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ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES

AHMET KARAKAŞ

Abstract. In the present paper, a general theorem dealing with |A, pn;δ |k summability method
of infinite series has been proved by using almost increasing sequences. Some results have also
been given.

1. Introduction

Let ∑an be a given infinite series with the partial sums (sn) . Let (pn) be a se-
quence of positive numbers such that

Pn =
n

∑
v=0

pv → ∞ as (n → ∞), (P−i = p−i = 0, i � 1) . (1)

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal en-
tries. Then A defines the sequence-to-sequence transformation, mapping the sequence
s = (sn) to As = (An(s)) , where

An(s) =
n

∑
v=0

anvsv, n = 0,1, . . . (2)

The series ∑an is said to be summable |A, pn;δ |k , k � 1 and δ � 0, if (see [10])

∞

∑
n=1

(
Pn

pn

)δk+k−1

|ΔAn(s)|k < ∞, (3)

where

ΔAn(s) = An(s)−An−1(s).

If we take δ = 0, then |A, pn;δ |k summability reduces to |A, pn|k summability (see
[18]). If we take δ = 0, anv = pv

Pn
, then we get |N, pn|k summability (see [2]). Fur-

thermore, if we take δ = 0, anv = pv
Pn

and pn = 1 for all values of n , then |A, pn;δ |k
summability reduces to |C,1|k summability (see [7]).
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infinite series, Minkowski inequality, summability factor.

c© � � , Zagreb
Paper JCA-13-09

133

http://dx.doi.org/10.7153/jca-2018-13-09


134 A. KARAKAŞ

2. Known result

In [3], Bor has proved the following theorem for
∣∣∣N, pn

∣∣∣
k

summability factors of

infinite series using positive non-decreasing sequence.

THEOREM 1. Let (Xn) be a positive non-decreasing sequence and let there be
sequences (βn) and (λn) such that

| Δλn |� βn, (4)

βn → 0 as n → ∞, (5)
∞

∑
n=1

n | Δβn | Xn < ∞, (6)

| λn | Xn = O(1). (7)

If

n

∑
v=1

| sv |k
v

= O(Xn) as n → ∞ (8)

and (pn) is a sequence such that

Pn = O(npn), (9)

PnΔpn = O(pnpn+1), (10)

then the series ∑∞
n=1 an

Pnλn
npn

is summable | N, pn |k , k � 1.

REMARK 1. It should be noted that, from the hypotheses of Theorem 1, (λn) is
bounded and Δλn = O(1/n) (see [3]).

3. Main result

A positive sequence (bn) is said to be almost increasing if there exists a positive
increasing sequence (cn) and two positive constants K and L such that Kcn � bn �
Lcn (see [1]). Many works on almost increasing sequences have been done (see [4]–
[6], [11]–[17]). The purpose of this paper is to generalize Theorem 1 for |A, pn;δ |k
summability. Before giving the main theorem, we must first introduce some further
notations.

Given a normal matrix A = (anv) , we associate two lower semimatrices A = (anv)
and Â = (ânv) as follows:

anv =
n

∑
i=v

ani, n,v = 0,1, . . . (11)

and

â00 = a00 = a00, ânv = anv− an−1,v, n = 1,2, . . . (12)
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It may be noted that A and Â are the well-known matrices of series-to-sequence and
series-to-series transformations, respectively. Then, we have

An (s) =
n

∑
v=0

anvsv =
n

∑
i=0

aniai (13)

and

ΔAn (s) =
n

∑
i=0

âniai. (14)

Now, we shall prove the following theorem.

THEOREM 2. Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0,1, . . . , (15)

an−1,v � anv, f or n � v+1, (16)

ann = O

(
pn

Pn

)
, (17)

| ân,v+1 |= O(v | Δv(ânv) |), (18)

m+1

∑
n=v+1

(
Pn

pn

)δk

|Δvânv| = O

((
Pv

pv

)δk pv

Pv

)
as m → ∞, (19)

m+1

∑
n=v+1

(
Pn

pn

)δk

|ân,v+1| = O

((
Pv

pv

)δk
)

as m → ∞. (20)

Let (Xn) be an almost increasing sequence. If conditions (4)–(7) and (9)–(10) of The-
orem 1 and

n

∑
v=1

(
Pv

pv

)δk |sv|k
v

= O(Xn) as n → ∞, (21)

are satisfied, then the series ∑∞
n=1 an

Pnλn
npn

is summable |A, pn;δ |k , k � 1 and 0 � δ <

1/k .

We should give the following lemmas for the proof of Theorem 2.

LEMMA 1. ([8]) If (Xn) is an almost increasing sequence, then under the condi-
tions (5)–(6), we have

nXnβn = O(1) as n → ∞, (22)
∞

∑
n=1

βnXn < ∞. (23)

LEMMA 2. ([9]) If the conditions (9) and (10) are satisfied, then we have

Δ
(

Pn

npn

)
= O

(
1
n

)
. (24)
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4. Proof of Theorem 2

Let (Mn) denotes the A-transform of the series ∑ anλnPn
npn

. Then, we have

ΔMn =
n

∑
v=1

ânv
avλvPv

vpv

by (13) and (14). By applying Abel’s transformation, we get

ΔMn =
n−1

∑
v=1

Δv

(
ânvλvPv

vpv

) v

∑
r=1

ar +
ânnPnλn

npn

n

∑
v=1

av

=
n−1

∑
v=1

Δv

(
ânvλvPv

vpv

)
sv +

annPnλn

npn
sn

=
n−1

∑
v=1

PvλvΔv(ânv)
vpv

sv +
n−1

∑
v=1

ân,v+1ΔλvPv+1

(v+1)pv+1
sv

+
n−1

∑
v=1

ân,v+1λvΔ
(

Pv

vpv

)
sv +

annPnλn

npn
sn

= Mn,1 +Mn,2 +Mn,3 +Mn,4.

To complete the proof of Theorem 2, by Minkowski’s inequality, it is enough to show
that

∞

∑
n=1

(
Pn

pn

)δk+k−1

| Mn,r |k< ∞, for r = 1,2,3,4.

First, by applying Hölder’s inequality with indices k and k′ , where k > 1 and 1
k + 1

k′ =
1, we have that

m+1

∑
n=2

(
Pn

pn

)δk+k−1

|Mn,1|k �
m+1

∑
n=2

(
Pn

pn

)δk+k−1
{

n−1

∑
v=1

(
Pv

vpv

)
|Δv(ânv)| |λv||sv|

}k

�
m+1

∑
n=2

(
Pn

pn

)δk+k−1
{

n−1

∑
v=1

(
Pv

vpv

)k

|Δv(ânv)||λv|k|sv|k
}

×
{

n−1

∑
v=1

|Δv(ânv)|
}k−1

.

By (11) and (12), we have

Δv(ânv) = ânv− ân,v+1 = anv − an−1,v− an,v+1 + an−1,v+1 = anv−an−1,v.

Thus using (11), (15) and (16)

n−1

∑
v=1

|Δv(ânv)| =
n−1

∑
v=1

(an−1,v−anv) � ann.
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Hence,

m+1

∑
n=2

(
Pn

pn

)δk+k−1

|Mn,1|k �
m+1

∑
n=2

(
Pn

pn

)δk+k−1

ak−1
nn

{
n−1

∑
v=1

(
Pv

pv

)k 1
vk
|Δv(ânv)||λv|k|sv|k

}

= O(1)
m

∑
v=1

(
Pv

pv

)k 1
vk |λv|k|sv|k

m+1

∑
n=v+1

(
Pn

pn

)δk

|Δv(ânv)|

= O(1)
m

∑
v=1

(
Pv

pv

)δk(Pv

pv

)k−1 1
vk |λv|k−1|λv||sv|k

= O(1)
m

∑
v=1

(
Pv

pv

)δk

|λv| |sv|k
v

= O(1)
m−1

∑
v=1

Δ|λv|
v

∑
i=1

(
Pi

pi

)δk |si|k
i

+O(1)|λm|
m

∑
v=1

(
Pv

pv

)δk |sv|k
v

= O(1)
m−1

∑
v=1

|Δλv|Xv +O(1)|λm|Xm

= O(1)
m−1

∑
v=1

βvXv +O(1)|λm|Xm

= O(1) as m → ∞,

by virtue of the hypotheses of Theorem 2 and Lemma 1.
By using (9) and Hölder’s inequality, we have that

m+1

∑
n=2

(
Pn

pn

)δk+k−1

|Mn,2|k = O(1)
m+1

∑
n=2

(
Pn

pn

)δk+k−1
{

n−1

∑
v=1

|ân,v+1||Δλv||sv|
}k

= O(1)
m+1

∑
n=2

(
Pn

pn

)δk+k−1
{

n−1

∑
v=1

|ân,v+1||Δλv||sv|k
}

×
{

n−1

∑
v=1

|ân,v+1||Δλv|
}k−1

= O(1)
m+1

∑
n=2

(
Pn

pn

)δk+k−1

ak−1
nn

{
n−1

∑
v=1

|ân,v+1|βv |sv|k
}

= O(1)
m

∑
v=1

βv |sv|k
m+1

∑
n=v+1

(
Pn

pn

)δk

|ân,v+1|

= O(1)
m

∑
v=1

(
Pv

pv

)δk

vβv
|sv|k
v
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= O(1)
m−1

∑
v=1

Δ(vβv)
v

∑
i=1

(
Pi

pi

)δk |si|k
i

+O(1)mβm

m

∑
v=1

(
Pv

pv

)δk |sv|k
v

= O(1)
m−1

∑
v=1

|Δ(vβv)|Xv +O(1)mβmXm

= O(1)
m−1

∑
v=1

v|Δβv|Xv +O(1)
m−1

∑
v=1

βvXv +O(1)mβmXm

= O(1) as m → ∞,

by virtue of the hypotheses of Theorem 2 and Lemma 1.

Since Δ
(

Pv
vpv

)
= O

(
1
v

)
by (24), as in Mn,1 , we have that

m+1

∑
n=2

(
Pn

pn

)δk+k−1

|Mn,3|k = O(1)
m+1

∑
n=2

(
Pn

pn

)δk+k−1
{

n−1

∑
v=1

1
v
|ân,v+1||λv||sv|

}k

= O(1)
m+1

∑
n=2

(
Pn

pn

)δk+k−1 n−1

∑
v=1

1
v
|ân,v+1||λv|k|sv|k

×
{

n−1

∑
v=1

|Δv(ânv)|
}k−1

= O(1)
m+1

∑
n=2

(
Pn

pn

)δk+k−1

ak−1
nn

n−1

∑
v=1

1
v
|ân,v+1||λv|k|sv|k

= O(1)
m

∑
v=1

1
v
|λv|k−1|λv||sv|k

m+1

∑
n=v+1

(
Pn

pn

)δk

|ân,v+1|

= O(1)
m

∑
v=1

(
Pv

pv

)δk

|λv| |sv|k
v

= O(1) as m → ∞,

by virtue of the hypothese of Theorem 2 and Lemma 1.
Finally, as in Mn,1 , we have that

m

∑
n=1

(
Pn

pn

)δk+k−1

|Mn,4|k = O(1)
m

∑
n=1

(
Pn

pn

)δk+k−1( pn

Pn

)k 1
nk

(
Pn

pn

)k

|λn|k−1 |λn| |sn|k

= O(1)
m

∑
n=1

(
Pn

pn

)δk

|λn| |sn|k
n

= O(1) as m → ∞,

by virtue of the hypotheses of Theorem 2 and Lemma 1.
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5. Conclusions

If we take (Xn) as a positive non-decreasing sequence, δ = 0 and anv = pv
Pn

in
Theorem 2, then we get Theorem 1. In this case, the condition (21) reduces to the
condition (8). Also, the conditions (15)–(20) are automatically satisfied. Also, if we
take δ = 0, anv = pv

Pn
and pn = 1 for all values of n , then we get a result for |C,1|k

summability.
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