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ON THE CONVERGENCE OF SERIES

WITH RECURSIVELY DEFINED TERMS

N. S. HOANG

Abstract. We investigate the asymptotic behavior of a sequence (xn)∞
n=0 defined recursively by

xn+1 = f (xn) , n � 0 where f : [0,∞) → [0,∞) is a continuous function. A fundamental crite-
rion on the function f (x) for estimating the rate of decay of xn as n tends to ∞ and for testing
convergence of the series ∑∞

n=0 xn is proposed and justified. Criteria for testing absolute and con-
ditional convergence of ∑∞

n=0 xn when f (x) is not a non-negative function are also formulated
and proved.

1. Introduction

In this paper we study the decay rate of a sequence (xn)∞
n=0 and the convergence

of the series ∑∞
n=0 xn where

xn+1 := f (xn), n � 0, x0 > 0, (1)

and f : [0,∞) → [0,∞) is a continuous function satisfying the inequality 0 < f (x) < x ,
∀x ∈ (0,b] for some b > 0.

The convergence of the series ∑∞
n=0 xn was studied earlier in [2]. In particular, in

[2] the following result was formulated and proved:

PROPOSITION 1. Consider a differentiable function f : (0,∞) → (0,∞) with the
property that 0 < f (x) < x for all x∈ (0,∞) and a sequence (xn)∞

n=0 with the properties

a) limn→∞ xn = 0 , with xn > 0 for all n ∈ N;

b) xn+1 = f (xn);

c) the limit

lim
x→0

xa − f a(x)
xa f a(x)

=
1
ka

holds for some a > 0 , k > 0 .
Then

i) limn→∞ n
1
a xn = k .

ii) The series ∑∞
n=0 xn diverges if a � 1 .
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iii) The series ∑∞
n=0 xn converges if a < 1 .

Using Proposition 1, the authors were able to estimate the rate of decay of (xn)∞
n=0

as well as to test the convergence of ∑∞
n=0 xn for several choices of f (x) (see [2]).

However, the application of Proposition 1 requires an appropriate choice of a for the
limit in c) to hold and this is not a trivial task in practice. Our goal in this paper is to
derive a criterion simpler than Proposition 1 for estimating the rate of decay of (xn)∞

n=0
and for testing the convergence of the series ∑∞

n=0 xn . Moreover, we also study the
convergence of ∑∞

n=0 xn when f (x) is not necessary a non-negative function, i.e., f (x)
can take both positive and negative values.

REMARK 1. Condition a) limn→∞ xn = 0 in Proposition 1 follows from the in-
equality 0 < f (x) < x , ∀x ∈ (0,∞) , the definition xn+1 = f (xn) , and the continuity of
f (x) . Indeed, we have 0 < xn+1 = f (xn) < xn , n � 0. Thus, there exists L � 0 such
that limn→∞ xn = L , as the sequence (xn)∞

n=0 is decreasing and bounded below by zero.
Therefore, L = limn→∞ xn+1 = limn→∞ f (xn) = f (L) . From the inequality f (x) < x ,
∀x > 0, one concludes that L = 0, i.e., limn→∞ xn = 0.

REMARK 2. The differentiability assumption on f (x) in Proposition 1 was not
used in its proof (see [2]). It suffices to assume that f (x) is continuous.

2. Main results

The following theorem gives a fundamental criterion for estimating the rate of
decay of (xn)∞

n=0 and for testing the convergence of the series ∑∞
n=0 xn .

THEOREM 1. Let f : [0,b] → [0,b] , where b = constant > 0 , be a continuous
function. Assume that f (x) satisfies simultaneously the inequality 0 < f (x) < x , ∀x ∈
(0,b] and the equation

f (x) = x− cx1+α +o(x1+α) as x → 0, α > 0, c > 0. (2)

Let (xn)∞
n=0 be defined recursively by (1) where x0 ∈ (0,b] . Then

lim
n→∞

n
1
α xn = (cα)−

1
α . (3)

Consequently,

• The series ∑∞
n=0 xn converges if 0 < α < 1 .

• The series ∑∞
n=0 xn diverges if α � 1 .

Proof. From the Taylor series expansion

(1+ x)α = 1+ αx+o(x)
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and equation (2), we have

f α(x) =
(
x− cx1+α +o(x1+α)

)α =
(

x
[
1− cxα +o(xα)

])α

= xα(
1− cxα +o(xα)

)α = xα(
1−αcxα +o(xα)

)
.

(4)

Thus,

lim
x→0

xα − f α(x)
xα f α (x)

= lim
x→0

xα − xα(
1−αcxα +o(xα)

)
xαxα

(
1−αcxα +o(xα)

)

= lim
x→0

xα αcxα +o(x2α)
x2α

(
1−αcxα +o(xα)

) = αc.

(5)

This and item i) in Proposition 1 imply (3).
It follows from (3) and the p -series test that the series ∑∞

n=0 xn is convergent if
α ∈ (0,1) and is divergent if α � 1. Theorem 1 is proved. �

REMARK 3. Let f (x) be as in Theorem 1. If f (x) is analytic at zero and

limx→0
f (x)
x = 1, then, from a Maclaurin series expansion of f (x) , it is clear that equa-

tion (2) holds for α � 1. Thus, by Theorem 1, the series ∑∞
n=0 xn where (xn)∞

n=0 is
defined by (1) is divergent.

The following result is similar to the comparison test for series and is useful for
our study of convergence of the series ∑∞

n=0 xn .

THEOREM 2. Let f ,g : [0,b]→ [0,∞) be continuous functions. Assume that either
f or g is increasing and that the following inequalities hold

0 � g(x) < x and g(x) � f (x), ∀x ∈ (0,b]. (6)

Let x0 and y0 be in (0,b] and let (xn)∞
n=0 and (yn)∞

n=0 be recursively defined by

xn+1 := f (xn), yn+1 := g(yn), n � 0. (7)

Then

i) If ∑∞
n=0 xn is convergent, then ∑∞

n=0 yn is convergent.

ii) If ∑∞
n=0 yn is divergent, then ∑∞

n=0 xn is divergent.

Proof. Assume that y0 � x0 . We claim that

0 � yn � xn, ∀n � 0. (8)

We prove inequality (8) by induction. First, inequality (8) holds true for n = 0 by our
assumption. Assume that inequality (8) holds true for some n � 0. If g is increasing,
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then from our induction assumption that yn � xn and the second inequality in (6), one
gets

0 � yn+1 = g(yn) � g(xn) � f (xn) = xn+1.

If f is increasing instead of g , then from the second inequality in (6) and our induction
assumption that yn � xn , one obtains

0 � yn+1 = g(yn) � f (yn) � f (xn) = xn+1.

The inequality 0 � yn+1 � xn+1 and the induction principle imply (8).
From inequality (8) one gets 0 < ∑∞

n=0 yn � ∑∞
n=0 xn . Conclusions i) and ii) of the

theorem follow from this inequality.
Now consider the case when y0 > x0 . Since limn→0 yn = 0 as we mentioned before

in Remark 1, there exists n0 > 0 such that 0 < yn0 � x0 . From this inequality and
similar arguments as above, one can prove by induction that 0 < yn+n0 � xn , ∀n � 0.
This implies

0 <
∞

∑
n=n0

yn =
∞

∑
n=0

yn+n0 �
∞

∑
n=0

xn.

Since the convergence of a series does not depend on the first finitely many terms, this
inequality implies conclusions i) and ii) of the theorem. Theorem 2 is proved. �

From Theorem 2 we have the following corollary.

COROLLARY 1. Let g : [0,b] → [0,∞) be continuous and satisfy the inequality
0 � g(x) < x , ∀x ∈ (0,b] . Let (yn)∞

n=0 be recursively defined by yn+1 = g(yn) , n � 0 ,
and y0 ∈ (0,b] . Then

i) If
g(x) � x− c1x

1+α as x → 0, c1 > 0, α � 1,

then the series ∑∞
n=0 yn is divergent.

ii) If
g(x) � x− c2x

1+β as x → 0, c2 > 0, β ∈ (0,1),

then the series ∑∞
n=0 yn is convergent.

Proof. Let us prove part ii) of Corollary 1. Define

f (x) := x− c2

2
x1+β , x � 0. (9)

Choose δ ∈ (0,b] sufficiently small such that the function f (x) is positive and increas-
ing on (0,δ ] and the following inequality holds

g(x) � x− c2

2
x1+β = f (x), ∀x ∈ (0,δ ]. (10)

It follows from equation (9), the assumption β ∈ (0,1) , and Theorem 1 that the series
∑∞

n=0 xn where (xn)∞
n=0 is defined by (1) is convergent. Since 0 � g(x) < x , ∀x ∈ (0,b] ,
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one gets limn→∞ yn = 0 (see Remark 1). Thus, there exists n0 > 0 such that 0 � yn � δ ,
∀n � n0 . This, inequality (10), the fact that f is increasing on (0,δ ] and the series
∑∞

n=0 xn is convergent, and Theorem 2 imply that the series ∑∞
n=0 yn+n0 is convergent.

Thus, the series ∑∞
n=0 yn is convergent. Part ii) of Corollary 1 is proved.

A proof of part i) can be obtained similarly by defining

f0(x) := g(x), g0(x) := x−2c1x
1+α ,

and applying Theorem 2 for the functions g0(x) and f0(x) . We leave it to the reader to
fill in the details. �

EXAMPLE 1. Consider the following functions

g1(x) =
∣∣∣∣sin

(
1
x

)∣∣∣∣(x− 1
2
x
√

x
)
, x ∈ (0,1], g1(0) := 0, (11)

g2(x) = x− x2

∣∣∣∣sin
(

1
x

)∣∣∣∣, x ∈ (0,1], g2(0) := 0. (12)

It is clear that gi : [0,1]→ [0,∞) is continuous and 0 � gi < x , ∀x ∈ (0,1] , i = 1,2. In
addition, we have

g1(x) � x− 1
2
x
√

x, g2(x) � x− x2, x ∈ [0,1]. (13)

Thus, by Corollary 1, the series ∑∞
n=0 yn is convergent if (yn)∞

n=0 is defined with g(x) =
g1(x) and is divergent if (yn)∞

n=0 is defined with g(x) = g2(x) . Note that Theorem 1 is
not applicable for the functions g1 and g2 in this example.

The following result allows us to study the convergence of series with terms that
can be either negative or positive.

THEOREM 3. Let f : [0,b] → [0,∞) be increasing and let g : [−b,b] → R be
continuous and satisfy

|g(x)| < |x|, |g(x)| � f (|x|), ∀x : |x| ∈ (0,b]. (14)

Let x0 ∈ (0,b] and y0 ∈ [−b,b] and let (xn)∞
n=0 and (yn)∞

n=0 be defined by

xn+1 = f (xn), yn+1 = g(yn), n � 0.

If ∑∞
n=0 xn is convergent, then ∑∞

n=0 yn is absolutely convergent.

Proof. From inequality (14) and the definition of (yn)∞
n=0 , one gets

|yn+1| = |g(yn)| < |yn|, n � 0. (15)
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Therefore, the sequence (|yn|)∞
n=0 is decreasing and bounded below by 0. Thus, there

exists some L � 0 such that limn→∞ |yn|= L . We claim that L = 0. Assume that L > 0.
From the first inequality in (14) and the continuity of g(x) , one gets

L = lim
n→∞

|yn+1| = lim
n→∞

|g(yn)| =
{|g(L)| < L or,

|g(−L)| < L,

which is a contradiction. This contradiction implies that L = 0, i.e.,

lim
n→∞

|yn| = 0. (16)

Thus, there exists n0 > 0 such that |yn0 | � x0 .
Let us prove by induction that

|yn+n0 | � xn, n � 0. (17)

Inequality (17) holds for n = 0. Assume that it is true for some n � 0. From the
definition of (yn)∞

n=0 , the second inequality in (14) and the assumption that f (x) is
increasing, we get

|yn+1+n0 | = |g(yn+n0)| � f (|yn+n0 |) � f (xn) = xn+1.

Thus, inequality (17) holds by induction principle. From inequality (17) and the con-
vergence of ∑∞

n=0 xn , one obtains

0 �
∞

∑
n=n0

|yn| =
∞

∑
n=0

|yn+n0 | �
∞

∑
n=0

xn < ∞.

This implies that the series ∑∞
n=0 |yn| is convergent or, equivalently, the series ∑∞

n=0 yn

is absolutely convergent. �
The following result is a corollary of Theorem 3.

COROLLARY 2. Let g : [−b,b]→ R be continuous and satisfy the following con-
ditions:

|g(x)| < |x|, ∀x : |x| ∈ (0,b], (18)

|g(x)| � |x|− c|x|1+α +o(|x|1+α) as x → 0, c > 0, α ∈ (0,1). (19)

Let (yn)∞
n=0 be defined by yn+1 = g(yn) , n � 0 , y0 ∈ [−b,b] . Then the series ∑∞

n=0 yn

is absolutely convergent.

Proof. Define

f (x) := x− cx1+α

2
, x � 0. (20)

It is clear that

0 < |g(x)| � |x|− c|x|1+α

2
= f (|x|), ∀x : |x| ∈ (0,δ ], (21)
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and the function f (x) is increasing on (0,δ ] , if δ > 0 is sufficiently small. If x0 ∈
(0,δ ] , then the series ∑∞

n=0 xn , with (xn)∞
n=0 defined by equation (1), is convergent by

Theorem 1 since α ∈ (0,1) .
From similar arguments as in Theorem 3, we get limn→∞ yn = 0 (see (16)). Thus,

there exists N0 > 0 such that yn ∈ [0,δ ) , ∀n � N0 . This, inequality (21), the conver-
gence of ∑∞

n=0 xn , and Theorem 3 imply that the series ∑∞
n=0 yN0+n is absolutely con-

vergent. Thus, the series ∑∞
n=0 yn is absolutely convergent. Corollary 2 is proved. �

If limsupx→0

∣∣∣ g(x)
x

∣∣∣ < 1, then inequality (19) holds for any given c > 0 and α ∈
(0,1) . Thus, from Corollary 2 one gets the following result:

COROLLARY 3. Let g : [−b,b] → R be a continous function satisfying the in-
equality |g(x)| < |x| , ∀x ∈ [−b,b] . Assume that

limsup
x→0

∣∣∣∣g(x)
x

∣∣∣∣ < 1. (22)

Let (yn)∞
n=0 be defined by yn+1 = g(yn) , n � 0 , where y0 ∈ [−b,b] . Then the series

∑∞
n=0 yn is absolutely convergent.

Let us discuss an application of Corollary 2.

EXAMPLE 2. Consider g(x) := xsin( 1
x )/(1+

√|x|) , x∈ (0,1] and g(0) := 0. We
have

|g(x)| = |x|∣∣sin( 1
x )

∣∣
1+

√|x| < |x|, ∀x : |x| ∈ (0,1].

Moreover, from the equation

1

1+
√|x| =

∞

∑
n=0

(−1)n(√|x|)n = 1−
√
|x|+o

(√
|x|

)
, ∀x ∈ (−1,1),

one gets

|g(x)| � |x|
1+

√|x| = |x|− |x|1+ 1
2 +o(|x|1+ 1

2 ) as x → 0. (23)

Inequality (23) combined with Corollary 2 implies that the series ∑∞
n=0 yn with yn+1 =

g(yn) , n � 0, |y0| ∈ (0,1] is absolutely convergent.

The following result provides a test for conditional convergence.

COROLLARY 4. Let g : [−b,b]→ R be continuous and satisfy the following con-
ditions

g(x) � 0 � g(−x), ∀x ∈ [0,b], (24)

|g(x)| < |x|, ∀x : |x| ∈ (0,b], (25)

|g(x)| � |x|− c|x|1+α +o(|x|1+α) as x → 0, c > 0, α � 1. (26)



148 N. S. HOANG

Let (yn)∞
n=0 be defined by yn+1 = g(yn) , n � 0 , y0 ∈ [−b,b] . Then the series ∑∞

n=0 yn

is conditionally convergent.

Proof. It follows from inequality (24) that the series ∑∞
n=0 yn is an alternating

series. Moreover, from inequality (25) and similar arguments as in Theorem 3 (see (15)
and (16)), one concludes that the sequence (|yn|)∞

n=0 is monotonically decreasing to
zero. Thus, the series ∑∞

n=0 yn is convergent by the alternating series test.
Define

f (x) := x− (1+ c)x1+α, x � 0. (27)

From inequality (26) and equation (27) one concludes that there exists δ > 0 which is
sufficiently small such that f (x) is increasing on (0,δ ] and the following inequalities
hold:

|g(x)| > |x|− (1+ c)|x|1+α = f (|x|) > 0, ∀x : |x| ∈ (0,δ ]. (28)

It follows from (27) and Theorem 1 that the series ∑∞
n=0 xn is divergent for any

given x0 ∈ (0,δ ] which will be chosen later. Since the sequence (|yn|)∞
n=0 is monoton-

ically decreasing to zero, there exists n0 > 0 such that |yn0 | < δ . Let x0 := |yn0 | . Let
us prove by induction that

|yn+n0 | � xn � 0, ∀n � 0. (29)

Inequality (29) holds for n = 0. Assume that (29) holds for some n � 0. From inequal-
ity (28) and the fact that f (x) is increasing on (0,δ ] , one gets

|yn+n0+1| = |g(yn+n0)| > f (|yn+n0 |) � f (xn) = xn+1.

Thus, inequality (29) holds by induction.
From inequality (29) and the fact that ∑∞

n=0 xn is divergent, one concludes that the
series ∑∞

n=n0
|yn| is divergent. Therefore, the series ∑∞

n=0 yn is conditionally conver-
gent. �

EXAMPLE 3. Consider g(x) = −x+ sin3 x , x ∈ [−1,1] . From the fact that g(x)
is an odd function and the inequalities 0 � sin3 x � sinx � x , ∀x ∈ [0,π ] , we have

|x− sin3 x| = sign(x)(x− sin3 x) = |x|− |sin3 x|, x ∈ [−1,1].

Thus, we have

|x| � |x|− |sin3 x| = |g(x)| � |x|− |x|3, ∀x ∈ [−1,1].

Therefore, for this function g(x) , inequalities (24)–(26) hold for b = 1, α = 2, and
c = 1. By Corollary 4, the series ∑∞

n=0 yn with yn+1 = g(yn) , n � 0, |y0| ∈ (0,1] is
conditionally convergent.
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3. Applications

We illustrate several applications of Theorem 1 for the study of the convergence
of the series ∑∞

n=0 xn where (xn)∞
n=1 is recursively defined by (1) for several choices of

f (x) in [2].
Using Maclaurin series expansions, we have

f1(x) := arctanx = x− cx1+α +o(x1+α), α = 2, c =
1
3
, (30)

f2(x) := ln(1+ x) = x− cx1+α +o(x1+α), α = 1, c =
1
2
, (31)

f3(x) :=
x

(
√

x+1)2 = x− cx1+α +o(x1+α), α =
1
2
, c = 2, (32)

f4(x) := sinx = x− cx1+α +o(x1+α), α = 2, c =
1
6
, (33)

f5(x) := x− arcsin(sin2 x) = x− cx1+α +o(x1+α), α = 1, c = 1. (34)

Using Theorem 1 one concludes that the series with terms defined by f = f3 is con-
vergent while the series with terms defined by other functions, i.e., f1 , f2 , f4 , and
f5 are divergent. The rate of decay of xn as n tends to infinity according to (3) is
n−1/α(cα)−1/α . Similar results were obtained in [2] (see also [1], [3]) but with much
longer derivations by choosing a suitable a for each function and studying the limit in
Proposition 1.
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