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MEANS OF INFINITE SETS I

ATTILA LOSONCZI

Abstract. We open a new field on how one can define means on infinite sets. We investigate
many different ways on how such means can be constructed. One method is based on sequences
of ideals, other deals with accumulation points, one uses isolated points, other deals with average
using integral, other with limit of average on surroundings and one deals with evenly distributed
samples. We study various properties of such means and their relations to each other.

1. Introduction

As well known one can calculate the (weighted) arithmetic mean of finitely many
numbers, some infinite series (see [7] Chapter V.), certain measurable functions (see [7]
Chapter VI., [2] Chapter VI.1.), and there is a straightforward generalization for sets
with finite positive Lebesgue measure (see Def 1.1).

In this paper we are going to study the ways of how can one generalize the arith-
metic mean for an infinite bounded subset of R i.e. roughly speaking we are going to
study the means of sets.

In this paper our aim is to find reasonably good and natural means for infinite
bounded sets. Then study their properties and relations among them. We are going to
present many methods where in some of them we deal with countable sets only.

Most of the methods described here can be easily generalized to quasi-arithmetic
means as well or to more general means, however we are not going to deal such gener-
alizations now. In this paper we focus on arithmetic type means only.

We are planning a second paper on this topic (see [8]). While this current paper
mainly deals with constructing means and investigate their properties, the second paper
is going to focus mainly on building and analysing concepts of this new field.

1.1. Basic notions and notations

Throughout this paper function A () will denote the arithmetic mean of any num-
ber of variables.

DEFINITION 1.1. If H ⊂ R is bounded, Lebesgue measurable, λ (H) > 0 then
set

Avg(H) =

∫
H

x dλ

λ (H)
.
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For K ⊂ R, y ∈ R set Ky− = K ∩ (−∞,y], Ky+ = K∩ [y,+∞).
If H ⊂ R, ε > 0 we use the notation S(H,ε) =

⋃
x∈H S(x,ε) where S(x,ε) = {y :

|x− y|< ε} . Clearly S(H,ε) = {y : ∃x ∈ H |x− y|< ε} .
Let Ts denote the reflection to point s ∈ R that is Ts(x) = 2s− x (x ∈ R) . H ⊂ R

is called symmetric if there is s ∈ R such that Ts(H) = H .
If H ⊂ R,x ∈ R then set H + x = {h+ x : h ∈ H} . Similarly αH = {αh : h ∈

H} (α ∈ R) .
cl(H),H ′ will denote the closure and accumulation points of H ⊂ R respectively.

Let limH = infH ′, limH = supH ′ for infinite bounded H .

DEFINITION 1.2. A generalized mean is a function K :C→R where C⊂P(R)
consists of some (finite or infinite) bounded subsets of R and infH � K (H) � supH
holds for all H ∈C . We call K an ordinary mean if C consists of finite sets only.

We will verify that Avg is a generalized mean. Another simple example on all
bounded sets is

M lis(H) =

{
A (H) if H is finite
limH+limH

2 otherwise.

In the definition the required condition is an obvious generalization of internality
on finite sets. Hence we will refer to this condition (H ∈Dom(K )⇒ infH � K (H) �
supH ) as internality too.

In this paper when we use the term ”mean” we always refer to a generalized mean.
Usually K ,M will denote means and Dom(K ) denotes the domain of K .

2. Basic attributes of generalized means

2.1. Basic properties

Throughout these subsections K will denote a generalized mean.

Usually we expect Dom(K ) to be closed under finite union and intersection.
Moreover closed under translation, reflection and contraction/dilation.

Some of our means will be the extension of A that is for finite sets it gives the
arithmetic mean of the elements. Nevertheless we also consider means having domain
consists of infinite sets only.

DEFINITION 2.1.

• K is strong internal if for all infinite H ∈ Dom(K )

limH � K (H) � limH.

• K is monotone if supH1 � infH2 implies that K (H1)� K (H1 ∪H2)� K (H2) .
K is strong monotone if K is strong internal and limH1 � limH2 implies that
K (H1) � K (H1 ∪H2) � K (H2) .



MEANS OF INFINITE SETS I 19

• The mean is translation invariant if x∈R,H ∈Dom(K ) then H+x∈Dom(K ),
K (H + x) = K (H)+ x .

• K is point-symmetric if H ∈Dom(K ) is bounded and symmetric and Ts(H)=
H holds then K (H) = s .

• K is homogeneous if H ∈Dom(K ) then αH ∈Dom(K ), K (αH)= αK (H) .

• K is finite-independent if H ∈Dom(K ) is infinite, V is finite then H∪V,H−
V ∈ Dom(K ) and K (H) = K (H ∪V ) = K (H−V ) .

PROPOSITION 2.2. If K is strong internal and H ′ = {h} then K (H) = h.

Proof. h = limH � K (H) � limH = h . �

PROPOSITION 2.3. If K is finite-independent then K is strongly internal.

Proof. Let H ⊂ R, ε > 0. Then K (H) = K (H ∩ (−∞, limH + ε]) � limH + ε
because we left out finitely many points. Since ε was arbitrary we get that K (H) �
limH . Similar argument can be applied to lim. �

2.2. Some other properties

DEFINITION 2.4.

• K is convex if I is a closed interval and K (H) ∈ I, L ⊂ I,H ∪L ∈ Dom(K )
then K (H ∪L) ∈ I .

• K is called closed if H,cl(H) ∈ Dom(K ) then K (cl(H)) = K (H) .

• K is called accumulated if H,H ′ ∈ Dom(K ) then K (H ′) = K (H) .

Obviously property ”accumulated” is equivalent with that K (H) = K (H ′) =
K (H ′′) = K (H ′′′) = . . . if all sets are in Dom(K ) .

We will often use the following simple fact.

LEMMA 2.5. A is convex.

Proof. Let I be a closed interval, H,L are finite and A (H) ∈ I, L ⊂ I . It is
known that if A,B are disjoint finite sets with cardinality |A| = a, |B| = b

A (A∪B) =
aA (A)+bA (B)

a+b
=

a
a+b

A (A)+
b

a+b
A (B)

that is the convex combination of A (A) and A (B) hence it is between A (A) and
A (B) .

Now apply this to H and L−H . For both A (H), A (L−H) ∈ I hence so is
A (H ∪L) . �
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We now present two negative results on means being continuous according to the
Hausdorff pseudo-metric. Let us recall the definition of Hausdorff pseudo-metric. If
X ,Y ⊂ R then dH(X ,Y ) = inf{ε � 0 : X ⊂ S(Y,ε),Y ⊂ S(X ,ε)} .

PROPOSITION 2.6. If K is strongly internal then it fails to be a continuous func-
tion according to the Hausdorff pseudo-metric.

Proof. Let H = {0, 1
n : n∈N}∪{1,1+ 1

n : n∈N} . By strong-internality K (H)∈
[0,1] . Let L2k = { 1

n : n � k}∪{1,1+ 1
n : n∈N},L2k+1 = {0, 1

n : n∈N}∪{1+ 1
n : n� k} .

Then clearly Lk → H in the Hausdorff metric and by strong-internality K (L2k) =
1,K (L2k+1) = 0 for all k ∈ N . �

PROPOSITION 2.7. A is not a continuous function according to the Hausdorff
metric.

Proof. Let C = {0,1} , Cn = { 1
n ;1+ 1

n ;1+ 1
2n} . Clearly Cn →C in the Hausdorff

metric but A (Cn) → 2
3 , A (C) = 1

2 . �

3. Simple generalized means

3.1. Mean by isolated points

If the isolated points determine the set in the sense that cl(H −H ′) = H then a
mean can be defined by them using that for ∀δ > 0 H−S(H ′,δ ) is finite.

DEFINITION 3.1. If cl(H−H ′) = H then let

M iso(H) = lim
δ→0+0

A (H−S(H ′,δ ))

if it exists.

LEMMA 3.2. Let (Hn),(Ln) be two infinite sequences of finite sets such that all

sets are uniformly bounded, ∀n Hn∩Ln = /0 and A (Hn)→ a. Moreover limn→∞
|Ln|
|Hn| =

0 . Then A (Hn ∪Ln) → a.

Proof. Clearly

A (Hn∪Ln) =

∑
hi∈Hn

hi + ∑
h j∈Ln

h j

|Hn ∪Ln| =
|Hn|

|Hn ∪Ln| A (Hn)+
|Ln|

|Hn ∪Ln| A (Ln).

A (Ln) is bounded, |Ln|
|Hn∪Ln| → 0 and |Hn|

|Hn∪Ln| → 1 give the statement. �

THEOREM 3.3. M iso is a generalized mean. Moreover it is finite-independent,
strongly internal, monotone, translation invariant, point-symmetric, homogeneous, con-
vex and closed.
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Proof. Clearly M iso is internal since H−S(H ′,δ ) ⊂ [infH,supH] .
It is also finite-independent because H −H ′ is infinite and removing (or adding)

finitely many new points would not change the limit. In order to prove that let Hn =
H−S(H ′,δ ), Ln = { the new points in H−S(H ′,δ )} . Then apply 3.2.

Strong internality then follows from 2.3.
Let us show monotonicity. If supH1 � infH2 then

H1∪H2 −S((H1∪H2)′,δ ) = (H1 −S(H ′
1,δ ))∪ (H2 −S(H ′

2,δ ))

which gives that A (H1 − S(H ′
1,δ )) � A (H1 ∪H2 − S((H1 ∪H2)′,δ )) . When taking

the limit we end up with M iso(H1) � M iso(H1 ∪H2) . The other inequality is similar.
To prove that M iso is translation invariant, point-symmetric, homogeneous, it is

enough to refer to the fact that H −S(H ′,δ ) and A both have the same properties.
To verify convexity let I be a closed interval, M iso(H) ∈ I, L ⊂ I, L,L∪H ∈

Dom M iso . It is known that if A,B are disjoint finite sets with cardinality |A|= a, |B|=
b

A (A∪B) =
aA (A)+bA (B)

a+b

that is the convex combination of A (A) and A (B) . If we apply it for Aδ = H −
S(H ′,δ ), Bδ =

(
H ∪ L− S((H ∪ L)′,δ )

) − Aδ ⊂ L− S(L′,δ ) then A (Aδ ) → p ∈
I, A (Bδ ) ∈ I hence in limit (δ → 0 + 0) we get that A (Aδ ∪Bδ ) → q ∈ I using
that the limit exists because H ∪L ∈ Dom M iso .

To show that M iso is closed it is enough to mention that H and cl(H) have the
same set of isolated points. �

EXAMPLE 3.4. For H = {0,1}∪{ 1
n : n ∈ N}∪{1+ 1

2n : n ∈ N} , M iso(H) = 0.

Proof. Evidently H ′ = {0,1} . If δ = 1
k then

H −S(H ′,δ ) = {1
n

: n < k}∪{1+
1
2n : 2n < k}.

If we apply 3.2 for Hk = { 1
n : n < k}, Lk = {1+ 1

2n : 2n < k} then we get the state-
ment. �

EXAMPLE 3.5. M iso(H) does not exist always.

Proof. Define a set in the following way. Let H1 = {1.7} . If H1, . . . ,Hn−1 are
already defined then let Hn consists of some finitely many points such that

Hn ⊂
{( 1

n+1 , 1
n

)
if n is even

1+
(

1
n+1 , 1

n

)
if n is odd

and A (H1 ∪ . . .∪Hn) � 1
4 when n is even, A (H1 ∪ . . .∪Hn) � 3

4 when n is odd.

Then let H =
∞⋃

i=1
Hi .



22 A. LOSONCZI

We then ended up with an infinite set H ⊂ [0,2] such that H ′ = {0,1} and A (H−
S(H ′,δ )) can be smaller than 1

4 or greater than 3
4 depending on δ hence the limit does

not exists. �

THEOREM 3.6. M iso(H) is not accumulated.

Proof. It is easy to construct a set H ⊂ [0,1] such that H ′ = {0}∪{ 1
n : n∈N} and

∀δ A ({h ∈ H : h > δ}) � 0.5. For that set we get M iso(H) � 0.5, M iso(H ′) = 0.
For constructing such set let H1 = {1.5} . If H1, . . . ,Hn−1 are already defined then

let Hn consists of some points such that Hn ⊂ S
({ 1

k : k < n}, 1
n

)
,∀k < n Hn∩S( 1

k ,
1
n) �= /0

and A (H1∪ . . .∪Hn) � 0.5. Obviously it can be done since we can add as many points

around 1 as we want. Then let H =
∞⋃

i=1
Hi . �

3.2. Mean by accumulation points

Let us recall the classic definition. H(0) = H, H(1) = H ′ where H ′ denotes the
accumulation points of H. Then H(n+1) = (H(n))′ (n � 0) .

Assume that H is infinite bounded. Then there are two cases. Either there is n∈N

such that H(n) = /0 or ∀n ∈ N H(n) �= /0 . We can define a mean in the first case.

DEFINITION 3.7. Let H ⊂ R . Let lev(H) = n ∈ N∪ {0} if H(n+1) = /0 and
H(n) �= /0 . Otherwise let lev(H) = +∞ .

DEFINITION 3.8. Let H ⊂ R, lev(H) = n . Set M acc(H) = A
(
H(n)) .

In this sense we may say that the last level accumulation points determine the
mean and nothing else. Roughly speaking the last accumulation points store the only
”weights” of the set.

LEMMA 3.9. lev(H ∪K) = max{lev(H), lev(K)} .

Proof. It is known that (H ∪K)′ = H ′ ∪K′ . From that by induction we get that
(H∪K)(n) = H(n)∪K(n) . Which implies that (H∪K)(n) = /0 iff H(n) = /0 and K(n) = /0 .

Now let m = max{lev(H), lev(K)} . Then (H ∪K)(m) �= /0 and (H ∪K)(m+1) = /0
which gives the statement. �

LEMMA 3.10. If lev(H) < lev(K) then M acc(H ∪K) = M acc(K) .

Proof. By 3.9 lev(H ∪K) = lev(K) . Then (H ∪K)(lev(K)) = K(lev(K)) . �

LEMMA 3.11. lev(H ∩K) � min{lev(H), lev(K)} .

Proof. It is known that if A ⊂ B then A′ ⊂ B′ and then by induction A(n) ⊂ B(n) .
Apply it for H ∩K and H and then K . �
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THEOREM 3.12. M acc is strongly internal, finite-independent, translation in-
variant, point-symmetric, homogeneous, convex, closed and accumulated generalized
mean.

Proof. First of all we remark that the definition of M acc(H) makes sense since
H(n) is finite when H(n+1) = /0 .

M acc is strongly internal because limH = minH ′, limH = maxH ′ . This gives
that M acc is a generalized mean.

M acc is finite-independent since H ′ does not change if remove or add finitely
many points to H .

It is translation invariant, point-symmetric, homogeneous since the accumulation
operator has the same properties.

To verify convexity let I be a closed interval, M acc(H) ∈ I, L ⊂ I, L,L∪H ∈
Dom M acc . Let lev(H) = n, lev(L) = k . Now we have three cases: n < k , n > k ,
n = k . Using 3.10 the first two are obviously implies that M acc(H ∪L) ∈ I . For the
third 2.5 gives the statement.

M acc is closed because cl(H)′ = H ′ .
M acc is accumulated since lev(H ′) = lev(H)−1 and

H(lev(H)) = (H ′)(lev(H)−1) = (H ′)(lev(H
′)). �

THEOREM 3.13. If either lev(H) �= lev(K) or lev(H) = lev(K) = n and H(n) ∩
K(n) = /0 then M acc(H ∪K) ∈ [M acc(H),M acc(K)] .

Proof. The first case is obvious. For the second case apply

A (A∪B) =
aA (A)+bA (B)

a+b

when A∩B = /0 and a = |A|,b = |B| . �

EXAMPLE 3.14. H ∩K = /0 does not imply that M acc(H ∪K) ∈
[M acc(H),M acc(K)] .

Proof. To show that it is easy to construct sets such that H ∩K = /0 and H ′ =
{−2,−1,3}, K′ = {−1,1} . Then M acc(H) = M acc(K) = 0 while M acc(H ∪K) =
A ({−2,−1,1,3}) = 1

4 . �

3.3. Means by ideals

We define a generalized mean with respect to ideals for sets which are not in the
ideal in question.

Let us recall the definition of an ideal. I ⊂ P(R) is an ideal if A,B ∈ I implies
that A∪B ∈ I and B ∈ I ,A ⊂ B implies that A ∈ I .
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DEFINITION 3.15. Let I be an ideal. We call I
translation invariant if H ∈ I ,x ∈ R implies H + x ∈ I ,
symmetric if H ∈ I ,x ∈ R implies {x+ y : x− y ∈ H} ∈ I ,
homogeneous if H ∈ I ,α ∈ R implies αH ∈ I .

Evidently the regularly used ideals (e.g. finite sets, countable sets, category 1 sets,
sets with Lebesgue measure 0) all have these properties.

DEFINITION 3.16. Let I be an ideal and H ⊂ R, H /∈ I be bounded. Set

lim
I

H = inf{x : Hx+ ∈ I } . Similarly limI H = sup{x : Hx− ∈ I } .

If I = { /0} then lim
I = sup, limI = inf . If I = {finite sets} then lim

I =
lim, limI = lim. If I = {countable sets} then limI , lim

I
are the minimal/maximal

consendation points of H . If I = {sets with Lebesgue measure 0} then limI , lim
I

are the inf/sup of Lebesgue density points of H .

PROPOSITION 3.17. If I is a σ -ideal, H /∈ I then lim
I

H = min{x : Hx+ ∈
I } , limI H = max{x : Hx− ∈ I } . �

PROPOSITION 3.18. If I1 ⊂ I2, H /∈ I2 then limI1 H � limI2 H � lim
I2 H �

lim
I1 H . �

DEFINITION 3.19. If I is an ideal, H /∈ I then M I (H) = limI (H)+lim
I (H)

2 .

THEOREM 3.20. Let I is an ideal. Then M I is a monotone, convex general-
ized mean. If I is translation invariant, point-symmetric, homogeneous then the mean
M (I ) has all these properties as well. If {finite sets}⊂I then it is finite-independent
and strong internal.

Proof. infH � limI (H) � supH, infH � lim
I (H) � supH gives that M I is

internal i.e. a mean.
If supH1 � infH2 then limI (H1) � limI (H1∪H2), lim

I (H1) � lim
I (H1∪H2)

which yields that M I (H1) � M I (H1 ∪H2) . The other part of monotonicity can be
handled similarly.

To verify convexity let I be a closed interval, M I (H) ∈ I, L ⊂ I, L,L∪H ∈
Dom M I . Clearly if x > max I then Hx+ ∈ I and because of L ⊂ I we get that

(H∪L)x+ ∈ I which gives that lim
I (H ∪L) � max I . The other inequality is similar.

If I is translation invariant, point-symmetric, homogeneous then so are limI , lim
I

and then so is M I .
If {finite sets} ⊂ I then evidently M I is finite-independent hence it is strong

internal by 2.3. �
If I = {finite sets} then M (I ) = M lis . If I = { /0} then M (I )(H)= infH+supH

2
that is clearly not strong internal.
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DEFINITION 3.21. Let (In) be a sequence of ideals such that I0 = {finite sets}
and I0 ⊂ I1 ⊂ I2 ⊂ . . . . The mean associated to this sequence is definied by

M (In)(H) =

⎧⎪⎪⎨
⎪⎪⎩

A (H) if H is finite
limIn H+lim

In H
2 if H ∈ In+1−In

limn→∞
limIn H+lim

In H
2 if H /∈ ⋃∞

0 In.

REMARK 3.22. (1) Because of Proposition 3.18 the limit in the last defining line
always exists.

(2) The definition works for a finite sequence of ideals as well (simply set In = Ik

if n � k for a certain k ).
(3) We can omit the condition that I0 = {finite sets} . In that case M (In) remains

undefined for infinite sets H ∈ I1 .

The next theorem can be proved like 3.20.

THEOREM 3.23. Let (In) be a sequence of ideals such that I0 = {finite sets}
and I0 ⊂ I1 ⊂ I2 ⊂ . . . . Then M I is a monotone generalized mean. If In is
translation invariant, point-symmetric, homogeneous then the mean M (In) has all
these properties as well. �

4. Properties of generalized Avg

We can generalize Avg in the following way.

DEFINITION 4.1. Let μ s denote the s-dimensional Hausdorff measure in R (0 �
s � 1). If 0 < μ s(H) < +∞ and H is μ s measurable (i.e. H is an s-set) then set

Avg(H) =

∫
H

x dμ s

μ s(H)
.

If for a given s we restrict Avg for s-sets then we will use the notation Avgs .

Clearly Avg = Avg0 = A for finite sets and we get back the original definition of
Avg1 for sets with positive Lebesgue measure (Definition 1.1).

THEOREM 4.2. Avg is translation invariant, point-symmetric, homogeneous.

Proof. All properties are a consequence of the theorem on integral by substitution.
Let us see them one by one.

We show that Avg is translation invariant: Let h(x) = x+ r (r ∈ R), H be an s-set
(0 � s � 1). Then∫

h(H)
xdμ s

μ s(h(H))
=

∫
H

x◦ h(x)dμ s

μ s(H)
=

∫
H

x+ rdμ s

μ s(H)
=

∫
H

xdμ s

μ s(H)
+

∫
H

rdμ s

μ s(H)
= Avg(H)+ r
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where we also used the straightforward fact that μ s(H + r) = μ s(H) .
We prove that Avg is point-symmetric: By translation invariance it is enough to

handle the case when H is symmetric for 0: if H is symmetric for p∈R then Avg(H−
p)+ p = Avg(H) and H − p is symmetric for 0 and if Avg(H − p) = 0 then it would
give that Avg(H) = p . Let h(x) = −x . Then∫

H0−

xdμ s =
∫

h−1(H0−)

x◦ h(x)dμ s =
∫

H0+

−xdμ s = −
∫

H0+

xdμ s

which implies that Avg(H) = 0.
Now we verify that Avg is homogeneous: Let h(x) = αx (α ∈ R) . Then∫
h(H)

xdμ s

μ s(h(H))
=

∫
h(H)

xdμ s

∫
h(H)

1dμ s =

∫
H

x◦ h(x) ·αdμ s

∫
H

1 ◦ h(x) ·αdμ s =
α2 ∫

H
xdμ s

α
∫
H

1dμ s = αAvg(H). �

We can show now that Avg is a generalized mean. For that we prove that it is
strong-internal in the following stronger sense.

PROPOSITION 4.3. Let H ⊂ R be a bounded s-set (0 � s � 1 ). Then limI H <

Avg(H) < lim
I

H where I = {H ⊂ R : μ s(H) = 0} .

Proof. By being translation invariant we can assume that limI H = 0. We have
to prove that Avg(H) > 0 that is equivalent with

∫
H

x dμ s > 0. Clearly there is n ∈ N

such that μ s(H
1
n +) > 0. Then 0 < 1

n μ s(H
1
n +) �

∫
H

1
n +

x dμ s �
∫
H

x dμ s.

The other inequality can be handled similarly. �

LEMMA 4.4. If H1,H2 are s-sets and H1∩H2 = /0 then

Avg(H1∪H2) =
μ s(H1)Avg(H1)+ μ s(H2)Avg(H2)

μ s(H1)+ μ s(H2)

Proof.

Avg(H1∪H2) =

∫
H1

xdμ s +
∫
H2

xdμ s

μ s(H1)+ μ s(H2)
=

μ s(H1)Avg(H1)+ μ s(H2)Avg(H2)
μ s(H1)+ μ s(H2)

. �

THEOREM 4.5. Avg is strong monotone for s-sets with s > 0 .

Proof. Let H1 be an s1 -set, H2 be an s2 -set (0 < s1,s2 � 1) and p = limH1 �
limH2 = r . Evidently μ s1(Hp+

1 ) = 0 and μ s2(Hr−
2 ) = 0. Hence Avg(H1) � p and

Avg(H2) � r .
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If s1 < s2 then Avg(H1∪H2) = Avg(H2) = r � p � Avg(H1) .
If s2 < s1 then Avg(H1∪H2) = Avg(H1) = p � r � Avg(H2) .
If s1 = s2 = s then we can assume that H1,H2 are disjoint because removing a set

with 0 measure does not change Avg i.e. Avg(H1) = Avg(H1 −Hp+
1 ) and Avg(H2) =

Avg(H2−Hr−
2 ) . Then by 4.4

Avg(H1∪H2) =
μ s(H1)Avg(H1)+ μ s(H2)Avg(H2)

μ s(H1)+ μ s(H2)

which implies that Avg(H1) � Avg(H1∪H2) � Avg(H2) . �

EXAMPLE 4.6. Avg is not closed and not accumulated either.

Proof. Let H = [0,1]∪ ([1,2]∩Q) . Then Avg(H) = Avg1(H) = 0.5 while
Avg(cl(H)) = Avg1(cl(H)) = 1. �

EXAMPLE 4.7. Symmetry gives Avg(C) = 1
2 where C is the Cantor set.

THEOREM 4.8. Avg is convex.

Proof. Let I be a closed interval, Avg(A) ∈ I, C ⊂ I, C,C∪A ∈ Dom Avg . Let A
be an s-set, C be an r-set (0 � s,r � 1).

If s < r then A∪C is an r-set and Avg(A∪C)= Avgr(A∪C)= Avgr(C)= Avg(C)∈
I . If r < s then A∪C is an s-set and Avg(A∪C) = Avgs(A∪C) = Avgs(A) = Avg(A)∈ I .

Let now s = r . If μ s(C−A) = 0 then the statement is obvious. Let us suppose
μ s(C−A) > 0. By 4.4

Avg(A∪C) = Avg(A∪∗ (C−A)) =

Avg(A)
μ s(A)

μ s(A)+ μ s(C−A)
+Avg(C−A)

μ s(C−A)
μ s(A)+ μ s(C−A)

∈ I

because it is a convex combination of Avg(A) and Avg(C−A) and both are in I . �

5. Mean by ε -neighbourhoods of the set

We are going to approximate the set by ε -neighbourhoods and as they have posi-
tive Lebesgue measure, take Avg of those as an approximation of the mean of the set.

DEFINITION 5.1. Let H ⊂ R arbitrary. Set

LAvg(H) = lim
δ→0+0

Avg(S(H,δ ))

if the limit exists.

PROPOSITION 5.2. LAvg(H) = LAvg(cl(H)) i.e. LAvg is closed.
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Proof. It follows from the fact that S(cl(H),δ ) = S(H,δ ) . �
This shows that Avg(H) �= LAvg(H) in general since Avg is not closed.

THEOREM 5.3. Let H ⊂ R be a finite set. Then LAvg(H) = A (H) .

Proof. Let δ < 1
2 min{|x− y| : x,y ∈ H,x �= y} . Then

AvgS(H,δ ) =
∑xi∈H 2δxi

|H|2δ
=

∑xi∈H xi

|H| = A (H). �

THEOREM 5.4. LAvg is finite-independent for infinite sets.

Proof. It is enough to prove that for a single point p since from that by induction
we can get the statement. If p is an accumulation point then we are done by 5.2. Let
us assume that p is an isolated point and S(p,δ0)∩S(H −{p},δ0) = /0 . H is infinite
and bounded hence contains an infinite sequence (hn)⊂H consisting of distinct points.

It is enough to show that lim
δ→0+0

λ (S(p,δ ))
λ (S(H,δ )) = 0 because from that the statement follows

since

Avg(S(H,δ )) =
λ (S(p,δ ))
λ (S(H,δ ))

Avg(S(p,δ ))+
λ (S(H−{p},δ ))

λ (S(H,δ ))
Avg(S(H−{p},δ ))

whenever δ < δ0 i.e. when S(p,δ )∩S(H−{p},δ ) = /0 .
For that let K > 0. Find L ⊂ H such that |L| = K . Then find δ1 < δ0 such that

l1, l2 ∈ L implies that |l1 − l2| < 2δ1 . Let δ < δ1 . Then

λ (S(p,δ ))
λ (S(H,δ ))

<
2δ

λ (S(L,δ ))
=

2δ
2δK

=
1
K

which gives that we required when K → ∞ . �

PROPOSITION 5.5. LAvg is strongly internal.

Proof. By 2.3 and 5.4 it is enough to show that LAvg is internal.
For that let m = infH, ε > 0. If δ < ε then Avg(S(H,δ )) > m− ε . Because it is

true for all ε then LAvg(H) � m . The other inequality is similar. �

THEOREM 5.6. LAvg is translation invariant, point-symmetric and homogeneous.

Proof. translation invariance comes from S(H+r,δ )= S(H,δ )+r and Avg being
translation invariant (4.2).

Symmetry follows from S(−H,δ ) = −S(H,δ ) and Avg being point-symmetric
(4.2).

For proving that LAvg is homogeneous let α ∈ R . Then

Avg(S(αH,δ )) = Avg(αS(H,
1
α

δ )) = αAvg(S(H,
1
α

δ )).
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When δ → 0+0 then the left hand side tends to LAvg(αH) while the right hand side
tends to αLAvg(H) . �

LEMMA 5.7. Let H ⊂ R be compact. Then ∀ε > 0 ∃δ0 > 0 such that δ < δ0

implies λ (S(H,δ )) < λ (H)+ ε .

Proof. For ε
2 there are open intervals Ii (i∈N) such that H ⊂⋃∞

1 Ii and ∑∞
1 λ (Ii)<

λ (H)+ ε
2 . H being compact yields that finitely many covers H as well, e.g. H ⊂⋃n

1 Ii .
If we set δ0 = ε

4n then δ < δ0 implies that λ (S(H,δ )) � ∑n
1 λ (S(Ii,δ )) < λ (H)+ ε

2 +
2n ε

4n = λ (H)+ ε . �

THEOREM 5.8. Let H ⊂ R be bounded, Lebesgue measurable and λ (H) > 0 .
Then Avg(H) = LAvg(H) iff λ (cl(H)−H) = 0 or Avg(cl(H)−H) = Avg(H) .

Proof. Let us assume first that λ (cl(H)−H) = 0 i.e. λ (cl(H)) = λ (H) . Then
clearly Avg(H) = Avg(cl(H)) and by 5.2 LAvg(cl(H)) = LAvg(H) . Hence it is enough
to prove the statement for compact sets.

Let ε > 0 be given. By 5.7 ∀ε0 > 0 ∃δ0 > 0 such that δ0 < 1,δ < δ0 implies
λ (H) � λ (S(H,δ )) < λ (H)+ ε0 . Let K = supH +1. Then

|Avg(H)−Avg(S(H,δ ))|=

∣∣∣∣∣∣∣
∫
H

xdλ

λ (H)
−

∫
S(H,δ )

xdλ

λ (S(H,δ ))

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫
H

xdλ

λ (H)
−

∫
H

xdλ +
∫

S(H,δ )−H
xdλ

λ (S(H,δ ))

∣∣∣∣∣∣∣
�

∣∣∣∣∣∣
∫
H

xdλ

∣∣∣∣∣∣
∣∣∣∣ 1
λ (H)

− 1
λ (S(H,δ ))

∣∣∣∣+
∣∣∣∣∣∣∣

∫
S(H,δ )−H

xdλ

λ (S(H,δ ))

∣∣∣∣∣∣∣
� Kλ (H)

∣∣∣∣λ (S(H,δ ))−λ (H)
λ (H)λ (S(H,δ ))

∣∣∣∣+
∣∣∣∣λ (S(H,δ )−H)K

λ (S(H,δ ))

∣∣∣∣
� 2K

λ (H)
|λ (S(H,δ ))−λ (H)|< ε

if ε0 <
ελ (H)

2K .
Now assume that λ (cl(H)−H) �= 0,Avg(cl(H)−H) = Avg(H) . Then

Avg(cl(H)) =
λ (cl(H)−H)Avg(cl(H)−H)+ λ (H)Avg(H)

λ (cl(H)−H)+ λ (H)
= Avg(H). (1)

Assume now that Avg(H) = LAvg(H) . Then apply the first assertion for cl(H) . We get
Avg(cl(H)) = LAvg(cl(H)) = LAvg(H) which yields Avg(cl(H)) = Avg(H) . Then (1)
gives the statement. �

EXAMPLE 5.9. Let L = { 1
n : n ∈ N}∪{2+ 1

2n : n ∈ N} . Then LAvg(L) = 0.
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Proof. Let L1 = { 1
n : n ∈ N},L2 = {2+ 1

2n : n ∈ N} .
Let δ > 0. Let us estimate where the δ surroundings S(x,δ ) intersect each other

on points of L1 and L2 . They intersect on points of L1 when 1
n−1 − 1

n < 2δ . It is

n−1 > 1√
2δ

. They intersect on points of L2 when 1
2n−1 − 1

2n < 2δ . It is n >− log2 2δ .
Then ∫

S(L1,δ )

x dλ < (
√

2δ +2δ ))

√
δ
2

+2δ (1+
1
2

+ . . .+
1

n−2
) <

< (
√

2δ +2δ ))

√
δ
2

+2δ (1− log
√

2δ ) < 2δ (1− log
√

2δ )

if δ is small enough.

λ (S(L1,δ )) =
√

2δ +2δ +(n−1−1)2δ >
√

2δ +2δ +
√

2δ −2δ = 2
√

2δ

∫
S(L2,δ )

x dλ < (2δ +2δ )(2+ δ )+2δ (2+
1
21 + . . .+2+

1
2n−1 ) <

< (4δ )(2+δ )+2δ (2(n−1)+1)< (4δ )(2+δ )+2δ (1−2log2 2δ )< 15δ (1− log
√

2δ )

if δ is small enough.

λ (S(L2,δ )) = 4δ +(n−1)2δ > 4δ +2δ (− log2 2δ −1) > 2δ +2δ (− log2δ )

0 <

∫
S(L1,δ )

x dλ +
∫

S(L2,δ )
x dλ

λ (S(L1,δ ))+ λ (S(L2,δ ))
<

17δ (1− log
√

2δ )
2
√

2δ +2δ +2δ (− log2δ )
=

=
17

√
δ (1− log

√
2δ )

2
√

2+2
√

δ +2
√

δ (− log2δ )
→ 0 if δ → 0+0

using that limx→0+0 x logx = 0. �

PROPOSITION 5.10. LAvg is not accumulated.

Proof. The example in 5.9 shows that since LAvg(L′) = 1 by 5.3. �

PROBLEM 1. Prove or disprove the conjecture that LAvg is an extension of M iso .
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6. Mean by evenly distributed sample

Now we define a mean in a way that we take finite sample points from the set and
calculate their arithmetic mean and we consider it as an approximation for the mean. It
is important that the sample has to be evenly distributed.

DEFINITION 6.1. Let H ⊂ R, a = infH,b = supH . If n ∈ N,0 � i � n then set
Hn,i = H ∩ [a+ i

n (b−a),a+ i+1
n (b−a)) . Let In = {0 � i � n : Hn,i �= /0} .

We say that the mean of H is k = M eds(H) if ∀ε > 0 ∃N ∈ N such that n >
N,ξi ∈ Hn,i (i ∈ In) implies that |A ({ξi : i ∈ In})− k|< ε .

THEOREM 6.2. If H ⊂ R the following statements are equivalent:
(1) M eds(H) = k
(2) ∀n ∈ N we select arbitrary points ξn,i ∈ Hn,i (i ∈ In) then

lim
n→∞

A ({ξn,i : i ∈ In}) = k

(3) ∀n ∈ N we select arbitrary points ξn,i ∈ [a+ i
n (b−a),a+ i+1

n (b−a)) (i ∈ In)
then limn→∞ A ({ξn,i : i ∈ In}) = k

(4) limn→∞ A ({a+ i
n(b−a) : i ∈ In}) = k.

Proof. (1)⇔(2), (3)⇒(4) are obvious. Proving (2)⇔(4)⇔(3) at the same time
observe that |A({a+ i

n(b−a) : i ∈ In}−A({ξi : i ∈ In})| � 1
n . �

The following theorem verifies that M eds is a mean.

THEOREM 6.3. M eds is strongly internal.

Proof. Let ε > 0. Then H ∩ (−∞, limH − ε) is finite. H being infinte implies
that limn→∞ |{Hn,i : Hn,i �= /0,Hn,i ⊂ (limH − ε,+∞)}| = ∞ . This gives M eds(H) �
limH− ε by Lemma 3.2. Since ε was arbitrary M eds(H) � limH . Similar argument
works for lim. �

PROPOSITION 6.4. If H is finite then M eds(H) = A (H) .

Proof. If n is big enough then each interval contains only one point. �

THEOREM 6.5. M eds is translation-invariant, point-symmetric and
homogeneous.

Proof. translation-invariance follows from that inf,sup and A are translation-
invariant.

For symmetry it is enough to show that if 0 � infH then M eds(−H)=−M eds(H) .
For that we can choose corresponding points in the way that ξ ′

n,i = −ξn,i and then we
can refer to that A is point-symmetric.
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For being homogeneous let f (x) = αx (α ∈ R+) . Note that f takes partition of
[a,b] into partition of [αa,αb] and also it takes associated points into associated points
of the other partition. Similarly for f−1 . For completing the proof we need also that
A is homogeneous. �

PROPOSITION 6.6. M eds is monotone and convex.

Proof. Both statement is a straightforward consequence of A being monotone
and convex. �

PROPOSITION 6.7. If H = H1∪∗ H2 where λ (cl(H1)) > 0 and λ (H2) = 0,H2 is
compact then M eds(H) = M eds(H1) .

Proof. Let I j
n = {0 � i � n− 1 : Hn,i �= /0,Hn,i ⊂ Hj} ( j ∈ {1,2}) . Then by 5.7

limn→∞
1
n |I2

n |= 0. While inf{ 1
n |I1

n | : n∈N}> 0 which gives the statement using Lemma
3.2. �

The next example shows that we cannot omit compactness.

EXAMPLE 6.8. M eds([0,1]
⋃

(Q∩[1,2]))= M eds([0,2])= 1 hence Avg �= M eds .

EXAMPLE 6.9. Let L = { 1
k : k ∈ N}∪{2+ 1

2k : k ∈ N} . Then M eds(L) = 0.

Proof. Let a = 0,b = 2.5,n∈ N . Let us estimate |{i ∈ In : i+1
n (b−a) � 1}| i.e. at

least how many points ξn,i we get that are smaller than 1. We want a lower bound. We
can get that if 1

k−1 − 1
k > 1

n . For that it is sufficient that k <
√

n hence there are at least√
n such points.

Now let us estimate |{i ∈ In : i
n (b−a) � 2}| i.e. how many points ξn,i we get that

are greater than 2. We want an upper bound. We can get that if 1
2k−1 − 1

2k = 1
2k > 1

n that
is k < log2 n .

Now lim
n→∞

log2 n√
n = 0 completes the proof by Lemma 3.2. �

THEOREM 6.10. M eds(H) �= M iso(H) .

Proof. Let H = { 1
2k : k ∈ N}∪{2+ 1

2k ;2+ 1
2k + 1

22k : k ∈ N} .

Clearly M iso(H) = 0+2+2
3 = 4

3 .
Let us calculate M eds(H) . If we divide [infH,supH] into 2n subintervals then

what is required in order to see points 2+ 1
2k ,2+ 1

2k + 1
22k in separate intervals? It is

1
22k > 1

2n that is k < log2 n . Therefore we get n+1 points smaller than 1 (converging
to 0) and at most n+1+ log2 n points greater than 2 (converging to 2). This gives that
M eds(H) = 1 by Lemma 3.2. �

Similar example could show that M eds �< M iso in general.
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PROBLEM 2. Provide example that shows that M eds �= LAvg .

Acknowledgement. I would like to thank the anonymous referee for valuable com-
ments and helpful criticism.

RE F ER EN C ES

[1] J. M. BORWEIN, P. B. BORWEIN, The way of all means, Amer. Math. Monthly 94 (1987), 519–522.
[2] P. S. BULLEN, Handbook of means and their inequalities, vol. 260 Kluwer Academic Publisher,

Dordrecht, The Netherlands (2003).
[3] Z. DARÓCZY AND ZS. PÁLES, Functional Equations – Results and Advances, Springer Science &

Business Media Dordrecht (2002).
[4] Z. DARÓCZY AND ZS. PÁLES, On functional equations involving means, Publ. Math. Debrecen 62

no. 3–4 (2003), 363–377.
[5] B. EBANKS, Looking for a few good means, Amer. Math. Monthly 119 (2012), 658–669.
[6] M. HAJJA,Some elementary aspects of means, International Journal of Mathematics and Mathematical

Sciences, Means and Their Inequalities, Volume 2013, Article ID 698906, 1–9.
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