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A SHARP CARATHÉODORY’S INEQUALITY

ON THE RIGHT HALF PLANE

BÜLENT NAFI ÖRNEK

Abstract. In this paper, a boundary version of Carathéodory’s inequality on the right half plane
is investigated. Here, the function Z(s) , is given as Z(s) = 1+ c1 (s−1)+ c2 (s−1)2 + ... be
an analytic in the right half plane with ℜZ(s) � A (A > 1) for ℜs � 0 . We derive inequalities
for the modulus of Z(s) function, |Z′(0)| , by assuming the Z(s) function is also analytic at the
boundary point s = 0 on the imaginary axis and finally, the sharpness of these inequalities is
proved.
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