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ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES

AHMET KARAKAS

Abstract. In the present paper, a general theorem dealing with |A, p,; 8|, summability method
of infinite series has been proved by using almost increasing sequences. Some results have also
been given.

1. Introduction

Let Y a, be a given infinite series with the partial sums (s,). Let (p,) be a se-
quence of positive numbers such that

Pi=Y py—o as (n—ee), (Py=p;=0, ix>1). (1)
v=0

Let A = (ayy) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal en-
tries. Then A defines the sequence-to-sequence transformation, mapping the sequence
s=(sy) to As = (A,(s)), where

n
An(s) = amsy, n=0,1,... (2)
v=0

The series Y a, is said to be summable |A, p,;6|;, k=1 and & > 0, if (see [10])

</ p N\ Sktk=1
> (—) |AAL ()} < o0, 3)

n=1 Pn
where
AAu(s) = An(s) — A1 (s).

If we take 6 = 0, then |A, p,;S[x summability reduces to |A, p,[r summability (see

[18]). If we take 6§ =0, a,, = %‘, then we get |N, pu|r summability (see [2]). Fur-

thermore, if we take 6 =0, a,, = %’ and p, = 1 for all values of n, then |A, p,; 0|«

summability reduces to |C, 1|; summability (see [7]).
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2. Known result

summability factors of

In [3], Bor has proved the following theorem for ’]\7 P .

infinite series using positive non-decreasing sequence.

THEOREM 1. Let (X)) be a positive non-decreasing sequence and let there be
sequences (B,) and (Ay) such that

| A2 [< Ba, 4)
Br—0 as n— oo, (5)
> | ARy | Xn < oo, (6)
n=1
‘An‘XnZO(l)' (7
If
n k
Z|SV‘ X,) as n— e (8)
and (py) is a sequence such that
PuApn = O(pnpn+1), (10)

then the series Y., a, IZ’;” is summable | N,pn lp k> 1.
n

REMARK 1. It should be noted that, from the hypotheses of Theorem 1, (4,) is
bounded and A4, = O(1/n) (see [3]).

3. Main result

A positive sequence (b,) is said to be almost increasing if there exists a positive
increasing sequence (c,) and two positive constants K and L such that K¢, < b, <
Lc,, (see [1]). Many works on almost increasing sequences have been done (see [4]-
[6], [L1]-[17]). The purpose of this paper is to generalize Theorem 1 for |A, p,;d|x
summability. Before giving the main theorem, we must first introduce some further
notations.

Given a normal matrix A = (ay,), we associate two lower semimatrices A = (&)
and A = (d,,) as follows:

am =Y an, nv=0,1,... (11)
i=v

and

dop = app = Aoy, A = Apy — Ap—1,y, n=1,2,... (12)
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It may be noted that A and A are the well-known matrices of series-to-sequence and
series-to-series transformations, respectively. Then, we have

n n
An(s) =D amsy = Y, aniai (13)
v=0 i=0
and
AA, (s) =Y duiai. (14)
i=0

Now, we shall prove the following theorem.

THEOREM 2. Let A = (ayy) be a positive normal matrix such that

don=1,n=0,1,..., (15)
an—l7v>anw fornz=zv+1, (16)
ann:0<%: s (17)

| a1 =0 [ Av(dm) |), (18)

m+1 P ok P Sk
Y () Adwl=0( (2] 2} as m—e, (19)
n=v+1 \Pn Dv B
m+1 P ok P Sk
Z (p—") |dpy+1| =0 ((p—v> as m — oo, (20)
n=v+1 n v

Let (X,) be an almost increasing sequence. If conditions (4)—(7) and (9)—~(10) of The-
orem 1 and

n ok k
E(P”> 5F o) as 0 @1)

y=1 \Pv v

are satisfied, then the series Y, a, Z";:” is summable |A,pn;6|;, k=1 and 0 < 6 <

1/k.

We should give the following lemmas for the proof of Theorem 2.

LEMMA 1. ([8]) If (X,) is an almost increasing sequence, then under the condi-
tions (5)—(6), we have

nXpB,=0(1) as n— oo, (22)
S B, < o (23)
n=1

LEMMA 2. ([9]) If the conditions (9) and (10) are satisfied, then we have

A(P"):OG). (24)
npy n
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4. Proof of Theorem 2

Let (M,) denotes the A-transform of the series Y, “"fT"P" . Then, we have
- L. AP
MM, = Yy 200
y=1 VDv

by (13) and (14). By applying Abel’s transformation, we get

n—1 v
AM, — ZAV (an,,?LP)Z a,,nPl Zav

v=1
_ EAV (aAnvvav) 5, + annanfn 51

=1 VDv npn

nl PVA’VAV (aAnv) ! dn,erlevPerl

)

e a——
v—1 VDv —1 (v+1)pyi '
n—1
APy,
+zanv+llA< ) v+M5n
v=1 VDv npn

= M1 +Mn,2 +Mn73 —|—Mn74.
To complete the proof of Theorem 2, by Minkowski’s inequality, it is enough to show
that
o/ p o\ Oktk-1
> (-") | My, [F< oo, for r=1,2,3,4.
n=1

First, by applying Holder’s inequality with indices k and k', where k > 1 and % + % =

1, we have that
k
) ()| |sv|}

mil g p N Oktk ‘o il p N Skl (e
() waf<X (?) {2(
(flnv)llvlksvlk}

n=2 V=

m+1 5k+k 1 (n—1
v:1

1}1

Av(ﬁnv) = Apy — &n,v+l = Qpy— an—l.,v - 67n.,v+l + an—l.,v+l =dnpy —dp—1,-

<

HM\

By (11) and (12), we have

Thus using (11), (15) and (16)

n—1

n—1
z ‘AV(ﬁnVH = E(Qn—hv _anv) < Ay
v=1

v=1
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Hence,
rril (Pn ) Sk+k—1 i Pn Ok+k—1 i nil P k . .
U RV (—) o (—) 81l
S5 \ P SA\p “\p)
m k m+1 Sk
P, 1 ok P, .
— o(1) (—) LR (—) A
v:zl pv) n:zm Pn
m P SOk P k—ll B
_ o(1) (—) (—) LIt A s
v—1 \Pv Pv v
m P Sk s k
=0<1>2(—”) 2 2
v—1 \Pv

Sk k Sk k
oS a3 (2)" B o § (%) 2
—1 \P v
DS ALK+ O(1) A%,
v=1
m—1
1) Y BXy+O(1) | An| X
v=1
=0(l) as m— oo,

by virtue of the hypotheses of Theorem 2 and Lemma 1.
By using (9) and Holder’s inequality, we have that

mel /p Sktk—1 mel /p Sktk—1 (n—1 k
3y (—) Moot = 0()S, (—) S Gt IAL 51
n=2 n=2 v=1

Pn Pn
mtl /p N\ Sktk-1 .
—o)'S (p—) 2 (s 1] [A% ]

n=2 n

k—1
{2 |anv+1HAA |}

y=1

m+1 P, Ok+k—1 = n—1 .
—om'y, (—) A 1S Y Bl
n=2

Dn v=1

om it S (2 )5k|an,v+1|

v=1 n=v+1

= 0(1)]}?11 (i)ék‘,ﬁvﬂ

Pv v
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=o(1 )mil AVB)Y, (; )Bk |S;|k+0(1)m[5m 3 (i)akﬂ

v=1 =1 y=1 Pv v

m—1

1) Y [AVB)|Xy + O(1)mBu X,

m—1
= 0(1) Y vIAB[X, +O(1 2 BuXy+ O(1)mpBp X
v=1
=0(l) as m— oo,
by virtue of the hypotheses of Theorem 2 and Lemma 1.
Since A (%) =0 (%) by (24), as in M,, 1, we have that

mil /p N Skl . mil o p N\ k= (-1 k
S(2) mar—ow’y () LS Hanalils,

n=2 n=2 n v=1
m+1 P Sk+k—1pn—1 1
—om 3, (%) S Hanvalla s
n=2 \Pn =1V
n—1 k—1
X {2 AV(ng)|}
v=1

m+1 P Sk+k—1 . 1n 11 .
—o)y. (—) aiS a2

v:l

< Ly R
—om SIS () e
n

v=1 n=v+1

=0(1) i (i)ék% |S‘v)\k

v=1 v

=0(l) as m— oo,

by virtue of the hypothese of Theorem 2 and Lemma 1.
Finally, as in M,, 1, we have that

m Sk+k—1 m Sk—+k—1 k k

P, P, n 1 P, _
2(—) M, "=0<1>2(—) (”—) —k(—) <1 | ][5
n=1 \Pn n=1 \Pn Py ) n* \ pn

by virtue of the hypotheses of Theorem 2 and Lemma 1.
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5. Conclusions

If we take (X,) as a positive non-decreasing sequence, 6 = 0 and a,, = £* in

Theorem 2, then we get Theorem 1. In this case, the condition (21) reduces to the
condition (8). Also, the conditions (15)—(20) are automatically satisfied. Also, if we
take 6 =0, a, = 1;)_: and p, = 1 for all values of n, then we get a result for |C,1];
summability.
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