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FOUR DIMENSIONAL LOGARITHMIC TRANSFORMATION INTO Lu

FATIH NURAY ∗ AND NIMET AKIN

Abstract. Let t = (tm) and t = (tn) be two null sequences in the interval (0,1) and define the

four dimensional logarithmic matrix Lt,t = (at,t
mnkl) by

at,t
mnkl =

1
log(1− tm) log(1− tn)

1
(k+1)(l +1)

tk+1
m (tn)l+1.

The matrix Lt,t determines a sequence -to-sequence variant of classicial logarithmic summabil-
ity method. The aim of this paper is to study these transformations to be Lu −Lu summability
methods.

1. Introduction

The most well-known notion of convergence for double sequences is the conver-
gence in the sense of Pringsheim. Recall that a double sequence x = {xkl} of complex
(or real) numbers is called convergent to a scalar � in Pringsheim’s sense (denoted by
P-limx = � ) if for every ε > 0 there exists an N ∈ N such that |xkl − �|< ε whenever
k, l > N . Such an x is described more briefly as ”P-convergent”. It is easy to verify that
x = {xkl} convergences in Pringsheim’s sense if and only if for every ε > 0 there exists
an integer N = N(ε) such that

∣∣xi j − xkl
∣∣< ε whenever min{i, j,k, l} � N . A double

sequence x = {xkl} is bounded if there exists a positive number M such that |xkl| � M
for all k and l , that is, if supk,l |xkl | < ∞.
A double sequence x = {xkl} is said to convergence regularly if it converges in Pring-
sheim’s sense and, in addition, the following finite limits exist:

lim
k→∞

xkl = �l (l = 1,2, ...),

lim
l→∞

xkl = jk (k = 1,2, ...).

Note that the main drawback of the Pringsheim’s convergence is that a convergent se-
quence fails in general to be bounded. The notion of regular convergence lacks this
disadvantage.
Let A = (amnkl) denote a four dimensional summability method that maps the complex
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double sequence x into the double sequence Ax = {(Ax)mn} where (Ax)mn is defined
as follows:

(Ax)mn =
∞

∑
k=0

∞

∑
l=0

amnklxkl.

In [17] Robison presented the following notion of regularity for four-dimensional ma-
trix transformation and a Silverman-Toeplitz type characterization of such notion.

DEFINITION 1. The four-dimensional matrix A is said to be RH-regular if it maps
every bounded P-convergent sequence into a P-convergent sequence with the same P-
limit.

The assumption of boundedwas added because a double sequence which is P-convergent
is not necessarily bounded. Along these same lines, Robison and Hamilton presented a
Silverman-Toeplitz type multidimensional characterization of regularity in [6] and [17].

THEOREM 1. The four-dimensional matrix A is RH-regular if and only if

RH1 : P- limm,n amnkl = 0 for each k and l ;
RH2 : P- limm,n ∑∞,∞

k,l=0,0 amnkl = 1;
RH3 : P- limm,n ∑∞

k=0 |amnkl| = 0 for each l ;
RH4 : P- limm,n ∑∞

l=0 |amnkl| = 0 for each k ;
RH5 : ∑∞,∞

k,l=0,0 |amnkl | is P-convergent;
RH6 : there exist finite positive integers Δ and Γ such that

∑k,l>Γ |amnkl | < Δ.

A double series ∑∞
k=1 ∑∞

l=0 xkl converges to a sum � if
(a) the sequence of ”rectangular” partial sums Smn converges:

� = P− lim
m,n→∞

m

∑
k=1

n

∑
l=0

xkl;

(b) every ”row series” ∑∞
l=0 xkl converges;

(c) every ”column series” ∑∞
k=0 xkl converges.

A double series ∑∞
k=1 ∑∞

l=0 xkl is called absolutely convergent if the series

∞

∑
k=0

∞

∑
l=0

|xkl |

converges. The space of all absolutely convergent double sequences will be denoted
Lu , that is

Lu := {x = {xkl} :
∞

∑
m=0

∞

∑
n=0

|xkl | < ∞}.

Observe that every absolutely convergent double series is convergent. The reader may
refer to the textbooks [2] and [12], and recent paper [18] on the spaces of double se-
quences, four dimensional matrices and related topics.
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In [14], Patterson proved that the matrix A = (amnkl) determines an Lu−Lu method
if and only if

sup
k,l

∞

∑
m=0

∞

∑
n=0

|amnkl| < ∞. (1)

The aim of this paper is study four dimensional Abel matrices as Lu−Lu matrices.

2. Four dimensional logarithmic Lu−Lu method

The logarithmic power series method of summability, denoted by Lu , is following
sequences-to-function transformation if

lim
r1→1−,r2→1−

{
1

log(1− r1) log(1− r2)

∞

∑
k=0

∞

∑
l=0

1
(k+1)(l +1)

xklr
k+1
1 rl+1

2

}
= a,

then x = (xkl) is Lu -summable to a . This can be modified into a sequence-to-sequence
transformation by replacing the continuous parameters r1 and r2 with the sequences
(tm) and (tn) such that 0 < tm < 1 for all m , 0 < tn < 1 for all n , limm tm = 1 and
limn tn = 1. Thus the sequence x = {xkl} is transformed into the sequence Lt,t x whose
mnth term is given by

(Lt,t x)mn =
1

log(1− tm) log(1− tn)

∞

∑
k=0

∞

∑
l=0

1
(k+1)(l +1)

xk,lt
k+1
m (tn)l+1.

This transformation is represented by the matrix Lt,t = (at,t
mnkl) given by

at,t
mnkl =

1
log(1− tm) log(1− tn)

1
(k+1)(l +1)

xk,lt
k+1
m (tn)l+1.

The matrix Lt,t is called a four dimensional logarithmic matrix. It is clear that At,t is
RH-regular matrix.

THEOREM 2. The four dimensional logarithmic matrix Lt,t is an Lu−Lu matrix
if and only if 1

log(1−tm) log(1−tn)
∈ Lu .

Proof. Since 0 < tm < 1 for all m and 0 < tn < 1 for all n , we have

∞

∑
m=0

∞

∑
n=0

|at,t
mnkl | =

1
(k+1)(l +1)

∞

∑
m=0

∞

∑
n=0

1
log(1− tm) log(1− tn)

tk+1
m (tn)l+1

�
∞

∑
m=0

∞

∑
n=0

1
log(1− tm) log(1− tn)

,

for every k and l . Thus if (tmtn) ∈ Lu , Theorem 1 in [14] guarantees that Lt,t is an
Lu−Lu matrix. Now suppose that 1

log(1−tm) log(1−tn)
/∈ Lu , then we consider the sum
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of the (at,t
mn00) elements of Lt,t :

∞

∑
m=0

∞

∑
n=0

|at,t
mn00| =

∞

∑
m=0

∞

∑
n=0

tmtn
log(1− tm) log(1− tn)

= ∞,

which shows that Lt,t is not an Lu−Lu matrix. �

THEOREM 3. If Lt,t is an Lu−Lu matrix and the series ∑∞
k=0 ∑∞

l=0 xkl has bounded
partial sums, then x ∈ LLt,t

.

Proof. Define skl = ∑k
i=0 ∑l

j=0 xkl , s00 = 0, s0l = 0, sk0 = 0 and wk
m = 1

k+1 t
k+1
m ,

vl
n = 1

l+1 (tn)l+1 . Then

∣∣∣∣∣
m

∑
k=1

n

∑
l=1

1
(k+1)(l +1)

tk+1
m (tn)l+1xk,l

∣∣∣∣∣
=

∣∣∣∣∣
m

∑
k=1

n

∑
l=1

wk
mvl

nxkl

∣∣∣∣∣
=

∣∣∣∣∣
m

∑
k=1

n

∑
l=1

wk
mvl

n(skl − sk,l−1− sk−1,l + sk−1,l−1)

∣∣∣∣∣
=

∣∣∣∣∣
m

∑
k=1

n

∑
l=1

skl [wk
mvl

n −wk+1
m vl

n−wk
mvl+1

n +wk+1
m vl+1

n

∣∣∣∣∣
� 4log(1− tm) log(1− tn) sup

k�m,l�n
|skl |

< M log(1− tm) log(1− tn).

This yields that

∣∣∣∣∣
∞

∑
k=0

∞

∑
l=0

1
(k+1)(l +1)

tk+1
m (tn)l+1xkl

∣∣∣∣∣< M log(1− tm) log(1− tn).

Hence,

|(Lt,t x)mn| < M

thus Lt,t is an Lu−Lu matrix, so x ∈ LLt,t
. �

3. A Tauberian theorem

We now prove an Lu−Lu Tauberian theorem for the four dimensional logarith-
mic matrices.
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THEOREM 4. Let Lt,t be an Lu −Lu logarithmic matrix; if x is a double se-
quence such that Lt,t x is in Lu ,and

∞

∑
i=0

∞

∑
j=0

|Δ10xi j|i j < ∞ (2)

and
∞

∑
i=0

∞

∑
j=0

|Δ01xi j|i j < ∞. (3)

then x in Lu where Δ10xi j = xi j − xi+1, j and Δ01xi j = xi j − xi, j+1 .

Proof. In order to show that Lt,t x− x is in Lu we write

(Lt,t x)mn − xmn =
1

log(1− tm) log(1− tn)

∞

∑
k=0

∞

∑
l=0

1
(k+1)(l +1)

tk+1
m (tn)l+1(xkl − xmn).

Letting

at,t
mnkl =

1
log(1− tm) log(1− tn)

1
(k+1)(l +1)

tk+1
m (tn)l+1,

we shall prove that

∞

∑
m=0

∞

∑
n=0

∞

∑
k=0

∞

∑
l=0

at,t
mnkl|xkl − xmn| < ∞.

Let us write

S =
∞

∑
m=0

∞

∑
n=0

∞

∑
k=0

∞

∑
l=0

at,t
mnkl|xkl − xmn|.

Let S = S1 +S2 , where

S1 =
∞

∑
m=0

∞

∑
n=0

m−1

∑
k=0

n−1

∑
l=0

at,t
mnkl|xkl − xmn|

and

S2 =
∞

∑
m=0

∞

∑
n=0

∞

∑
k=m

∞

∑
l=n

at,t
mnkl |xkl − xmn|.

Since

|xkl − xmn| = |xmn − xkl| =
∣∣∣∣∣
k−1

∑
i=m

Δ10xi j +
l−1

∑
j=n

Δ01xi j

∣∣∣∣∣ ,
this leads to
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S1 �
∞

∑
m=0

∞

∑
n=0

m−1

∑
k=0

n−1

∑
l=0

at,t
mnkl

(
k−1

∑
i=m

|Δ10xi j|+
l−1

∑
j=n

|Δ01xi j|
)

�
∞

∑
i=0

∞

∑
j=0

|Δ10xi j|
∞

∑
m=i+1

∞

∑
n= j+1

i

∑
k=0

j

∑
l=0

at,t
mnkl

+
∞

∑
i=0

∞

∑
j=0

|Δ01xi j|
∞

∑
m=i+1

∞

∑
n= j+1

i

∑
k=0

j

∑
l=0

at,t
mnkl

=

(
∞

∑
i=0

∞

∑
j=0

|Δ10xi j|+
∞

∑
i=0

∞

∑
j=0

|Δ01xi j|
)

ζi j

and

S2 �
∞

∑
m=0

∞

∑
n=0

∞

∑
k=m+1

∞

∑
l=n+1

at,t
mnkl

(
k−1

∑
i=m

|Δ10xi j|+
l−1

∑
i=n

|Δ01xki|
)

�
∞

∑
i=0

∞

∑
j=0

|Δ10xi j|
i

∑
m=0

j

∑
n=0

∞

∑
k=i+1

∞

∑
l= j+1

at,t
mnkl

+
∞

∑
i=0

∞

∑
j=0

|Δ01xi j|
i

∑
m=0

j

∑
n=0

∞

∑
k=i+1

∞

∑
l= j+1

at,t
mnkl

=

(
∞

∑
i=0

∞

∑
j=0

|Δ10xi j|+
∞

∑
i=0

∞

∑
j=0

|Δ01xi j|
)

ςi j,

where

ζi j =
∞

∑
m=i+1

∞

∑
n= j+1

i

∑
k=0

j

∑
l=0

at,t
mnkl and ςi j =

i

∑
m=0

j

∑
n=0

∞

∑
k=i+1

∞

∑
l= j+1

at,t
mnkl

By showing that ζi j = O(i j) and ςi j = O(i j) , we will prove that ∑∞
i=0 ∑∞

j=0 |Δ10xi j|i j <
∞ and ∑∞

i=0 ∑∞
j=0 |Δ01xi j|i j < ∞ implies that Lt,t x−x is in Lu . These O(i j) assertions

are very easily verified since Lt,t is Lu−Lu we have

ζi j =
i

∑
k=0

j

∑
l=0

∞

∑
m=i+1

∞

∑
n= j+1

at,t
mnkl � (i+1)( j +1)sup

k,l

∞

∑
m=1

∞

∑
n=1

|at,t
mnkl | = O(i j)

and since Lt,t is RH-regular we have

ςi, j =
i

∑
m=0

j

∑
n=0

∞

∑
k=i+1

∞

∑
l= j+1

at,t
mnkl � (i+1)( j +1)sup

m,n

∞

∑
k=0

∞

∑
l=0

|at,t
mnkl| = O(i j).

Thus, the proof is completed. �
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