . We denote by Nk)(r, 1

( f−a) ) the counting function

for zeros of f − a with multiplicity � k , and by Nk)(r, 1
( f−a) ) the corresponding one

for which multiplicity is not counted. Let N(k(r,
1

( f−a) ) be the counting function for

zeros of f −a with multiplicity at least k and N(k(r, 1
( f−a) ) the corresponding one for

which multiplicity is not counted.
Let z0 be a zero of f − a of multiplicity p and a zero of g− a of multiplicity

q. We denote by NL(r,a; f ) the counting function of those a -points of f and g where

p > q � 1, by N1)
E (r,a; f ) the counting function of those a -points of f and g where

p = q = 1 and by N
(2
E (r,a; f ) the counting function of those a -points of f and g where

p = q � 2, each point in these counting functions is counted only once. In the same

way we can define NL(r,a;g),N1)
E (r,a;g),N(2

E (r,a;g).
Let k be a non-negative integer or infinity. For a∈C∪{∞} we denote by Ek(a; f )

the set of all a -points of f , where an a -point of multiplicity m is counted m times if
m � k and k+1 times if m > k. If Ek(a; f ) = Ek(a;g) , we say that f ,g share the value
a with weight k.

The definition implies that if f ,g share the value a with weight k then z0 is an a -
point of f with multiplicity m(� k) if and only if it is an a -point of g with multiplicity
m(� k) and z0 is an a -point of f with multiplicity m(> k) if and only if it is an a -
point of g with multiplicity n(> k) , where m is not necessarily equal to n . We write
f ,g share (a,k) to mean that f ,g share the value a with weight k. Clearly if f ,g share
(a,k) then f ,g share (a, p) for any integer p, 0 � p < k . Also we note that f ,g share
a value a IM or CM if and only if f ,g share (a,0) or (a,∞) respectively. We denote
ρ( f ) for order of f (z).

ρ( f ) = lim
r→∞

sup
logT (r, f )

logr
.

We first recall the following result due to Steuding [25], which actually holds
without the Euler product hypothesis:

THEOREM A. ([25], p. 152) If two L-functions L1 and L2 with a(1) = 1 share
a complex value c �= ∞ CM, then L1 = L2.

Later on, Li [17] proved the following result to deal with a question posed by
Chung-Chun Yang (cf. [17]):
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THEOREM B. ([17]) Let a and b be two distinct finite values, and let f be a
meromorphic function in the complex plane such that f has finitely many poles in the
complex plane. If f and a nonconstant L-function L share a CM and b IM, then
L = f .

In 1997, Lahiri [12] posed the following question:
What can be said about the relationship between two meromorphic functions f

and g, when two differential polynomials, generated by f and g respectively, share
some nonzero finite value? In this direction, Fang [4] and Yang-Hua [28] respectively
proved the following results:

THEOREM C. ([4]) Let f and g be two nonconstant entire functions, and let n
and k be two positive integers such that n > 2k + 4. If ( f n)(k) and (gn)(k) share 1
CM, then either f (z) = c1ecz,g(z) = c2e−cz, where c1,c2 and c are three constants,
satisfying (−1)k(c1c2)n(nc)2k = 1, or f = tg for a constant t such that tn = 1.

THEOREM D. ([28]) Let f and g be two nonconstant meromorphic functions,
and let n � 11 be a positive integer. If f n f ′ and gng′ share 1 CM, then either f (z) =
c1ecz , g(z) = c2e−cz, where c1,c2, and c are three constants, satisfying (c1c2)n+1c2 =
−1, or f = tg for a constant t such that tn+1 = 1.

In 2017, Fang LIU, Xiao-Min LI and Hong-Xun YI proved the following results.

THEOREM E. ([5]) Let f be a nonconstant meromorphic function, let L be an
L- function, and let n and k be two positive integers with n > 3k + 6. If ( f n)(k) and
(Ln)(k) share 1 CM, then f = tL for a constant t satisfying tn = 1.

THEOREM F. ([5]) Let f be a nonconstant meromorphic function, let L be an
L- function, and let n and k be two positive integers with n > 3k+6. If ( f n)(k)(z)− z
and (Ln)(k)(z)− z share 0 CM, then f = tL for a constant t satisfying tn = 1.

Now it is natural to ask the following question which is the motivation of the paper.

QUESTION. Can a CM shared value be replaced by (p(z), l) in Theorems E and
F?

In the paper, our main concern is to find the possible answer of the above question.
The following are the main results of the paper.

THEOREM 1. Let f be a nonconstant meromorphic function in C , let L be an
nonconstant L-function and let n and k be two positive integers. If ( f n)(k) and (Ln)(k)

share (p(z), l) , where p(z) be a nonzero polynomial with deg (p) = m and f and L
share (∞,0). Suppose one of the following conditions hold:

a. l � 3 and n > 3k+4 ;

b. l = 2 and n > 3k+6 ;

c. l = 1 and n > 3k+7 ;

d. l = 0 and n > 7k+11.
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Then f = tL for a constant t satisfying tn = 1.

THEOREM 2. Let f be a nonconstant entire function in C, let L be an noncon-
stant L-function, and let n and k be two positive integers. If ( f n)(k) and (Ln)(k) share
(p(z), l) , where p(z) be a nonzero polynomial with deg (p) = m and f and L share
(∞,0). Suppose one of the following conditions hold:

I. l � 2 and n > 2k+4 ;

II. l = 1 and n > 5k+9
2 ;

III. l = 0 and n > 5k+7.

Then f = tL for a constant t satisfying tn = 1.

2. Some lemmas

Let F and G be two non-constant meromorphic functions defined in C. We de-
note by H the function as follows:

H =
(

F ′′

F ′ −
2F ′

F −1

)
−

(
G′′

G′ −
2G′

G−1

)
, (1)

and

V =
(

F ′

F −1
− F ′

F

)
−

(
G′

G−1
− G′

G

)
. (2)

LEMMA 1. [27] Let f be a non-constant meromorphic function and let an(z)(�≡
0),an−1(z), . . . ,a0(z) be meromorphic functions such that T (r,ai(z)) = S(r, f ) for i =
0,1,2, . . . ,n. Then

T (r,an f n +an−1 f n−1 + . . .+a1 f +a0) = nT (r, f )+S(r, f ).

LEMMA 2. [29] Suppose that f is a nonconstant meromorphic function in the
complex plane and k is a positive integer. Then

N(r,0; f (k)) � N(r,0; f )+ kN(r,∞, f )+O(log(T (r, f ))+ logr),

as r → ∞, outside of a possible exceptional set of finite linear measure.

LEMMA 3. [33] Let f be a nonconstant meromorphic function, and p,k be pos-
itive integers. Then

Np(r,0; f (k)) � T (r, f (k))−T(r, f )+Np+k(r,0; f )+S(r, f ), (3)

Np(r,0; f (k)) � kN(r,∞, f )+Np+k(r,0; f )+S(r, f ). (4)
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LEMMA 4. [14] If N(r,0; f (k)| f �= 0) denotes the counting function of those zeros
of f (k) which are not the zeros of f , where a zero of f (k) is counted according to its
multiplicity then

N(r,0; f (k)| f �= 0) � kN(r,∞, f )+N(r,0; f | < k)+ kN(r,0; f | � k)+S(r, f ).

LEMMA 5. Suppose that f and g be two non-constant meromorphic functions.
Let F = [ f n](k) , G = [gn](k), where n,k are positive integers. If f ,g share ∞ IM and
V ≡ 0, then F ≡ G.

Proof. Suppose V ≡ 0. Then by integration we obtain

1− 1
F

≡ A
(
1− 1

G

)
.

If z0 is a pole of f then it is a pole of g. Hence from the definition of F and G we
have 1

F(z0)
= 0 and 1

G(z0)
= 0. So A = 1 and hence F ≡ G. �

LEMMA 6. [16] Let f1 and f2 be two non-constant meromorphic functions sat-
isfying N(r,0; fi)+N(r,∞; fi) = S(r; f1, f2) for i = 1,2. If f s

1 f t
2 − 1 is not identically

zero for arbitrary integers s and t(|s|+ |t|> 0), then for any positive ε, we have

N0(r,1; f1, f2) � εT (r)+S(r; f1, f2),

where N0(r,1; f1, f2) denotes the reduced counting function related to the common 1 -
points of f1 and f2 and T (r) = T (r, f1)+ T (r, f2) , S(r; f1, f2) = o(T (r)) as r → ∞
possibly outside a set of finite linear measure

LEMMA 7. [2] Let f and g be two non-constant meromorphic functions sharing
(1,k1), where 2 � k1 � ∞. Then

N(r,1; f | = 2)+2N(r,1; f | = 3)+ . . .+(k1−1)N(r,1; f | = k1)+ k1NL(r,1; f )

+ (k1 +1)NL(r,1;g)+ k1N
(k1+1
E (r,1;g) � N(r,1;g)−N(r,1;g).

(5)

LEMMA 8. [1] Let F and G be two non-constant meromorphic functions sharing
(1,1) and H �≡ 0. Then

T (r,F) � N2(r,0;F)+N2(r,0;G)+N2(r,∞;F)+N2(r,∞;G)+
1
2
N(r,0;F)

+
1
2
N(r,∞;F)+S(r,F)+S(r,G).

LEMMA 9. [1] Let F and G be two non-constant meromorphic functions sharing
(1,0) and H �≡ 0. Then

T (r,F) � N2(r,0;F)+N2(r,0;G)+N2(r,∞;F)+N2(r,∞;G)+2N(r,0;F)

+N(r,0;G)+2N(r,∞;F)+N(r,∞;G)+S(r,F)+S(r,G).
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LEMMA 10. [11] Let f and g be two nonconstant meromorphic functions. If
( f n)(k) = (gn)(k) and n > k+1, then f = tg for a constant t such that tn = 1.

LEMMA 11. Let f be a nonconstant meromorphic function in C, let L be an
nonconstant L-function, and let n and k be two positive integers with H �≡ 0 . If F =
( f n)(k) and G = (Ln)(k) share (1,k1) , and f and L share (∞,0), then

(n−1)N(r,∞; f ) � (k+1){T (r, f )+T (r,L)}+N∗(r,1;F,G)+O(logr).

Proof. Suppose ∞ is an e.v.P. of f and L then the lemma follows immediately.
Next suppose ∞ is not an e.v.P. of f and L. Since H �≡ 0 from Lemma 5 we have

V �≡ 0. We suppose that z0 is a pole of f with multiplicity q and a pole of L with
multiplicity r. Clearly z0 is a pole of F with multiplicity nq+ k and a pole of G with
multiplicity nr+k. Noting that f ,L share (∞,0) from the definition of V it is clear that
z0 is a zero of V with multiplicity atleast n+ k− 1. Now using the Milloux theorem
[[8], p. 55] and Lemma 1, we obtain from the definition of V that

m(r,V ) = O(logr).

Then by using Valiron-Mokhonko lemma (cf. [22]) and (4) we get

(n+ k−1)N(r,∞; f )
� N(r,0;V )
� T (r,V )+O(1)
� N(r,∞;V )+m(r,0;V)+O(1)

� N (r,0;F)+N (r,0;G)+N∗ (r,1;F,G)+O(logr)

� Nk+1(r,0; f n)+ kN (r,∞; f )+Nk+1(r,0;Ln)+ kN (r,∞;L)+N∗ (r,1;F,G)+O(logr)

� (k+1)N (r,0; f )+ (k+1)N (r,0;L)+ kN (r,∞; f )+N∗ (r,1;F,G)+O(logr).
(6)

This gives

(n−1)N(r,∞; f ) � (k+1){T (r, f )+T (r,L)}+N∗(r,1;F,G)+O(logr). (7)

This completes the proof of the Lemma. �

LEMMA 12. Let f be a nonconstant meromorphic function in C, let L be an non-

constant L-function and F = ( f n)(k)

p(z) , G = (Ln)(k)

p(z) , where p(z) be a nonzero polynomial

with deg (p) = m, n and k be two positive integers such that n > 3k+ 2. If f and L
share (∞,0) and H ≡ 0 then either [ f n](k) [Ln](k) ≡ p2 or f n ≡ Ln.

Proof. Since H ≡ 0, on integration we get

1
F −1

≡ bG+a−b
G−1

, (8)
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where a,b are constants and a �= 0. From (8) it is clear that F and G share (1,∞).
We now discuss the following three cases.
Case 1. Let b �= 0 and a �= b.
If b = −1, then from (8) we have

F ≡ −a
G−a−1

.

Therefore,
N(r,a+1;G) = N(r,∞;F) = N(r,∞; f )+O(logr).

So in view of Lemma 3 and the second fundamental theorem we get

nT (r,L) � T (r,G)+Nk+1(r.0;Ln)−N(r,0;G)+O(logr)

� N(r,∞;G)+N(r,0;G)+N(r,a+1;G)+Nk+1(r.0;Ln)−N(r,0;G)+O(logr)

� N(r,∞;L)+Nk+1(r.0;Ln)+N(r,∞; f )+O(logr)

� (k+1)N(r,0;L)+T (r, f )+O(logr)
� (k+1)T(r,L)+T (r, f )+O(logr)
� (k+2)T(r,L)+O(logr).

Without loss of generality, we suppose that there exists a set I with infinite measure
such that T (r, f ) � T (r,L) for r ∈ I. So for r ∈ I, we get a contradiction from above
since n > 3k+2.

If b �= −1, from (8) we obtain that

F −
(

1+
1
b

)
≡ −a

b2[G+ a−b
b ]

.

So,

N
(
r,

(b−a)
b

;G
)

= N(r,∞;F) = N(r,∞; f )+O(logr).

Using Lemma 3 and the same argument as used in the case when b = −1 we can get a
contradiction.

Case 2. Let b �= 0 and a = b.
If b = −1, then from (8) we have

FG ≡ 1,

that is
[ f n](k) [Ln](k) ≡ p2.

If b �= −1, from (8) we have

1
F

≡ bG
(1+b)G−1

.

Therefore,

N
(
r,

1
1+b

;G
)

= N(r,0;F).
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So in view of Lemma 3 and the second fundamental theorem we get

nT (r,L) � T (r,G)+Nk+1(r.0;Ln)−N(r,0;G)+O(logr)

� N(r,∞;G)+N(r,0;G)+N
(
r,

1
1+b

;G
)

+Nk+1(r.0;Ln)−N(r,0;G)+O(logr)

� N(r,∞;L)+ (k+1)N(r.0;L)+N(r,0;F)+O(logr)

� (k+1)N(r,0;L)+ (k+1)N(r.0; f )+ kN(r,∞; f )+O(logr)
� (k+1)T(r,L)+ (2k+1)T(r, f )+O(logr).

So for r ∈ I we have

nT (r,L) � (3k+2)T(r,L)+O(logr),

which is a contradiction since n > 3k+2.
Case 3. Let b = 0. From (8) we obtain

F ≡ G+a−1
a

. (9)

If a �= 1 then from (9) we obtain

N(r,1−a;G) = N(r,0;F).

We can similarly deduce a contradiction as in Case 2. Therefore a = 1 and from (9) we
obtain

F ≡ G.

Then by the Lemma 10 we have

f n ≡ Ln. �

3. Proof of Theorem 1

Proof. Suppose that d is the degree of L. Then d = 2∑k
i=1 λ j, where k and λ j

are respectively the positive integer and the positive real number in the axiom (iii) of
the definition of L - function.

Then we have that

T (r,L) =
d
Π

r logr+O(r) (10)

(cf. [[25], p. 150]). Clearly, f and L are transcendental meromorphic functions (cf.
[[5], p. 43]). Note that an L - function at most has one pole z = 1 in the complex plane.

Let F = ( f n)(k)

p(z) and G = (Ln)(k)

p(z) . It follows that F and G share (1, l) except the

zeros of p(z) and f ,g share (∞,0).
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Case 1. Let H �≡ 0.

Subcase 1.1. l � 1.

From (1) it can be easily calculated that the possible poles of H occur at (i) multi-
ple zeros of F and G, (ii) those 1 points of F and G whose multiplicities are different,
(iii) poles of F and G with different multiplicities, (iv) zeros of F

′
(G

′
) which are not

the zeros of F(F −1)(G(G−1)).
Since H has only simple poles we get

N(r,∞;H) � N∗ (r,∞; f ,g)+N∗ (r,1;F,G)+N(r,0;F | � 2)+N(r,0;G| � 2)

+N0
(
r,0;F ′)+N0

(
r,0;G′) ,

(11)

where N0 (r,0;F ′) is the reduced counting function of those zeros of F
′
which are not

the zeros of F(F −1) and N0 (r,0;G′) is similarly defined.

Let z0 be a simple zero of F − 1 but a(z0) �= 0,∞. Then z0 is a simple zero of
G−1 and a zero of H. So

N(r,1;F | = 1) � N(r,0;H) � N(r,∞;H)+O(logr). (12)

While l � 3, using (11) and (12) we get

N(r,1;F) � N(r,1;F | = 1)+N(r,1;F | � 2)

� N(r,∞; f )+N(r,0;F | � 2)+N(r,0;G| � 2)+N∗ (r,1;F,G)

+N(r,1;F | � 2)+N0
(
r,0;F ′)+N0

(
r,0;G′)+O(logr).

(13)

Now in view of Lemmas 4 and 7 we get

N0
(
r,0;G′)+N(r,1;F | � 2)+N∗ (r,1;F,G)

� N0
(
r,0;G′)+N(r,1;F | = 2)+N(r,1;F | = 3)+ . . .+N(r,1;F | = l)

+N
(l+1
E (r,1;F)+NL(r,1;F)+NL(r,1;G)+N∗ (r,1;F,G)

� N0
(
r,0;G′)−N(r,1;F | = 3)− . . .− (l−2)N(r,1;F | = l)− (l−1)NL(r,1;F)

− lNL(r,1;G)− (l−1)N(l+1
E (r,1;F)+N(r,1;G)−N(r,1;G)+N∗ (r,1;F,G)

� N0
(
r,0;G′)+N(r,1;G)−N(r,1;G)− (l−2)NL(r,1;F)− (l−1)NL(r,1;G)

� N(r,0;G
′ |G �= 0)− (l−2)NL (r,1;F)− (l−1)NL (r,1;G)

� N (r,0;G)+N (r,∞;G)− (l−2)N∗ (r,1;F,G)−NL (r,1;G)

� N (r,0;G)+N (r,∞;G)−N∗ (r,1;F,G)−NL (r,1;G) .
(14)

Hence using (13), (14), Lemmas 3 and 11 we get from the second fundamental theorem
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that

nT (r, f )
� T (r,F)+Nk+2(r,0; f n)−N2(r,0;F)+O(logr)

� N (r,0;F)+N (r,∞;F)+N (r,1;F)+Nk+2(r,0; f n)−N2(r,0;F)−N0

(
r,0;F

′)

� N (r,∞; f )+N (r,∞; f )+N (r,0;F)+Nk+2(r,0; f n)+N(r,0;F | � 2)

+N(r,0;G| � 2)+N(r,1;F | � 2)+N∗ (r,1;F,G)

+N0

(
r,0;G

′)−N2(r,0;F)+O(logr)

� 2N (r,∞; f )+N (r,∞;L)+Nk+2(r,0; f n)+N2(r,0;G)−N∗ (r,1;F,G)

−NL (r,1;G)+O(logr)

� 2N (r,∞; f )+Nk+2(r,0; f n)+N2

(
r,0;(Ln)(k)

)
−N∗ (r,1;F,G)+O(logr)

� 2N (r,∞; f )+ (k+2)N (r,0; f )+ (k+2)N (r,0;L)−N∗ (r,1;F,G)+O(logr)

� (k+2){T (r, f )+T (r,L)}+
2(k+1)
(n−1)

{T (r, f )+T (r,L)}+O(logr)

�
[
k+2+

2(k+1)
n−1

]
{T (r, f )+T (r,L)}+O(logr).

(15)

In a similar way we can obtain

nT (r,L) �
[
k+2+

(k+1)2

n−1

]
{T (r, f )+T (r,L)}+O(logr). (16)

Adding (15) and (16), we get

[
n−2k−4− (k+3)(k+1)

n−1

]
{T (r, f )+T (r,L)} � O(logr).

Since the quantity in the third bracket can be written as

[
(n−1)2− (2k+3)(n−1)− (k+3)(k+1)

n−1

]
, (17)

by a simple computation one can easily verify that when

n−1 > 3k+3 >
2k+3+

√
(2k+3)2 +4(k+3)(k+1)

2

i.e., when n > 3k+4 we get a contradiction from (17).
While l � 2, like (13), (14) and not using Lemma 11 in (15) we can deduce a

contradiction when n > 3k+6. So we omit the detail.
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While l = 1. From (3) we obtain

N2(r,0;F) � N2(r,0; [ f n](k))+S(r, f )

� T (r, [ f n](k))−nT(r, f )+Nk+2(r,0; f n)+S(r, f )
� T (r,F)−nT(r, f )+Nk+2(r,0; f n)+O{logr}+S(r, f ).

Which implies

nT (r, f ) � T (r,F)+Nk+2(r,0; f n)−N2(r,0;F)+O{logr}+S(r, f ). (18)

Using (18) and Lemma 8, we get

nT (r, f ) � 5
2
N (r,∞; f )+

1
2
N (r,0;F)+Nk+2(r,0; f n)+N2

(
r,0;(Ln)(k)

)
+O(logr)

� 5
2
N (r,∞; f )+

1
2

{
Nk+1(r,0; f n)+ kN (r,∞; f )

}
+Nk+2(r,0;Ln)

+ (k+2)N (r,0; f )+O(logr)

� 5+ k
2

N (r,∞; f )+
3k+5

2
N (r,0; f )+ (k+2)N (r,0;L)+O(logr)

� (2k+5)T(r, f )+ (k+2)T(r,L)+O(logr)
� (3k+7)T(r)+O(logr),

(19)

where T (r) = max{T (r, f ),T (r,g)} .
In a similar way we can obtain

nT (r,L) � (3k+7)T(r)+O(logr). (20)

Combining (19) and (20) we see that

nT (r) � (3k+7)T(r)+O(logr), (21)

i.e.,
(n−3k−7)T(r) � O(logr). (22)

Since n > 3k+7, (22) leads to a contradiction.
Subcase 1.2. l = 0. Using (18) and Lemma 9, we get

nT (r, f ) � 4N (r,∞; f )+3N (r,∞;L)+2N (r,0;F)+Nk+2(r,0; f n)+N2

(
r,0;(Ln)(k)

)

+N
(
r,0;(Ln)(k)

)
+O(logr)

� 4N (r,∞; f )+2Nk+1(r,0; f n)+2kN (r,∞; f )+ (k+2)N (r,0; f )

+Nk+2(r,0;Ln)+ kN (r,∞;L)+Nk+1(r,0;Ln)+ kN (r,∞;L)+O(logr)

� (2k+4)N (r,∞; f )+ (3k+4)N (r,0; f )+ (2k+3)N (r,0;L)+O(logr)
� (5k+8)T(r, f )+ (2k+3)T(r,L)+O(logr)
� (7k+11)T(r)+O(logr),

(23)
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where T (r) = max{T (r, f ),T (r,g)} .
In a similar way we can obtain

nT (r,L) � (7k+11)T(r)+O(logr). (24)

Combining (23) and (24) we see that

nT (r) � (7k+11)T(r)+O(logr), (25)

i.e.,
(n−7k−11)T(r) � O(logr). (26)

Since n > 7k+ 11, (26) leads to a contradiction.
Case 2. Let H ≡ 0. Then by Lemma 12, we obtain either

( f n)(k)(Ln)(k) ≡ p2

or
f n ≡ Ln.

We consider the following two cases:
Case 1. Suppose that ( f n)(k)(Ln)(k) ≡ p2.
Then,

F1G1 ≡ 1 (27)

where

F1 =
( f n)(k)

p(z)
, G1 =

(Ln)(k)

p(z)
. (28)

First of all, we prove that 0 is a Picard exceptional value of f and L . Indeed,
suppose that z0 �∈ (z : p(z) = 0) is a zero of f with multiplicity m. Then, by the view
of (27) we can find that z0 = 1 is a pole of L with multiplicity, say p1 , such that
mn− k = np1 + k, and so (m− p1)n = 2k and so we have n � 2k, which contradicts
the assumption n > 3k+4. Similarly, we can prove that 0 is a Picard exceptional value
of L. On the other hand, by (10) and (27), Valiron-Mokhonko lemma (cf. [22]), a result
from Whittaker [[26], p. 82] and the definition of the order of a meromorphic function
we have

ρ( f ) = ρ( f n) = ρ
(
( f n)(k)

)
= ρ

(
(Ln)(k)

)
= ρ(Ln) = ρ(L) = 1. (29)

Noting that L has at most one pole z = 1 in the complex plane, we have by (27), (29),
Lemma 2 that

(n+ k)N (r,∞; f ) � N
(
r,0;(Ln)(k)

)
� N (r,0;Ln)+ kN (r,∞;Ln)+O(logr) = O(logr).

(30)
Therefore,

N (r,∞; f )+N (r,∞;L) � O(logr). (31)
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Now we set

f1 =
( f n)(k)

(Ln)(k)
, f2 =

( f n)(k) −1

(Ln)(k) −1
. (32)

By (32) and the assumption that f and L are transcendental meromorphic functions.
We have f1 �≡ 0 and f2 �≡ 0. Suppose that one of f1 and f2 is a nonzero constant.
Then, by (32) we see that ( f n)(k) and (Ln)(k) share ∞ CM. Combining this with (27)
we deduce that ∞ is a Picard exceptional value of f and L. Next we suppose that f1
and f2 are nonconstant meromorphic functions.

Then, by (27) and (32) we have

F1 =
f1(1− f2)
f1 − f2

, G1 =
1− f2
f1 − f2

. (33)

By (33) we can find that there exists a subset I ⊂ (0,+∞) with infinite linear measure
such that S(r) = o(T (r)) and

T (r,F1) � 2(T (r, f1)+T (r, f2))+S(r)
� 8T (r,F1)+S(r).

(34)

These give S(r,F1) = S(r; f1, f2). Also we note that

N (r,0; fi)+N (r,∞; fi) = S(r; f1, f2),

for i = 1,2.
We note that N (r,−1;F1) �= S(r,F1), since otherwise by the second fundamental

theorem, F1 will be a constant.
Also we see that

N (r,−1;F1) � N0(r,1; f1, f2).

Thus we have
T (r, f1)+T (r, f2) � 4N0(r,1; f1, f2)+S(r,F1).

Then, by Lemma 6 there exists two mutually prime integers s and t(|s|+ |t|> 0) such
that

f s
1 f t

2 ≡ 1,

i.e., [
F1

G1

]s [ F1−1
G1 −1

]t

≡ 1. (35)

If either s or t is zero then we arrive at contradiction and so st �= 0.
By (35) we consider the following two subcases:
Subcase 1.1. Suppose that st < 0, say s > 0 and t < 0, say t = −t1, where t1 is

some Positive integer. Then, (35) can be written as

[
F1

G1

]s

≡
[

F1−1
G1−1

]t1
. (36)
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Let z1 be a pole of F1 of multiplicity p1. Then from (36) we see that z1 must be a zero
of G1 of multiplicity p1. Now from (36) we get 2s = t1, which is impossible. Hence
F1 has no pole. Similarly we can prove that G1 also has no poles.

Subcase 1.2. Suppose that st < 0 or st > 0. Then by (35) we can see that F1 and
G1 share ∞ CM. This together with (27) and (28) implies that ∞ is a Picard Exceptional
value of f and L. Combining this with the obtained result that 0 is a Picard Exceptional
value of f and L, we have

L(z) = eA2z+B2 , (37)

where A2 �= 0 and B2 are constants. By (37) and Hayman [[8], p. 7] we have

T (r,L) = T (r,eA2z+B2) =
|A2|r

π
(1+o(1)). (38)

Which contradicts (10).
Case 2. Suppose that f n = Ln. Then, we have f = tL, where t is a constant

satisfying tn = 1.
This completes the proof of Theorem 1. �

4. Proof of Theorem 2

Proof. Noting that N(r,∞; f ) = N(r,∞;L) = 0, and proceeding in the like manner
as the proof of Theorem 1 we obtain the proof of the Theorem 2. �
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