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ON COEFFICIENT FUNCTIONALS ASSOCIATED

WITH THE ZALCMAN CONJECTURE

SARITA AGRAWAL AND SWADESH KUMAR SAHOO

Abstract. For a function f which is analytic and univalent in the unit disk {z ∈ C : |z| < 1}
having the power series expansion of the normalized form z+ ∑∞

n=2 anzn , Zalcman conjectured
that |a2

n − a2n−1| � (n− 1)2 , n = 2,3, . . . . In this article, we obtain the sharp estimate for
the classical Zalcman coefficient functional a2

n − a2n−1 for the above class of functions with
the restriction that the n -th coefficient, an , has certain integral representation associated with
probability measure. Moreover, we also study a similar problem for the classes of functions of
the above form whose coefficients satisfy certain inequalities.

1. Introduction

We denote by A , the class of all analytic functions f in D := {z ∈ C : |z|< 1} of
the form

f (z) = z+
∞

∑
n=2

anz
n, (1)

and by S , the class of univalent functions in A . Then |a2
2−a3|� 1 holds for f ∈S ,

see [20, Theorem 1.5]. At the end of 1960’s, Zalcman made a conjecture that each
f ∈ S satisfies the inequality

|a2
n−a2n−1| � (n−1)2, n � 2 (2)

with equality for the Koebe function k(z) = z/(1− z)2 and its rotations. One of the
main aims of the Zalcman conjecture was to prove the Bieberbach conjecture: |an| �
n , for n � 2, when f ∈ S , using the famous Hayman Regularity Theorem (see [5,
Theorem 5.6, pp. 163]). The Bieberbach conjecture was a challenging open problem
for function theorists for several decades and was finally settled by de Branges [3] in
1985.

There are several approaches made to prove the Zalcman conjecture. One of the
approaches is to prove the conjecture for some subclasses of S . For example, in [4],
Brown and Tsao proved that (2) holds for the class T of typically real functions and the
class S ∗ of starlike functions. In [17], Ma proved the Zalcman conjecture for the class
K of close-to-convex functions when n � 4. However, this conjecture was remained
open for n = 3 and this has recently been settled in [14]. Readers can refer to, for
instance, [1, 10, 11, 13, 14] and references therein for more information on this topic.
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A generalized version of Zalcman’s inequality, in terms of the so-called generalized
coefficient functional λa2

n−a2n−1 , λ > 0, has been considered in [1, 4, 6, 13].
In [18], Ma proposed a generalized version of the Zalcman conjecture as follows:

for f ∈ S ,
|anam −an+m−1| � (n−1)(m−1) (n,m = 2,3, . . .)

and proved that this holds for starlike functions and univalent functions with real coef-
ficients. Recently, Efraimidis and Vukotić in [6] proved that the Zalcman conjecture is
asymptotically true.

In this paper, we establish sharp estimates of the Zalcman conjecture in the form
proposed by Ma in [18] for some classes of analytic functions of the form (1) such that
the n -th coefficient an has the form

an = s(n)
∫ 2π

0
ei(n−1)θdμ(θ ),

where s(n) is some non-negative function of n and μ(θ ) is a probability measure on
[0,2π ] . We denote such class of functions by F . Note that the class F no longer
consists exclusively the univalent functions. For example, consider the function

f (z) =
z

1− z3 =
∞

∑
n=0

z3n+1 = z+ z4 + z7 + . . . , z ∈ D.

Here a3n+1 = 1 whereas an = 0. Hence f ∈ F . It can easily be seen that f (z) is not
univalent in D . In addition, we consider the functions of the form (1) such that the n -th
coefficient an satisfy the inequality

∞

∑
n=2

r(n)|an| � 1, r(n) > 0.

We denote such class of functions by H and obtain the sharp estimate for the Zalcman
coefficient functional for the class H .

We conclude this section with some basic definitions. A function f ∈ A is said
to be starlike of order β (0 � β < 1) if Re{z f ′(z)/ f (z)} > β and denote the class
of starlike functions of order β by S ∗(β ) . Similarly, a function f ∈ A is said to be
convex of order β (0 � β < 1) if Re{1+ z f ′′(z)/ f ′(z)} > β and denote the class of
convex functions of order β by C (β ) . Clearly, functions in the classes S ∗(β ) and
C (β ) are univalent in D . Moreover S ∗(0) = S ∗ and C (0) = C .

A function f is said to be uniformly starlike in D if f is starlike and has the
property that for every circular arc γ contained in D , with center ζ ∈D , the arc f (γ) is
starlike with respect to f (ζ ) . We denote by U S T , the class of all uniformly starlike
functions. Similarly, we say that a convex function f in D is uniformly convex if for
each circular arc γ in D with center η in D , the image arc f (γ) is convex. Denote the
class of all uniformly convex functions by U CV , see [7, 8]. We call a function f ∈A
is ν -spiral-like of order β ,0 � β < 1, if there is a real number ν (−π/2 < ν < π/2)
such that Re [eiν{z f ′(z)/ f (z)}] > β cosν for z ∈ D . We denote by S ν

p (β ) , the class
of ν -spiral-like functions of order β , see [12]. More literature on spiral-like functions
can be found in [2, 16, 19]. Recent investigation on spiral-like functions in connection
with Yamashita conjecture, and integral means may be found from [21].
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2. Main results

This section is devoted to our main results. The following lemma follows from the
work of Ma [18] and other recent results (see also [22, Lemma 1.4]).

LEMMA A. Let μ(θ ) be a probability measure on [0,2π ] . Then for λ ∈ C ,∣∣∣∣λ
∫ 2π

0
ei(n−1)θdμ(θ )

∫ 2π

0
ei(m−1)θ dμ(θ )−

∫ 2π

0
ei(n+m−2)θdμ(θ )

∣∣∣∣ � max{|λ −1|,1}

for n,m = 2,3, . . . .

Now we state the first main result of this paper.

THEOREM 1. Let f ∈ F . Then for λ ∈ C and n,m = 2,3, . . . ,

|λanam −an+m−1| � max{|λ s(n)s(m)− s(n+m−1)|,s(n+m−1)}.
The inequality is sharp.

Proof. Using the integral representations of the coefficients an,am and an+m−1 in
the expression λanam −an+m−1 , we rewrite

|λanam −an+m−1|

=
∣∣∣∣λ s(n)s(m)

∫ 2π

0
ei(n−1)θdμ(θ )

∫ 2π

0
ei(m−1)θdμ(θ )

−s(n+m−1)
∫ 2π

0
ei(n+m−2)θdμ(θ )

∣∣∣∣
= s(n+m−1)

∣∣∣∣λ s(n)s(m)
s(n+m−1)

∫ 2π

0
ei(n−1)θdμ(θ )

∫ 2π

0
ei(m−1)θ dμ(θ )

−
∫ 2π

0
ei(n+m−2)θ dμ(θ )

∣∣∣∣ .
Now, by applying Lemma A, we have

|λanam −an+m−1| � max{|λ s(n)s(m)− s(n+m−1)|,s(n+m−1)}.
The sharpness of the inequality can be verified from the following example:

F(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z+
∞

∑
n=2

s(n)zn(=: f0(z)), |λ s(n)s(m)− s(n+m−1)|� s(n+m−1),

1
n+m−2

n+m−2

∑
k=1

e−iφk f0(eiφk z), |λ s(n)s(m)− s(n+m−1)|< s(n+m−1),

where φk =
2kπ

n+m−2
. The proof of our theorem is complete. �

The case n = m in Theorem 1 gives
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COROLLARY 1. Let f ∈ F . Then for λ ∈ C

|λa2
n−a2n−1| � max{|λ s(n)2− s(2n−1)|,s(2n−1)}, n � 2.

The inequality is sharp and can be verified from the following example:

F(z) =

⎧⎪⎨
⎪⎩

f0(z), |λ s(n)2− s(2n−1)|� s(2n−1),
2n−2

∑
k=1

mke
−iθk f0(eiθk z), |λ s(n)2− s(2n−1)|< s(2n−1).

Here 0 � mk � 1 , θk =
(2k+1)π

2n−2
, and

n−1

∑
k=1

m2k =
n−1

∑
k=1

m2k−1 =
1
2
. Note that mk can

attain the value 1/(2n−2) .

REMARK 1. Theorem 1 and Corollary 1 help us to estimate the generalized Zal-
cman coefficient functional λanam−an+m−1 and λa2

n−a2n−1 for several subclasses of
functions in F . For instance, the results stated below are consequences of Theorem 1
and Corollary 1.

Let us denote by co(S ∗(α)) , α < 1, the closed convex hull of S ∗(α) . Then, for
all f in co(S ∗(α)) , the n -th coefficients of the series expansion of f can be written
in the form that

an =
1

(n−1)!

n−2

∏
j=0

(2(1−α)+ j)
∫ 2π

0
ei(n−1)θdμ(θ ), n � 2.

Hence, for f ∈ co(S ∗(α)) , s(n) =
1

(n−1)!

n−2

∏
j=0

(2(1−α)+ j) = An(say) .

An immediate corollary to Theorem 1 for the class co(S ∗(α)) is the following
result.

COROLLARY 2. [22, Theorem 2.1] If f ∈ co(S ∗(α)) (α < 1) , then

|λanam −an+m−1| � max{|λAnAm −An+m−1|,An+m−1}.
Equality occur for the functions given by

F(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

kα(z) = z/(1− z)2(1−α) = z+
∞

∑
n=2

s(n)zn, |λAnAm−An+m−1| � An+m−1,

kn,m
α (z) =

1
n+m−2

n+m−2

∑
k=1

e−iφk kα(eiφk z), |λAnAm−An+m−1| < An+m−1.

Here mk , θk and φk are the same quantities as defined in Theorem 1 and Corollary 1.

REMARK 2. Here we have pointed out several consequences of Theorem 1 and
Corollary 1 for the classes co(S ∗(α)) and co(S ∗) .
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• The case m = n in Corollary 2 gives

|λa2
n−a2n−1| � max{|λA2

n−A2n+1|,A2n−1}

for n = 2,3, . . . . Equality occurs for the functions kα(z) and

kn
α(z) =

2n−2

∑
k=1

mk
z

(1− eiθkz)2(1−α) .

Here kα(z) is the function as defined in Corollary 2. This result is also pointed
out in [22, Corollary 2.2].

• The case α = 0 in Corollary 2 gives: if f ∈ co(S ∗) , then

|λanam−an+m−1| � max{|λnm−n−m+1)|,n+m−1}.

Equality occurs for the functions k0(z) = ∑∞
n=1 nzn = z/(1− z)2 and its rotations

when |λnm−n−m+1)|� n+m−1 and for the function

kn,m
0 (z) =

1
n+m−2

n+m−2

∑
k=1

z
(1− eiφkz)2 =

∞

∑
r=0

(r(n+m−2)+1)zr(n+m−2)+1,

when |λnm−n−m+1)|� n+m−1. This is proved in [6, Theorem 3.5].

• The restrictions on λ , 2(n+m−1)
nm � λ ∈R , in Theorem 1 obtains the result proved

by Ma [18, Theorem 2.2].

• If f ∈ co(S ∗) , then for m = n , we have

|λa2
n−a2n−1| � max{|λn2−2n+1|,2n−1}

for n = 2,3, . . . . Equality occurs for the functions k0(z) and

kn
0(z) =

2n−2

∑
k=1

mk
z

(1− eiθkz)2 .

This result is a consequence of Corollary 2.

• Another consequence of Corollary 2 obtains a result of Brown and Tsao [4,
p. 474]. That is, If λ ∈ R and f ∈ co(S ∗) , then

|λa2
n−a2n−1| �

⎧⎪⎨
⎪⎩

2n−1, 0 � λ � 2(2n−1)
n2 ,

λn2−2n+1, λ >
2(2n−1)

n2 ,

for n = 2,3, . . . .
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Let us denote by co(C (α)) , α < 1, the closed convex hull of C (α) . Then, for
all f in co(C (α)) , the n -th coefficients of the series expansion of f can be written in
the form that

an =
1
n!

n−2

∏
j=0

(2(1−α)+ j)
∫ 2π

0
ei(n−1)θdμ(θ ), n � 2.

Hence, for f ∈ co(C (α)) , s(n) =
1
n!

n−2

∏
j=0

(2(1−α)+ j) =
An

n
= Bn(say) .

The function defined by

lα(z) =

⎧⎨
⎩

1− (1− z)2α−1

2α −1
, for α �= 1/2,

− log(1− z), for α = 1/2,

is often extremal in the class C (α) . The coefficients an of lα(z) are Bn .
As a consequence of Theorem 1, we have the following result for the class co(C (α))

which is also proved in [22, Corollary 2.3] and [6, Theorem 3.4].

COROLLARY 3. If f ∈ co(C (α)) (α < 1) , then

|λanam −an+m−1| � max{|λBnBm −Bn+m−1|,Bn+m−1}.
Equality occurs for the functions lα(z) and its rotations when |λBnBm −Bn+m−1| �
Bn+m−1 and for the function

ln,m
α (z) =

1
n+m−2

n+m−2

∑
k=1

e−iφk lα(eiφk z),

when |λBnBm −Bn+m−1| � Bn+m−1 . Here φk is the same quantity as defined in Theo-
rem 1.

COROLLARY 4. [22, Corollary 2.4] If f ∈ co(C (α)) , then Corollary 1 gives

|λa2
n−a2n−1| � max{|λB2

n−B2n−1|,B2n−1}
for n = 2,3, . . . . Equality occurs for the functions lα(z) and

lnα(z) =
2n−2

∑
k=1

mke
−iθk lα(eiθk z),

where mk and θk are defined as in Corollary 1.

It can easily be checked that for α = −1/2, Bn = (n+1)/2. As a consequence of
Corollary 3, we have the following result for the class co(C (−1/2)) . Note that in [13,
Theorem 3.3], the authors have proved the following result by considering three cases
for n � 3. Here all the three cases are covered in two cases.
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COROLLARY 5. If f ∈ co(C (−1/2) , then

|λa2
n−a2n−1| �

⎧⎪⎪⎨
⎪⎪⎩

n, 0 � λ � 8n
(n+1)2 ,∣∣∣∣ (n+1)2

4
λ −n

∣∣∣∣ , elsewhere,

for n = 2,3, . . . . The sharpness of the second inequality can be verified by the function

l−1/2(z) =
∞

∑
n=1

n+1
2

zn =
z− z2/2
(1− z)2 and its rotations; and sharpness of the first inequality

can be verified by the function

ln−1/2(z) =
2n−2

∑
k=1

mke
−iθk l−1/2(e

iθk z).

Here mk and θk are the same as defined in Corollary 1.

Moreover, as a consequence of Theorem 1, Corollary 5 can be generalized in the
following way:

COROLLARY 6. If f ∈ co(C (−1/2) , then

|λanam −an+m−1| �

⎧⎪⎪⎨
⎪⎪⎩

n+m
2

, 0 � λ � 4(n+m)
(n+1)(m+1)

,∣∣∣∣ (n+1)(m+1)
4

λ − n+m
2

∣∣∣∣ , elsewhere,

for n = 2,3, . . . . The second inequality is sharp for the function l−1/2(z) whereas the
first inequality is sharp for the function

ln,m
−1/2(z) =

1
n+m−2

n+m−2

∑
k=1

e−iφk l−1/2(e
iφk z).

Observe that

• For α = 0, Corollary 3 reduces to [6, Theorem 3.3].

• For the case α = 0 and λ ∈ R , Corollary 4 reduces to the result obtained by Li
et al. in [15, Theorem 1].

• For −1/2 � α < 0, Corollary 4 coincides with [15, Theorem 2].

• For 0 < α < 1, α �= 1
2 , Corollary 4 coincides with [15, Theorem 3].

• For α = 1/2, Corollary 4 coincides with [15, Theorem 4].
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We now consider the functions in the normalized class

R(β ) := { f ∈ A : Re f ′(z) > β}
where β ∈ [0,1) . Denote R = R(0) .

By the Herglotz representation theorem for functions with positive real part [5,
1.9], there is a unique probability measure μ on [0,2π ] such that

f ′(z)−β
1−β

=
∫ 2π

0

1+ eiθz
1− eiθz

dμ(θ )

or, equivalently,

1+
∞

∑
n=2

nanz
n−1 = 1+(1−β )

∞

∑
n=2

2
∫ 2π

0
einθ dμ(θ )zn.

Comparing the coefficients, we obtain

an =
2(1−β )

n

∫ 2π

0
ei(n−1)θdμ(θ ), n � 2.

Hence for f ∈ R(β ) , β ∈ [0,1) , s(n) = 2(1−β )/n .
Now, as consequence of Theorem 1 we have the following result which is also

pointed out in [22, Theorem 3.1].

COROLLARY 7. If f ∈ R(β ) , then

|λanam−an+m−1| � max

{∣∣∣∣4λ (1−β )2

nm
− 2(1−β )

n+m−1

∣∣∣∣ , 2(1−β )
n+m−1

}
,

for n = 2,3, . . . . The sharpness of the first inequality can easily be verified by using
the function mβ (z) = −2(1− β ) ln(1− z)− z(1− 2β ) and its rotations whereas the
sharpness of the second inequality can be verified by using the function

mn,m
β (z) =

1
n+m−2

n+m−2

∑
k=1

e−iφkmβ (eiφk z).

Here φk is the same quantity as defined in Theorem 1.

For β = 0, Corollary 7 reduces to [6, Theorem 3.2]. In particular, when m = n ,
Corollary 7 leads to

COROLLARY 8. If f ∈ R(β ) , then

|λa2
n−a2n−1| � max

{∣∣∣∣4λ (1−β )2

n2 − 2(1−β )
2n−1

∣∣∣∣ , 2(1−β )
2n−1

}
,

for n = 2,3, . . . . The sharpness of the first inequality can easily be verified using the
function mβ (z) and its rotations. Sharpness of the second inequality can be verified for
the function

mn
β (z) =

2n−2

∑
k=1

mke
−iθkmβ (eiθk z).

Here mk and θk are the same as defined in Corollary 1.
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2.1. The class H

Recall that

H =

{
f ∈ A : f (z) = z+

∞

∑
n=2

anz
n and

∞

∑
n=2

r(n)|an| � 1,r(n) > 0 for n � 2

}
.

Here is a partial list of restrictions on r(n) such that H is a subclass of S . For
example,

• If r(n) = (n−β )/(1−β ) , then H ⊂S ∗(β )⊂S [23]. In particular, for β = 0
we have H = H , the Hurwitz class.

• If r(n) = n(n−β )/(1−β ) , then H ⊂ C (β ) ⊂ S [23].

• If r(n) = 3n−2, then H ⊂ U S T ⊂ S [9].

• If r(n) = n(2n−1) , then H ⊂ U C V ⊂ S [9].

• If r(n) = n/(1−β ) , then H ⊂ R(β ) ⊂ S .

• If r(n) = 1+[(n−1)/(1−β )]secν , then H ⊂ S ν
p (β ) ⊂ S [12].

In all these classes β ∈ [0,1) . We now state our main result for the class H .

THEOREM 2. (a) Let λ ∈ C and n = 2,3, . . . . For f ∈ H , we have

|λa2
n−a2n−1| � max

{ |λ |
r(n)2 ,

1
r(2n−1)

}
.

Equality holds if and only if

f (z) =

⎧⎪⎪⎨
⎪⎪⎩

z+
α

r(2n−1)
z2n−1 for |λ | � r(n)2

r(2n−1)
,

z+
α

r(n)
zn for |λ | � r(n)2

r(2n−1)
,

where α is a complex number such that |α| = 1 .
(b) If f ∈ H and λ ∈ C then for two distinct values m,n � 2 we have

|λanam −an+m−1| � max

{ |λ |
4r(n)r(m)

,
1

r(n+m−1)

}
.

Equality holds if and only if

f (z) =

⎧⎪⎪⎨
⎪⎪⎩

z+
α

r(n+m−1)
zn+m−1 for |λ | � 4r(n)r(m)

r(n+m−1)
,

z+
α

2r(n)
zn +

β
2r(m)

zm for |λ | � 4r(n)r(m)
r(n+m−1)

,

where α and β are complex numbers such that |α| = |β | = 1 .
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We remark that for the choice r(n) = n , Theorem 2 turns into [6, Theorem 3.1(a)].
We here adopt the proof technique of [6, Theorem 3.1(a)]. To prove the generalized
Zalcman problem for H , we need the following lemma.

LEMMA 1. [6, Lemma 2.1] Let a,b ∈ C be arbitrary and let C,M > 0 . Then

|a+ λb|� max{C, |λ |}, for all λ ∈ C (3)

if and only if
|a|+ |b|C � MC. (4)

Assuming that a,b �= 0 , equality holds in (3) for some λ �= 0 if and only if it holds in (4)
and also |λ | = C and argλ = arga− argb (taking the values of the argument function
modulus 2π ).

Proof of Theorem 2. (a) By the definition of the class H , r(n)|an| � 1 and
r(n)|an|+ r(2n−1)|a2n−1| � 1. Therefore,

r(n)2|an|2 + r(2n−1)|a2n−1| � r(n)|an|+ r(2n−1)|a2n−1| � 1.

Substituting the values M = 1/r(n)2 and C = r(n)2/r(2n−1) in Lemma 1, we obtain
the desired result.

(b) From the definition, it is clear that r(n)|an|+ r(m)|am| � 1. Therefore,

4nm|anam| � (r(n)|an|+ r(m)|am|)2 � r(n)|an|+ r(m)|am|.

Hence,

4r(n)r(m)|anam|+r(n+m−1)an+m−1 � r(n)|an|+r(m)|am|+r(n+m−1)an+m−1 � 1.

The conclusion now follows by taking M = 1/4r(n)r(m) and C = 4r(n)r(m)/r(n+m−1)
in Lemma 1. �

3. Concluding remarks

In the earlier version of this article (arXiv:1604.05494) we had posed the open
problems on the generalized Zalcman conjecture in the form proposed by Ma in [18]
for the classes co(C) and R(β ) when 0 < λ < 2 and 0 < λ < nm/(1−β )(n+m−1)
respectively. These problems are recently settled by Ravichandran and Verma in [22]
(see, [22, Corollary 2.4, Theorem 3.1]).
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