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FURTHER RESULTS ABOUT NORMAL CRITERIA AND SHARED

VALUES FOR FAMILIES OF MEROMORPHIC FUNCTIONS

JIANMING QI

Abstract. Let k be a positive integer and let F be a family of meromorphic functions in the
domain D all of whose zeros with multiplicity at least k . Let P be a polynomial and P have
at least one simple zero, p = deg(P) � k + 2 . If, for each pair f ,g ∈ F , P( f )Gm( f ) and
P(g)Gm(g) share a nonzero constant b ignoring multiplicity in D, where G( f ) = P( f (k)) +
H( f ) is a differential polynomial of f satisfying w

deg |H � kmq
l+mq + 1 or w(H)− deg(H) < qk ,

and q > l � k+1 is a positive integer, then F is normal in D.

1. Introduction

Let D be a domain in C and F is a family of meromorphic in D . F is said to
be normal in D , in the sense of Montel, if each sequence { fn} ⊂F had a subsequence
{ fn j} which converges spherically locally uniformly in D , to a meromorphic func-
tion or ∞ (see [9], [23], [29]). Let P(z) be a polynomial or a finite complex number.
degP(z) denotes the degree of the polynomial P(z) .

Suppose that f (z) , g(z) are meromorphic functions in D and a ⊂ C∪ {∞} . If
f (z) = a if and only if g(z) = a , we say that f and g share a ignoring multiplicity
(IM) (see [27]).

DEFINITION 1. Let D⊆C be an arbitrary domain, m, l1, l2, · · · , lm be non-negative
integers and (0 � li � k) , if

M( f , f ′ , · · · , f (k)) = a(z)
m

∏
i=1

f (li),

where f is meromorphic and a is a holomorphic function in D (a �≡ 0), then
M( f , f ′, · · · , f (k)) is called a differential monomial of degree deg(M) := m and weight

w(M) :=
m

∑
i=1

(1+ li) .

The summation H := M1 + · · · + Mn of differential monomials Mj is called the
differential polynomial. For the convenience in this article, deviating from the common
definition, we definite the degree of deg(H) := min{deg(M1), · · · ,deg(Mn)} and weight

w(H) := max{w(M1), · · · ,w(Mn)}) , w
deg |H = max

{
w(M1)

deg(M1)
,

w(M2)
deg(M2)

, · · · , w(Mn)
deg(Mn)

}
.
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DEFINITION 2. Let q be a positive integer, and b j(z) ( j = 1,2...,q−1) be ana-
lytic function on a domain D .

P( f (k))(z) = ( f (k)(z))q +bq−1(z)( f (k)(z))q−1 + · · ·+b1(z) f (k)(z),

G( f ) = P( f (k))+H( f , f ′, · · · , f (k)).

In 1959, Hayman [10] proposed:
Conjecture A If f is a transcendental meromorphic function, then f n f ′ assumes

every finite non-zero complex number infinitely often for any positive integer n .

Hayman [10, 11] himself confirmed it for n � 3 and for n � 2 in the case of entire
f . Further, it was proved by Mues [17] when n � 2; Clunie [6] when n � 1 and f is
entire; Bergweiler and Eremenko [2] verified the case when n = 1 and f is of finite
order, and finally by Chen and Fang [5] for the case n = 1.

Correspondingly, there is a conjecture of Hayman [11] related to above problem
concerning the normality of F (see [1]).

Conjecture B If each f ∈ F satisfies f n f ′ �= a for a positive integer n and a
finite non-zero complex number a , then F is normal.

Concerning this conjecture, there are many significant results have been obtained
by Yang and Zhang [30]; Gu [8]; Oshkin [18]; Li and Xie [15]; Pang [19]; Zalcman
[31]. Chen and Fang [5] verified the conjecture B completely. Schick([24]) was the first
author to draw a connection between value shared by functions in F and the normality
of the family F . Moreover, many scholars had studied normality criterions such as
Meng [3]; Lei and Fang [14]; Li and Gu [16]; Pang and Zalcman [20]; Xia and Xu [25].

In 2004, Fang and Zalcman [7] proved:
Theorem A Let F be a family of meromorphic functions in a domain D, let

n � 1 be a positive integer, and b be a finite non-zero complex number. If, for each
f ,g ∈ F , f and g share 0 IM; f n f ′ and gng′ share b IM in D, then F is normal in
D.

Lately, Zhang [32] obtained:
Theorem B Let F be a family of holomorphic functions in a domain D, let

n � 1 be a positive integer, and b be a finite complex number. If, for each f ,g ∈ F ,
f n( f −1) f ′ and gn(g−1)g′ share b IM, then F is normal in D.

In 2008, Zhang [33] improved the condition of Theorem A, and obtained:
Theorem C Let F be a family of meromorphic functions in a domain D, let

n � 2 be a positive integer, and b be a finite non-zero complex number. If, for each
f ,g ∈ F , f n f ′ and gng′ share b IM, then F is normal in D.

There are examples showing that this result is not true if n = 1. Recently, Lei and
Fang [13] extended Theorems A,B,C and obtained as follows:
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Theorem D. Let F be a family of meromorphic functions in the plane domain
D, let P be a polynomial with either deg(P) � 3 or deg(P) = 2 and P having only one
distinct zero. If, for each f ,g ∈ F , P( f ) f ′ and P(g)g′ share a nonzero constant b IM
in D, then F is normal in D.

Theorem E. Let F be a family of meromorphic functions in the domain D, all
of whose poles are multiple, and let P be a polynomial with two distinct zeros. If,
for each f ,g ∈ F , P( f ) f ′ and P(g)g′ share complex number b IM in D, then F is
normal in D.

In 2012, Qi, Ding and Yang[22] extended the Theorem D and Theorem E and
obtained as follows:

Theorem D1. Let k be a positive integer and let F be a family of meromorphic
functions in the plane domain D all of whose zeros with multiplicity at least k . Let
P = apzp + · · ·+a2z2 + z be a polynomial, ap,a2 �= 0 and p = deg(P) � k+2. If, for
each f ,g ∈ F , P( f )G( f ) and P(g)G(g) share a non-zero constant b IM in D , where
G( f ) = f (k) + H( f ) be a differential polynomial of f satisfying w

deg |H � k
l+1 + 1 or

w(H)−deg(H) < k , then F is normal in D .

Theorem E1. Let k be a positive integer, suppose that F be a family of mero-
morphic functions in the plane domain D all of whose zeros and poles with multiplicity
at least k and 2 respectively. Let P be a polynomial with two distinct zeros at least.
If, for each f ,g ∈ F , P( f )G( f ) and P(g)G(g) share a constant b IM in D , where
G( f ) = f (k) +H( f ) be a differential polynomial of f with w(H)−deg(H) < k , then
F is normal in D .

In 2009, Hu and Meng[12] obtained the following results.
Theorem F. Take positive integers n and k with n,k � 2 and take a non-zero

complex number a . Let F be a family of meromorphic functions in the plane do-
main D such that each f ∈ F has only zeros of multiplicity at least k . For each pair
( f ,g) ∈ F , if f ( f (k))n and g(gk)n share a IM, then F is normal in D .

Also in the final paper of Hu and Meng[12], Hu and Meng pointed that if the
form f ( f (k))n (resp. g(gk)n ) in Theorem 1.1 was replaced by the form f l( f (k))n (resp.
gl(gk)n ) for an integer l � 2, the conclusion also holds.

Based on the ideas of Theorem D and Theorem E, it is natural to ask whether
f ( f (k))n , in Theorem F can be replaced by P( f )G( f )n , where P( f ) is polynomial
about f , G( f ) is a differential polynomial about f . The main purpose of this paper is
to investigate this problem. We prove the following results.

THEOREM 1. (Main) Let m,k be two positive integers. Let F be a family of
meromorphic functions in the domain D all of whose zeros with multiplicity at least
k . Let P be a polynomial and have at least one simple zero, and p = deg(P) � k +2 .
If, for each pair f ,g ∈ F , P( f )Gm( f ) and P(g)Gm(g) share a non-zero constant b
IM in D, where G( f ) = P( f (k)) + H( f ) be a differential polynomial of f satisfying
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w
deg |H � kmq

l+mq +1 or w(H)−deg(H) < qk , and q > l � k+1 is a positive integer, then
F is normal in D.

REMARK 1. If the polynomial P(z) has only one zero, the Theorem 1 is estab-
lished for deg(P) � k+1.

COROLLARY 1. Let k be two positive integers and F be a family of meromorphic
functions in the plane domain D all of whose zeros with multiplicity at least k . Let P
be a polynomial as theorem 1. If, for each f ,g ∈ F , P( f )( f (k))m and P(g)(g(k))m

share a non-zero constant b IM in D, then F is normal in D.

THEOREM 2. (Main) Let k be a positive integer, suppose that F be a family of
meromorphic functions in the domain D all of whose zeros and poles with multiplicity
at least k and 2 respectively. Let P be a polynomial with two distinct zeros at least.
If, for each f ,g ∈ F , P( f )Gm( f ) and P(g)Gm(g) share a constant b IM in D, where
G( f ) = P( f (k))+H( f ) be a differential polynomial of f with w(H)− deg(H) < qk ,
then F is normal in D.

COROLLARY 2. Let k be a positive integer, suppose that F be a family of mero-
morphic functions in the plane domain D all of whose zeros and poles with multiplicity
at least k and 2 respectively. Let P be a polynomial as theorem 2. If, for each f ,g∈F ,
P( f )( f (k))m and P(g)(g(k))m share b IM in D, then F is normal in D.

Example 1. Let D = {|z| < 1} and take a non-zero complex number a . Fix
three positive integers n � 2, k , m .

F = { fd(z) = dzk−1|d = 1,2...}.

Obviously, for distinct positive integers, i , j , we have f n
i ( f (k)

i )m and f n
j ( f (k)

j )m share
a IM. However, the family F is not normal at z = 0.

Example 2. Set

F = { fd(z) = dz− d
3

+
a
dm |d = 1,2, ..}.

For distinct positive integers, i , j , we have fi( f ′i )m and gi(g′i)m share a IM. However,
the family F is not normal at z = 1

3 .

Example 3. Set
F = {edz|d = 1,2, ...}.

Obviously, any fd ∈ mathcalF has only zeros of multiplicity at least k . For dis-

tinct positive integers i , j , we have f n
i ( f (k)

i )m and f n
j ( f (k)

j )m share 0 IM. However,
the families are not normal at z = 0.
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REMARK 2. Example 1 shows that the condition that f has only zeros of mul-
tiplicity at least k is sharp in Theorem 1 and 2. Example 2 shows the conditions
p = deg(P) � k + 2 in Theorem 1 and P is a polynomial with two distinct zeros at
least in Theorem 2 seems not be omitted. Example 3 shows the condition a �= 0 in
Theorem 1 is necessary.

REMARK 3. Obviously, Theorem 1 and Theorem 2 both extend the Theorem D1
and Theorem D2.

2. Some lemmas

In order to prove our theorem, we need the following Lemmas:

Lemma 2.1 [Pang-Zalcman’s lemma](see [4], [21], [31]) Let k be a positive in-
teger, let F be a family of meromorphic functions in the unit disc 	 with the property
that for each f ∈ F , all zeros of multiplicity at least k . Suppose that there exists a
number A � 1 such that | f (k)(z)| � A whenever f = 0. Suppose that F is not normal
at z0 , then for 0 � α � k , there exist

a). points zn ∈	 , zn → z0 ;
b). functions fn ∈ F ; and
c). positive numbers ρn → 0+ ;
such that ρ−α

n fn(zn + ρnξ ) = gn(ξ ) → g(ξ ) locally uniformly with respect to
the spherical metric, where g(ξ ) is a nonconstant meromorphic function on C , all
of whose zeros have multiplicity at least k , such that g�(ξ ) � g�(0) = kA+1. In par-
ticular, g has order at most 2.

Lemma 2.2([28]) Let n � 2, k be a positive integer and nk be a positive inte-
ger. If f is a transcendental meromorphic function, then f n( f (k))nk assume every finite
non-zero complex value infinitely often.

Lemma 2.3 ([26]) Let f be a non-constant rational function and n,m be two
positive integers. let k be a positive integer, and let b be a non-zero finite complex
number. then f n( f (k))m −b has one zero at least.

Lemma 2.4 Let f be a non-constant rational function in the plane C and n �
2,m be two positive integers. let k be a positive integer, and let b be a non-zero finite
complex number. then f n( f (k))m −b has two distinct zeros at least.

Proof. By Lemma 2.3, f n( f (k))m − b has one zero at least. On the contrary that
f n( f (k))m −b has one zero at most.

Suppose that f is a non-constant polynomial, we have

f n( f (k))m(z) = A(z− z0)l +b, (2.1)
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where A is a non-zero constant and l � 2 is a positive integer. The right hand side of
(2.1) has only simple zeros, but the left has multiple zeros, a contradiction. Thus f is a
non-polynomial rational function.
Set

f n( f (k))m(z) = A
(z−α1)m1(z−α2)m2 · · ·(z−αs)ms

(z−β1)n1(z−β2)n2 · · · (z−βt)nt
=

P
Q

, (2.2)

where A is a non-zero constant, P and Q are polynomials of degree M and N respec-
tively. Also P and Q have no common factor. By the zeros of f are at least k , we
obtain mi � 2(i = 1,2, · · · ,s) , n j � 2( j = 1,2, · · · ,t) . Hence

m1 +m2 + · · ·+ms = M � 2s, (2.3)

n1 +n2 + · · ·+nt = N � 2t. (2.4)

From (2.2), we obtain

( f n( f (k))m(z))′ =
(z−α1)m1−1(z−α2)m2−1 · · · (z−αs)ms−1g1(z)

(z−β1)n1+1(z−β2)n2+1 · · · (z−βt)nt+1 , (2.5)

where g1 is a polynomial of degree at most s+ t−1.
Since f n( f (k))m −b has only one zero. So we may set

f n( f (k))m(z) = b+
B(z− z0)l

(z−β1)n1(z−β2)n2 · · ·(z−βt)nt
=

P
Q

. (2.6)

Note that b �= 0, we obtain z0 �= αi(i = 1, · · · ,s) , where B is a non-zero constant, and
l � 2 is a positive integer.

From (2.6), we obtain

[ f n( f (k))m(z)]′ =
(z− z0)l−1g2(z)

(z−β1)n1+1 · · ·+(z−βt)nt+1 . (2.7)

Where g2(z) = B(l−N)zt +B1zt−1 · · ·+Bt is a polynomial (B1, · · · ,Bt are constants).

Case 1. If l �= N , by (2.6), then we obtain the deg(P) � deg(Q) . So M � N .

By (2.5) and (2.7), we obtain
s

∑
i=1

(mi −1) � deg(g2) = t . So M− s−deg(g1) � t , and

M � s+ t +deg(g1) � 2(s+ t)−1 < 2(s+ t) . By (2.3) and (2.4), we obtain

M < 2(s+ t) � 2[
M
2

+
N
2

] � M.

So we deduce that M < M . This is impossible.

Case 2. If l = N , then we consider two subcases.
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Case 2.1. If M � N , by (2.5) and (2.7), we obtain
s

∑
i=1

(Mi−1) � deg(g2) = t . So

M− s− deg(g1) � t , and M � s+ t + deg(g1) � 2(s+ t)− k < 2(s+ t) , by the same
reasoning mentioned in the case 1. This is impossible.

Case 2.2. If M < N , by (2.5) and (2.7), we obtain l−1 � degg1 � s+ t−1, then

N = l � deg(g1)+1 � s+ t−1 < s+ t

� 2[
M
2

+
N
2

] � N.

So we deduce that N < N . It is impossible. �
Lemma 2.5([27]) Let f (z) be a non-constant rational function, then f (z) has

only one deficient value.

3. Proof of Theorem 2

Proof. Without loss of generality, we assume that P(z) = Q(z)z(z − 1) , where
Q(z) �≡ 0 is a polynomial. Suppose that F is not normal in D. Then there exists at
least one z0 such that F is not normal at z0 , we assume that z0 = 0. By Lemma 2.1,
there exist points z j → 0; a sequence ρ j → 0+ and functions f j ∈ F such that

g j(ξ ) = f j(z j + ρ jξ ) → g(ξ ), (3.1)

locally uniformly with respect to the spherical metric, where g is a non-constant mero-
morphic function in C , all of whose zeros and poles are of multiplicity at least k and 2
respectively.

If Q(g)g(g−1)(g(k))qm ≡ 0, then g is a constant, a contradiction.
If Q(g)g(g−1)(g(k))qm �= 0. Because of the zeros of g have multiplicity at least

k , we obtain g �= 0,1.
We can claim that g is not a transcendental meromorphic function. In fact, if it is

not true, we have

T (r,g) � N(r,g)+N(r,
1
g
)+N(r,

1
g−1

)+S(r,g)

� 1
2
N(r,g)+S(r,g)

� 1
2
T (r,g)+S(r,g) .

Thus T (r,g) = S(r,g) , a contradiction. So g is a rational function. Since g �= 0,1, then
g is a constant, a contradiction.
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Thus Q(g)g(g− 1)(g(k))qm is a non-constant meromorphic function and has one
zero at least.

Next we will prove that Q(g)g(g− 1)(g(k))qm has just a single zero. In fact, let
ξ0 and ξ ∗

0 be two distinct solutions of Q(g)g(g− 1)(g(k))qm . We choose a positive
number δ small enough such that g and g j are holomorphic in D(ξ0,δ1)D(ξ ∗

0 ,δ1)
and D(ξ0,δ1)∩D(ξ ∗

0 ,δ1) = /0 .
From (3.1), we have

ρk
j [Q( f j(z j + ρ jξ ) f j(z j + ρ jξ )( f j(z j + ρ jξ )−1) ·Gm( f j(z j + ρ jξ )−b]

=ρmqk
j [Q(g j(ξ )g j(ξ )(g j(ξ )−1) · (ρ−qk

j (g(k)
j (ξ ))q + · · ·+ ρ−k

j b1(z j + ρ jξ )g(k)
j (ξ )

+
n

∑
j=1

a(z j + ρ jξ )ρdeg(Mj)−w(Mj)
j Mi(g,g′, · · · ,g(k)))−b]m

→ Q(g(ξ ))g(ξ )(g(ξ )−1)(g(k)(ξ ))qm. (3.2)

By Hurwitz’s theorem, there exist points ξ j ∈ D(ξ0,δ ) , ξ ∗
j ∈ D(ξ ∗

0 ,δ ) such that
for sufficiently large j

Q( f j(z j + ρ jξ j)) f j(z j + ρ jξ j)( f j(z j + ρ jξ j)−1)Gm( f j(z j + ρ jξ j)) = b,

Q( f j(z j + ρ jξ ∗
j )) f j(z j + ρ jξ ∗

j )( f j(z j + ρ jξ ∗
j )−1)Gm( f j(z j + ρ jξ ∗

j )) = b.

By the hypothesis that for each pair of functions f and g in F , P( f )Gm( f ) and
P(g)Gm(g) share 0 in D, we know that for any positive integer d

Q( fd(z j + ρ jξ j)) fd(z j + ρ jξ j)( fd(z j + ρ jξ j)−1)Gm( fd(z j + ρ jξ j) = b,

Q( fd(z j + ρ jξ ∗
j )) fd(z j + ρ jξ ∗

j )( fd(z j + ρ jξ ∗
j )−1)Gm( fd(z j + ρ∗

0 ξ j) = b.

Fix d , take j → ∞ , and note z j + ρ jξ j → 0, z j + ρ jξ ∗
j → 0, then

Q( fd(0)) fd(0)( fd(0)−1)Gm( fd(0)) = b.

Since the zeros of P( fd)Gm( fd)−b has no accumulation point, so z j + ρ jξ j = 0,
z j + ρ jξ ∗

j = 0.
Hence

ξ j = − z j

ρ j
, ξ ∗

j = − z j

ρ j
.

This contradicts with ξ j ∈ D(ξ0,δ ) , ξ ∗
j ∈ D(ξ ∗

0 ,δ ) and D(ξ0,δ )∩D(ξ ∗
0 ,δ ) = /0 So

Q(g)g(g−1)(g(k))qm has just a single zero, which can be denoted by ξ0 .
Suppose that g is a transcendental meromorphic function. Since Q(g)g(g−1)

(g(k))qm has only one zero, so g = 0 and g = 1 has only finite zeros. As the above
argument, we obtain T (r,g) = S(r,g) , a contradiction.

Thus g is a rational function which is not a polynomial. Because Q(g)g(g−
1)(g(k))qm has only one zero, we have g �= 0 or g �= 1.
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If g �= 0, then g(ξ ) = 1
H(ξ ) where H(ξ ) is a non-constant polynomial. Since

g(ξ )−1 = 1−H(ξ )
H(ξ ) has just a single zero, so

1−H(ξ ) = A(ξ −B)k, (3.3)

where A �= 0,B are constant, k � 2 is a positive integer.
We claim H(ξ ) has only simple zeros. Suppose, on the contrary, that H(z0) = 0

and z0 is multiple. Form (3.3), we arrive at 0 = H ′(z0) = (1−H(z0))′ = Ak(z0 −
B)(k−1) , a contradiction, since z0 �= B .

Thus H(ξ ) has just simple zeros, this contradicts that g has no simple pole. If
g �= 1, we can argue it in the same way. So F is normal on D. �

4. Proof of Theorem 1

Proof. We may assume that D = {|z| < 1} . Suppose that F is not normal in D.
Without loss of generality, we assume that F is not normal at z0 = 0. Then, by Lemma
2.1, there exist a sequence z j of complex numbers with z j → 0 ( j → ∞) ; a sequence
f j of F ; and a sequence ρ j → 0+ such that

g j(ξ ) = ρ
− mkq

l+mq
j f j(z j + ρ jξ ) (3.4)

converges uniformly to a non-constant mermorphic functions g(ξ ) in C with respect
to the spherical metric. Moreover, g(ξ ) is of order at most 2. Where q > l(� k+1) is
a constant. By Hurwitz’s theorem, the zeros of g(ξ ) have at least multiplicity k . Next
we will distinguish two cases:

Case 1. When P(z) has two distinct zeros, then we can denote P( f ) = f l( f +
1) (q > l � k+1).

If gl(g(k))qm ≡ b , then g has no zeros. Of course, g also has no poles. Since g is
a non-constant meromorphic function of order at morst 2, we obtain g(ξ ) = edξ 2+hξ+c

(where D, h , c are constants and dh �= 0). At this moment gl(g(k))qm �≡ b . Which is a
contradiction.

If gl(g(k))qm �= b , then by Lemma 2.2, we obtain that g is a constant. This contra-
dicts that g is a non-zero meromorphic function.

Thus gl(g(k))qm − b is a non-constant meromorphic function and has one zero at
least.

Next we will prove that gl(g(k))qm − b has just a single zero. In fact, let ξ0 and
ξ ∗

0 be two distinct solutions of gl(g(k))qm −b . We choose a positive number δ1 small
enough such that g and g j are holomorphic in ξ j ∈ D(ξ0,δ ) , ξ ∗

j ∈ D(ξ ∗
0 ,δ ) .
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From (3.4), we have

[ f l+1
j (z j + ρ jξ )+ f l

j(z j + ρ jξ )] · [P( f (k)
j (z j + ρ jξ ))+H( f , f ′, · · · , f (k))]m −b

=[ρ
− qlk

l+mq
j (g(k)

j (ξ ))q + · · ·+
n

∑
j=1

a∗jρ
( kmq

l+mq+1)deg(Mj)−w(Mj)
j Mi(g,g′, · · · ,g(k))]m,

[ρ
kmq(l+1)

l+mq
j gl+1

j (ξ )+ ρ
mqlk
l+mq
j gl

j(ξ )]−b→ gl(ξ )(g(k)(ξ ))qm −b. (3.5)

Choose δ2 such that D(ξ0,δ2)∩D(ξ ∗
0 ,δ2) = /0 and such that gl(g(k))qm−b has no other

zeros in D(ξ0,δ )∪D(ξ ∗
0 ,δ ) . By Hurwitz’s theorem, there exist points ξ j ∈ D(ξ0,δ ) ,

ξ ∗
j ∈ D(ξ ∗

0 ,δ ) such that for sufficiently large j

[ f l+1
j (z j + ρ jξ j)+ f l

j(z j + ρ jξ j)]Gm( f j(z j + ρ jξ j))−b = 0,

[ f l+1
j (z j + ρ jξ ∗

j )+ f l
j(z j + ρ jξ ∗

j )]G
m( f j(z j + ρ jξ ∗

j ))−b = 0.

By the hypothesis that for each pair of functions f and g in F , P( f )Gm( f (k))
and P(g)Gm(g(k)) share b in D, we know that for any positive integer d

[ f l+1
d (z j + ρ jξ j)+ f l

d(z j + ρ jξ j)]Gm( fd(z j + ρ jξ j))−b = 0,

[ f l+1
d (z j + ρ jξ ∗

j )+ f l
d(z j + ρ jξ ∗

j )]G
m( fd(z j + ρ jξ ∗

j ))−b = 0.

Fix d , take j → ∞ , and note z j + ρ jξ j → 0, z j + ρ jξ ∗
j → 0, then

[ f l+1
d (0)+ f l

d(0)]Gm( fd(0))−b = 0.

Since the zeros of P( f )Gm( f )− b has no accumulation point, so z j + ρ jξ j = 0,
z j + ρ jξ ∗

j = 0.
Hence

ξ j = − z j

ρ j
, ξ ∗

j = − z j

ρ j
.

This contradicts with ξ j ∈ D(ξ0,δ ) , ξ ∗
j ∈ D(ξ ∗

0 ,δ ) and D(ξ0,δ )∩D(ξ ∗
0 ,δ ) = /0 . So

gl(g(k))qm−b has just a single zero, which can be denoted by ξ0 .
From the above, we know gl(g(k))qm −b has just a unique zero. This contradicts

Lemma 2.2 and Lemma 2.4.

Case 2. If P(z) has more than three distinct zeros, we can denote P(z)= Q(g)g(g
−1)(g−a) .

Without loss of generality, we assume that F is not normal at z0 = 0. Then, by
Lemma 2.1, there exist a sequence z j of complex numbers with z j → 0 ( j → ∞) ; a
sequence f j of F ; and a sequence ρ j → 0+ such that

g j(ξ ) = f j(z j + ρ jξ ) (3.6)
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converges uniformly to a non-constant mermorphic functions g(ξ ) in C with re-
spect to the spherical metric.

Proceeding as in the proof of Theorem 2, we have Q(g)g(g−1)(g−a)Gm(g) only
one zero.

Obviously, g is not a transcendental meromorphic function from Picard Theorem.
Thus g is a non-constant rational function and g doesn’t assume two complex number
of {0,1,a} , due to Lemma 2.5, a contradiction. So F is normal in z0 . �
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