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REMARKS ON VĂLEAN’S MASTER THEOREM OF SERIES

NECDET BATIR

Abstract. We generalize Vălean’s Master Theorem of Series proved in [A master theorem of
series and evaluation of a cubic harmonic series, J. Classical Analysis, 2(10), 2017, 97-107].

1. Introduction and main results

In [1] Vălean proved a theorem on series, calling it “a Master Theorem of Series”,
which enabled him to evaluate many interesting series involving harmonic numbers.
More precisely, he proved the following theorem.

THEOREM 1. If k is a positive integer with M(k) = m(1)+ m(2) + · · ·+ m(k) ,
and m(k) are real numbers, where lim

k→∞
m(k) = 0 , then the following identity holds
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Using this theorem Vălean provided elementary proofs of the following interesting
known harmonic sums:
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where H(m)
n are generalized harmonic numbers defined by

H(1)
n = Hn and H(m)

n =
n

∑
k=1

1
km ,

Hn is the ussual n th harmonic number, and ζ is the Riemann zeta function defined by

ζ (m) =
∞

∑
k=1

1
km , m = 2,3 . . . .

Our aim in this short note is to generalize Vălean’s Master Theorem of Series. We need
the following Lemma for the proof of our main result.
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LEMMA 1. Let (ak)k�1 and (bk)k�1 be any two sequences of real or complex
numbers. Then we have

n

∑
k=1

ak

k

∑
j=1

b j =
n−1

∑
p=0

n−p

∑
k=1

bkap+k. (1)

Proof. We prove the lemma by induction on n . Clearly (1) is true for n = 1. We
assume that (1) is true for n and prove that it is also true for n+1. We have
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Since
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we have
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This shows that (1) is valid for n+1, which completes the proof of the lemma. �

If we let n → ∞ in (1), we get the following theorem.

THEOREM 2. Let (an)n�1 and (bn)n�1 be any two sequences of real or complex
numbers. Then we have
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provided that the series involved are convergent.
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If we let

ak =
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, bk = m(k) and M(k) =
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Since
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we conclude from (3) that
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Employing (5) in (4), we obtain

∞

∑
k=1

M(k)
(k+1)(n+ k+1)

=
1
n

∞

∑
k=1

[
m(k)
k+1

− m(k)
k+n+1

]

+
1
n

n+1

∑
j=2

∞

∑
k=1

m(k)
j + k

=
1
n

n

∑
j=1

∞

∑
k=1

m(k)
j + k

,



82 N. BATIR

which proves Vălean’s Master Theorem of Series.
If the series ∑∞

k=1 bk is convergent, we have
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By Theorem 2 we have
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Thus we conclude from (6) and (7) the following corollary

COROLLARY 1. Let (an)n�1 and (bn)n�1 be any two sequences of real or com-
plex numbers such that the series involved in the following expressions are convergent.
Then we have

∞

∑
n=1

an

n

∑
k=1

bk +
∞

∑
n=1

bn

n

∑
k=1

ak =
( ∞

∑
n=1

an

)( ∞

∑
n=1

bn

)
+

∞

∑
k=1

akbk.

If we take

an =
1
np and bn =

1
nq

in Corollary 1 we get for p,q > 1, both series converge when p and q are strictly
greater than 1, that
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∑
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n
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which is a known result.
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