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DIMENSION STRUCTURES

ATTILA LOSONCZI

Abstract. We are going to introduce a new algebraic, analytic structure that is a kind of gener-
alization of the Hausdorff dimension and measure. We give many examples and study the basic
properties and relations of such systems.

1. Introduction

In this paper we introduce a new algebraic, analytic structure. In some sense it is a
kind of generalization of the Hausdorff dimension and measure. We are going to create
the basic building blocks of this new theory while presenting many examples which had
inspired the development of this notion.

Roughly speaking a dimension structure is a system that consists of a set and many
measurements which measure the points of the set. However most of those measure-
ments measure a point to either 0 or +∞ . Moreover the measurements are (partially)
ordered and there is a rule which says roughly that the greater the measurement po-
sition the smaller its value. More precisely if the value is not infinity then all greater
measurements measure the point to 0, which gives the opportunity to define dimension
of each point. Hence the points can be compared by two values, the dimension and the
measurement at the dimension.

We present many examples for various dimension structures. Actually there are
example groups like geometric measure theory types, accumulation point types, as-
tronomical distance types, convergence speed types and restricted Lebesgue measure
types.

In the last section we deal with the task how one can build new dimension struc-
tures from already existing ones. E.g. we define substructure, quotient structure of
dimension structures and also sum and direct product of dimension structures and the
more exotic measure sum. Then we devote a subsection to mappings between dimen-
sion structures. Finally we investigate extensions i.e. how a pre-dimension structure
can be extended to a dimension structure.
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1.1. Basic notions and notations

We enumerate many notions and notations that we will frequently use later.

For a set X , let P(X) denote the set of all subsets of X .

Let R+ = R
+∪{0,+∞} = [0,+∞] .

Throughout this subsection (1.1) let S denote a partially ordered set (i.e. poset).
If a partially ordered set S has a minimum (maximum) element we also denote it

by −∞ (+∞). If the set does not have a minimum (maximum) element then the symbol
−∞ (+∞) denotes a new element that is less than (greater than) all elements in S . Let
S = S∪{−∞,+∞} . E.g. if S has a minimum and maximum then S = S .

Within a partially ordered set S let us apply the usual convention that inf /0 =
+∞, sup /0 = −∞ .

Let us recall some usual definitions regarding posets.
S is called ordered if ∀x,y ∈ S are comparable that is x � y or y � x holds.

S is called dense if ∀x < y ∈ S ∃z ∈ S such that x < z < y .

S is called discrete if the topology induced by the partial order is discrete. Equiv-
alently if there is no infinite chain between two comparable points.

S is called complete if ∀P ⊂ S supP and infP exist.

S is a lattice if ∀s, p ∈ S inf{s, p} and sup{s, p} exist.

S′ ⊂ S is called a principal filter if S′ = {s ∈ S : infS′ � s} . It implies that
infS′ = minS′ ∈ S .

If s ∈ S has a successor then it is denoted by s+ = min{p ∈ S : p > s} while the
predecessor (if exists) by s− = max{p ∈ S : p < s} .

P ⊂ S is convex if a,c ∈ P,b ∈ S,a < b < c implies that b ∈ P .
P ⊂ S is called up-convex if a ∈ P,b ∈ S,a < b implies that b∈ P . An up-convex

set is convex. If +∞ ∈ P and P is convex then it is up-convex.
P ⊂ S is called down-convex if a ∈ P,b ∈ S,b < a implies that b ∈ P . A down-

convex set is convex. If −∞ ∈ P and P is convex then it is down-convex.
Obviously if ±∞ ∈ S then the only up- and down-convex set is S .

Let us define some usual operations with +∞ :

0 · (+∞) = 0, (+∞)+ (+∞) = +∞, (+∞) · (+∞) = +∞.

If r ∈ R
+ then

r · (+∞) = +∞,
+∞
r

= +∞, r+(+∞) = +∞.

Let us extend the domain of the sign function with +∞ :

sign(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−1 if x < 0

0 if x = 0

1 if x > 0

+∞ if x = +∞.
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In this paper λ and L denote the Lebesgue measure on R and the set of Lebesgue
measurable sets respectively.

2. The concept of dimension structure

DEFINITION 2.1. D = 〈X ,μs : s∈ S〉 is a dimension structure if X is a set, 〈S,<〉
is a partially ordered set, μs (s∈ S) is a function μs : X →R+ and the following axioms
hold:

(ax1) If x ∈ X ,s, p ∈ S,s < p and μs(x) < +∞ then μp(x) = 0.

(ax2) If x ∈ X ,s, p ∈ S , 0 < μs(x) < +∞ and μp(x) < +∞ then s, p are comparable
elements.

(ax3) ∀x ∈ X ∃ inf{s ∈ S : μs(x) = 0} .

If −∞ �∈ S then set μ−∞(x) = +∞ (x ∈ X) . When +∞ �∈ S then set μ+∞(x) =
0 (x ∈ X) .

REMARK 2.2. With the extension mentioned in the definition μ can be consid-
ered as a function μ : S×X → [0,+∞] .

REMARK 2.3. Clearly (ax2) is statisfied if 〈S,<〉 is ordered.
Obviously (ax3) holds if 〈S,<〉 is a complete partially ordered set.
When 〈S,<〉 is a complete ordered set then only (ax1) has to be checked.

REMARK 2.4. Examining (ax3) it can happen that inf{s ∈ S : μs(x) = 0} �∈ S be-
cause it equals to −∞ ∈ S \S . Or similarly when {s ∈ S : μs(x) = 0} is empty then the
infimum is +∞ that may not be in S .

DEFINITION 2.5. Let 〈X ,μs : s ∈ S〉 be a dimension structure and x∈ X . We will
use the following notations:

Sx = {s ∈ S : μs(x) < +∞}, S0
x = {s ∈ S : μs(x) = 0}, S+∞

x = S−Sx.

With that (ax3) can be formulated in a way that infimum of S0
x always exists.

DEFINITION 2.6. Let 〈X ,μs : s ∈ S〉 be a dimension structure and x ∈ X . If 0 <
μs(x) < +∞ for some s ∈ S then x is called an s-point.

Let us call x a dimension-point or dim-point if it is an s-point for some s ∈ S .

In the sequel we are going to enumerate facts that are the analog to ones in the
theory of Hasudorff dimension and measure. In the following statements we assume
that a dimension structure is given with the above attributes.

PROPOSITION 2.7. If x ∈ X , s < p (s, p ∈ S), 0 < μp(x) then μs(x) = +∞ .
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Proof. Indirect, using (ax1). �

COROLLARY 2.8. If x ∈ X , s < p (s, p ∈ S), μp(x) = +∞ then μs(x) = +∞ .
Equivalently S+∞

x is down-convex (x ∈ X) .

PROPOSITION 2.9. If x ∈ X , s < p (s, p ∈ S), μs(x) = 0 then μp(x) = 0 . Equiv-
alently S0

x is up-convex (x ∈ X) .

Proof. Apply (ax1). �
The following statements will be used to prepare the concept of dimension.

COROLLARY 2.10. For a given x ∈ X there can be at most one s ∈ S such that
0 < μs(x) < +∞ .

Proof. By (ax2) if there were two then they have to be comparable and then (ax1)
yields a contradiction. �

COROLLARY 2.11. (ax3) is equivalent to ∀x ∈ X ∃ infSx .

COROLLARY 2.12. For a given x ∈ X

sup{s ∈ S : μs(x) = +∞} � inf{s ∈ S : μs(x) = 0}

if the sup and inf exist and they are comparable.

Proof. Let s = sup{s ∈ S : μs(x) = +∞}, i = inf{s ∈ S : μs(x) = 0} . Let suppose
that i < s . Then there is a ∈ X , i < a � s such that μa(x) = +∞ and similarly there is
a b ∈ X , i � b < a such that μb(x) = 0. But then by Proposition 2.9 μa(x) = 0 which
is a contradiction. �

COROLLARY 2.13. Let D = 〈X ,μs : s∈ S〉 be a dimension structure with S being
ordered. Then for a given x ∈ X if μs(x) = +∞ and μp(x) = 0 then s < p. Moreover
if 0 < μq(x) < +∞ then s < q < p.

PROPOSITION 2.14. Let D = 〈X ,μs : s ∈ S〉 be a dimension structure with S
being dense, complete and ordered. Then

sup{s ∈ S : μs(x) = +∞} = inf{s ∈ S : μs(x) = 0}.

Proof. If S+∞
x = /0 then by Proposition 2.7 infS0

x =−∞ hence the assertion holds.
The case S0

x = /0 is similar.
Suppose that S+∞

x �= /0 and �= S . Then by Corollary 2.12 supS+∞
x � infS0

x holds.
If they would not be equal then there were infinitely many points between them which
is a contradiction since all but one point satisfy μs(x) = 0 or +∞ . �
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DEFINITION 2.15. Let D = 〈X ,μs : s ∈ S〉 be a dimension structure. For x ∈ X
set

dimD x = dimx = inf{s ∈ S : μs(x) < +∞} ∈ S.

It is called the dimension of x in D .

REMARK 2.16. If D = 〈X ,μs : s ∈ S〉 is a dimension structure with S being
dense, complete and ordered then

dimD x = sup{s ∈ S : μs(x) = +∞} (x ∈ X).

In a dimension structure we can easily define a partial order on X using dimension
and the given measure.

DEFINITION 2.17. Let 〈X ,μs : s ∈ S〉 be a dimension structure. We define a par-
tial order on X . Let x,y ∈ X .

x �D y ⇐⇒
{

dimx < dimy or

dimx = dimy = d and μd(x) � μd(y).

Obviously if S is ordered then �D is an order too.

If we want to measure the size of an object x ∈ X , μdimx(x) is not enough alone,
actually we need dimx as well. Hence we can express the size of x by two numbers
dimx and μdimx(x) .

DEFINITION 2.18. Let D = 〈X ,μs : s ∈ S〉 be a dimension structure. For x ∈ X
let μD : X → S× [0,+∞]

μD (x) = (dimx,μdimx(x)).

PROPOSITION 2.19. Let D = 〈X ,μs : s∈ S〉 be a dimension structure. If we equip
S× [0,+∞] with the lexicographic order then

x �D y ⇐⇒ μD (x) � μD(y) (x,y ∈ X).

DEFINITION 2.20. For dimension structure D and d ∈ S,m ∈ [0,+∞] define
CD

d,m = Cd,m = {x ∈ X : dimx = d,μd(x) = m} .

PROPOSITION 2.21. x ∈ X is an s-point iff dimx = s and 0 < μdimx(x) < +∞ .
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2.1. Special classes of dimension structures

Here we define some important properties of dimension structures.

DEFINITION 2.22. We call a dimension structure D = 〈X ,μs : s∈ S〉 fully-normal
if ∀s ∈ S ∃x ∈ X such that 0 < μs(x) < +∞ i.e. x is an s-point. D is normal if
∀s ∈ S,s /∈ {−∞,+∞} there exists an s-point. D is called quasi-normal if ∀s ∈ S,s /∈
{−∞,+∞} there exists x ∈ X such that dimx = s .

DEFINITION 2.23. We call a dimension structure 〈X ,μs : s ∈ S〉
p-strong if ∀x ∈ X ∃s ∈ S such that μs(x) < +∞ ,
m-strong if ∀x ∈ X ∃s ∈ S such that 0 < μs(x) .
If it is p-strong and m-strong at the same time then it is called strong.

PROPOSITION 2.24. Property p-strong is equivalent to the condition that dimx �=
+∞ (x∈X) , while property m-strong is equivalent to the condition that dimx �=−∞ (x∈
X) .

We might have added the following property to the axioms however it might have
restricted the concept of dimension structure too much.

DEFINITION 2.25. A dimension structure D = 〈X ,μs : s ∈ S〉 is called principal
if ∀x ∈ X Sx ∪{infSx} is a principal filter in S .

REMARK 2.26. D is principal iff Sx −{infSx} = {s ∈ S : s > infSx} .

REMARK 2.27. If S is ordered then D is principal.

PROPOSITION 2.28. Dimension structure D = 〈X ,μs : s ∈ S〉 is principal iff x ∈
X , s > dimx implies that μs(x) = 0 .

Proof. Necessity is obvious. We prove sufficiency. Let us assume that D is not
principal. Then there is x ∈ X ,s ∈ S,s > dimx such that μs(x) = +∞ which is a con-
tradiction. �

EXAMPLE 2.29. If D is not principal then it can happen that for some x ∈ X
there is s ∈ S such that s > dimx and μs(x) = +∞ .

To provide such example let X = {x0}, S = {−n : n ∈ N}∪{−∞,a} where a is a
new symbol differing from the other ones. Set

s < p ⇐⇒

⎧⎪⎨
⎪⎩
−s,−p ∈ N and s < p

s = −∞
s = a, p = −1.
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Then S is a lattice. Set

μs(x0) =

{
+∞ if s ∈ {−∞,a}
0 otherwise.

Then 〈X ,μs : s ∈ S〉 is a dimension structure and dimx0 = −∞ and obviously the as-
sertion holds since μa(x0) = +∞ .

In a plain dimension structure among the points of X there is no any connection.
The following definition provides some.

DEFINITION 2.30. Let D = 〈X ,μs : s∈ S〉 be a dimension structure and let 〈X ,�
〉 be partially ordered too. If α is a cardinal number, we say that D is α -synchronized
if the followings hold:

1. If x � y (x,y ∈ X) then μD (x) � μD(y) .

2. If Y ⊂ X , |Y | � α and supY exists in X then sup{dimy : y ∈ Y} exists as well
and dim(supY ) = sup{dimy : y ∈Y} holds.

We say that D is finitely-synchronized if condition 2 holds for finite sets Y (and con-
dition 1 remains valid too).

REMARK 2.31. Condition 1 alone implies that if Y ⊂ X , supY and sup{dimy :
y ∈ Y} exist then sup{dimy : y ∈Y} � dim(supY ) .

Proof. Condition 1 gives that x � y implies that dimx � dimy . And if y ∈Y then
y � supY hence dimy � dimsupY . �

PROPOSITION 2.32. Let D = 〈X ,μs : s ∈ S〉 be a dimension structure with S
being ordered. Then condition 1 is equivalent to

if x � y then ∀s ∈ S μs(x) � μs(y). (1)

Proof. Let us prove necessity. If dimx = dimy then it is obvious. Let dimx <
dimy and assume that ∃s ∈ S such that μs(x) > μs(y) . It gives that μs(y) < +∞ and
then dimy � s . But it implies that dimx < s which yields that μs(x) = 0 that is a
contradiction because μs(y) should be negative.

Let us show sufficiency. The new condition (1) gives that

{s ∈ S : μs(y) < +∞} ⊂ {s ∈ S : μs(x) < +∞}

which implies that dimx � dimy . If dimx < dimy the we are done, while if dimx =
dimy = d then μd(x) � μd(y) gives the statement. �
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REMARK 2.33. There is a weaker form of Condition 1:
1’. If x � y (x,y ∈ X) then dimx � dimy .

If 〈X ,μs : s ∈ S〉 is a dimension structure with X being ordered then for finite
synchronization Condition 1’ is sufficient.

PROPOSITION 2.34. Let D = 〈X ,μs : s ∈ S〉 be a dimension structure with X
being ordered. Then condition 1 implies finite synchronization.

The question arises that if we equipped X with the partial order from �D could
this make D (at least) finitely synchronized. The answer is negative even when S and
〈X ,�D〉 are lattices as the next example shows.

EXAMPLE 2.35. Let S = {a,b,c,d,e},X = {x,y,z,w} . The order on S : a < c <
d < e,a< b< d . Clearly S is a lattice. Let us define μ : ∀s∈ S μs(x)= 0, if s∈{c,d,e}
then μs(z) = 0, if s ∈ {b,d,e} then μs(y) = 0 and μe(w) = 0. Let μ = +∞ for all not
yet defined cases.

Then dimx = a,dimy = b,dimz = c,dimw = e . We get that x �D y �D w,x �D

z �D w . Therefore X becomes a lattice but d = sup{dimy,dimz} < dimsup{y,z} = e .

We define one more property.

DEFINITION 2.36. We call a dimension structure 〈X ,μs : s ∈ S〉
p-small if ∀x ∈ X μdimx(x) < +∞ ,
m-small if ∀x ∈ X 0 < μdimx(x) .
If it is p-small and m-small at the same time then it is called small and that is

eqivalent to that all x ∈ X is a dimx -point.

PROPOSITION 2.37. Let D be a dimension structure. If D is p-small then it is
p-strong. If D is m-small then it is m-strong. If D is small then it is strong.

2.2. Discrete ordered dimension structures

We mention an important special case here.

PROPOSITION 2.38. Let D = 〈X ,μs : s ∈ S〉 be given such that X is a set, 〈S,<〉
is a partially ordered set, μs (s ∈ S) is a function μs : X → R+ and let S be discrete
and ordered. Then D is a dimension structure iff the following holds:

(ax1’) μs(x) < +∞ ⇒ μs+(x) = 0 (whenever s ∈ S,x ∈ X and s+ denotes the
successor of s)

Proof. (ax1) can be shown by induction from (ax1’). (ax2) is satisfied because S
is ordered, and (ax3) holds because a discrete ordered set is complete. �

PROPOSITION 2.39. If D = 〈X ,μs : s ∈ S〉 is a dimension structure with S being
discrete and ordered then

(supS+∞
x )+ � dimx � infS0

x .
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Proof. It simply follows from the fact that dimx = min{s∈ S : μs(x) < +∞} . �

COROLLARY 2.40. If D = 〈X ,μs : s ∈ S〉 is a p-strong dimension structure with
S being discrete and ordered, x ∈ X then μdimx(x) < +∞ i.e. D is p-small.

3. Examples

EXAMPLE 3.1. The classic Hausdorff dimension and measure on R is a dimen-
sion structure: D = 〈P(R) : μs : s ∈ [0,1]〉 where μs is the s-dimensional Hausdorff
measure. Moreover if we equip P(R) with the partial order from set inclusion then D
becomes an ℵ0 -synchronized dimension structure.

REMARK 3.2. We can also get dimension structures if we replace ”Hausdorff di-
mension” to ”box-counting dimension” or ”packing dimension” or any other such geo-
metric type dimension and measure.

EXAMPLE 3.3. Let us use the notation H ′ for the accumulation points of a subset
H of R . Let H(0) = H and H(n+1) = (H(n))′ for n ∈ N∪{0} . If n ∈ N∪{0} let

μn(H) =

{
|H(n)| if |H(n)| is finite

+∞ otherwise

Then D = 〈P(R),μn : n ∈ N∪{0}〉 is a dimension structure. If we equip P(R)
with the partial order from set inclusion then D becomes a finitely-synchronized nor-
mal dimension structure.

Proof. Clearly if |H(n)| is finite then H(n+1) = /0 and this yields (ax1’).
We show that D is finitely-synchronized. Let us recall the facts that A ⊂ B ⇒

A′ ⊂ B′ and (A∪B)′ = A′ ∪B′ . These imply that A⊂ B⇒ A(n) ⊂ B(n) and (A∪B)(n) =
A(n)∪B(n) (n ∈ N) which simply give the statement.

Normality is obvious since if dimH �∈ {0,+∞} then H is a dimH -point. �

REMARK 3.4. Obviously D is not ℵ0 -synchronized as the following sets testify:
Hi = { 1

i } (i ∈ N) since dimHi = 0 while dim
⋃+∞

1 Hi = 1.

REMARK 3.5. If we slighly modify D with leaving out the empty set from the
underlying set then 〈P(R)−{ /0},μn : n ∈ N∪{0}〉 becomes m-small.

EXAMPLE 3.6. We can generalize the previous example further. Let α < ω1 be
an ordinal number. If α = β + 1 is a successor ordinal then let H(α) =

(
H(β ))′ , and

when α is a limit ordinal then let H(α) =
⋂

β<α
H(β ) . If α < ω1 let

μα(H) =

{
|H(α)| if |H(α)| is finite

+∞ otherwise.
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Then D = 〈P(R),μα : α < ω1〉 is a dimension structure. If we equip P(R) with the
partial order from set inclusion then D becomes a finitely-synchronized normal dimen-
sion structure.

In this case the dimension of a set can be greater then ω0 .

EXAMPLE 3.7. Let X = {(xn) sequence on R : xn → +∞} . We want to measure
how fast the sequence tends to infinity. For α > 0 set

lα((xn)) = lim
n→∞

xn

nα , Lα ((xn)) = lim
n→∞

xn

nα .

Then 〈X , lα : α > 0〉 and 〈X , Lα : α > 0〉 are normal dimension structures.

Proof. We show it for 〈X , lα : α > 0〉 , the other is similar.
Suppose lα((xn)) < +∞,α < β ∈ R . Then lim xn

nβ = lim xn
nα

1
nβ−α = 0 because

lim 1
nβ−α = 0.
Obviously ∀α ∃(xn) such that 0 < lα ((xn)) < +∞ , e.g. xn = nα . �
We can generalize the previous example further. (The proof is similar hence omit-

ted.)

EXAMPLE 3.8. Let X = {(xn) sequence on R : xn → +∞} . Set S = ω0 ×
(
R

+ ∪
{0}) and take the lexicographic order on S . For m ∈ ω0 we define functions on R :
f0(x) ≡ 1, f1(x) = ex, fm+1(x) = e fm(x) . If (xn) ∈ X , (m,α) ∈ S let

l(m,α)(xn) = lim
n→∞

xn

fm(n) ·nα , L(m,α)(xn) = lim
n→∞

xn

fm(n) ·nα .

Then 〈X , l(m,α) : (m,α) ∈ S〉 and 〈X , L(m,α) : (m,α) ∈ S〉 are normal dimension struc-
tures. Now the dimension of a point is of the form (m,α) ∈ S .

Of course further such generalizations are still possible.

We now present a different type of generalization.

EXAMPLE 3.9. Let X = {(xn) sequence on R : xn → +∞} . For α,β > 0 let

lα ,β (xn) =

⎧⎨
⎩

+∞ if lim
n→∞

x2n
(2n)α = +∞ or lim

n→∞
x2n+1

(2n+1)β = +∞

lim
n→∞

x2n
(2n)α · lim

n→∞
x2n+1

(2n+1)β otherwise.

Then 〈X , lα ,β : α,β > 0〉 is a dimension structure where we take the product order on
R

+×R
+ (the underlying poset is not ordered any more).

Proof. Let us check (ax1). Suppose lα ,β (xn) < +∞ . Then

lim
n→∞

x2n

(2n)α < +∞ and lim
n→∞

x2n+1

(2n+1)β < +∞.
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Let (α,β ) < (α ′,β ′) . Then α < α ′ and β � β ′ or β < β ′ and α � α ′ . Assume
the first holds (the other is similar). Then

lim
n→∞

x2n

(2n)α ′ = lim
n→∞

x2n

(2n)α
1

(2n)α ′−α = 0

because lim 1
(2n)α′−α = 0. Obviuosly lim

n→∞
x2n+1

(2n+1)β ′ � lim
n→∞

x2n+1
(2n+1)β hence lim

n→∞
x2n+1

(2n+1)β ′ <

+∞ . Which implies that lα ′,β ′(xn) = 0.

We show that (ax2) holds too. Let 0 < lα ,β (xn) < +∞ and lα ′,β ′(xn) < +∞ . Then

0 < lim
n→∞

x2n

(2n)α < +∞ and 0 < lim
n→∞

x2n+1

(2n+1)β < +∞

and
lim
n→∞

x2n

(2n)α ′ < +∞ and lim
n→∞

x2n+1

(2n+1)β ′ < +∞.

From that we get that α � α ′ and β � β ′ which yields that (α,β ) � (α ′,β ′) .
Let us validate (ax3). Evidently

{(α,β ) : lα ,β (xn) < +∞} = {α : lim
x2n

(2n)α < +∞}×{β : lim
x2n+1

(2n+1)β < +∞}

hence the infimum exists. �

REMARK 3.10. The dimension structure is not principal in Example 3.9.
To show that take the sequence xn = n logn . Clearly

lim
n→∞

x2n

2n
= lim

n→∞

x2n+1

2n+1
= +∞.

If α > 1 and β > 1 then

lim
n→∞

x2n

(2n)α = lim
n→∞

x2n+1

(2n+1)β = 0

which gives that dim(xn) = (1,1) . If we take e.g. (1,5) then (1,1) < (1,5) and
l1,5(xn) = +∞ because the first factor is +∞ .

REMARK 3.11. In Example 3.9 we can get a different however very similar ex-
ample if in the definition of lα ,β (xn) we change the product to min.

REMARK 3.12. We can slightly extend X in the previous examples (3.7, 3.8, 3.9)
by adding generalized sequences which can also take the value +∞ .

REMARK 3.13. Using the previous methods one can measure convergence speed
as well. Let an → a ∈ R . Let

xn =

{
1

|an−a| if an �= a

+∞ otherwise.

Then (xn) is a generalized sequence tending to infinity and we can apply the generalized
form of the previously definied dimensions and measures of (xn) to (an) .
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EXAMPLE 3.14. We define a mathematical model for describing astronomical/
atomic distances. First let us explain for what exactly we want to construct a model.

When we measure distances in the universe we find that there are distance classes
in the following sense. E.g. we have one class of distances when we measure man size
objects on Earth. Another class is when we measure distance between planetary objects
(planets, meteorites, etc.) since those distances are many orders of magnitude greater
than the previous ones. Then a higher class is when we measure distance between stars
because again those distances are far bigger than the previous ones. Next class is the
distance between galaxys.

Or we can go downward as well. When we measure distances between compo-
nents in a cell than those are many order of magnitude smaller than distances of man
size objects. The next class down can be the distance between atoms, then distance
between elementary particles.

And each time in a class we get distances that do not differ from each other much,
while distances in different classes are differ by many orders of magnitude.

Let us now present a mathematical model for such system.

Let X be a set. For each n∈Z let ρn be a pseudo–metric on X with the additional
property that ρn(x,y) can take the value +∞ as well. We require two more axioms:

(1) ρn(x,y) < +∞ ⇒ ρn+1(x,y) = 0 (x,y ∈ X) ;
(2) ∀x,y ∈ X (x �= y) ∃n ∈ Z such that 0 < ρn(x,y) < +∞ .
Then 〈{(x,y) : x,y ∈ X ,x �= y};ρn : n ∈ Z〉 is a small dimension structure.

Proof. If n < m,ρn(x,y) < +∞ then ρm(x,y) = 0 by induction from (1).
Obviously 〈Z,<〉 is a complete ordered set that gives (ax2) and (ax3). �
Here the dimension of an object (=2 points) gives the scale (or better to say name

of the scale) where their distance can be reasonable measured.

Now we construct an object that satisfies these axioms.

EXAMPLE 3.15. Let

X = {(xn)+∞
n=−∞ : xn ∈ R and ∃k ∈ Z such that xm = 0 whenever m � k} ⊂ R

Z.

For x = (xn),y = (yn) ∈ X let

ρn(x,y) =

{
|xn− yn| if xm = ym ∀m > n

+∞ otherwise
.

One can readily check that 〈{(x,y) : x,y∈ X ,x �= y};ρn : n∈ Z〉 satisfies the above
axioms.

We can define a continuous version as well.

EXAMPLE 3.16. Let X be a set. For each s ∈ R let ρs be a pseudo–metric on X
with the additional property that ρs(x,y) can take the value +∞ as well. We require
two more axioms:
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(1) If x,y ∈ X ,s, p ∈ S,s < p and ρs(x,y) < +∞ then ρp(x,y) = 0;
(2) ∀x,y ∈ X (x �= y) ∃s ∈ R such that 0 < ρs(x,y) < +∞ .
Then 〈{(x,y) : x,y ∈ X ,x �= y};ρs : s ∈ R〉 is a dimension structure.

EXAMPLE 3.17. To get a slightly reduced such system let us take the dimension
structure associated to the Hausdorff measure and dimension (Example 3.1). For 0 �
s � 1, H,K ⊂ R let ρs(H,K) = μs

(
(H −K)∪ (K −H)

)
. Evidently ρs is a pseudo-

metric and the system 〈P(R) : ρs : s ∈ [0,1]〉 satisfies condition (1) in 3.16. Of course
ρs is not defined for all s ∈ R , just for s ∈ [0,1] and (2) is not always holds.

EXAMPLE 3.18. Let (X ,τ) be a topological space that is not M2 . Let a Borel
measure μ be given on X and let μ also denote the outer measure obtained by μ . If
H ⊂ X let us define the accumulation points of H regarding the system τ,μ :

H ′ = {x ∈ H : K is open,x ∈ K =⇒ μ(H ∩K) > 0}.

Set H(0) = H and H(n+1) =
(
H(n))′ for n ∈ N . Obviously H(n+1) ⊂ H(n) .

If n ∈ N∪{0} let

μn(H) =

{
μ
(
H(n)) if μ

(
H(n+1)) = 0

+∞ otherwise.

Then 〈P(X),μn : n ∈ N∪{0}〉 is a dimension structure.

We can easily generalize some of the previous examples.

EXAMPLE 3.19. Let 〈X ,<〉 be a partially ordered set and f : X → X be a func-
tion with the property that if x ∈ X then f (x) � x . Let f0(x) = f (x) and fn+1(x) =
f
(
fn(x)

)
for n ∈ N . If n ∈ N∪{0} let

μn(x) =

⎧⎪⎨
⎪⎩

0 if fn(x) = fn+1(x)
1 if fn(x) �= fn+1(x) = fn+2(x)
+∞ otherwise.

Then 〈X ,μn : n ∈ N∪{0}〉 is a dimension structure.

EXAMPLE 3.20. If H ⊂ R,H ∈ L ,n ∈ Z let

μn(H) =

{
+∞ if λ (H ∩ [n+1,+∞)) > 0

λ (H ∩ [n,n+1)) otherwise

where λ ,L denote the Lebesgue measure on R and the set of Lebesgue measurable
sets respectively.

Then 〈L ,μn : n ∈ Z〉 is a discrete dimension structure.

We can create the planar version of the previous example.
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EXAMPLE 3.21. If H ⊂ R
2,H ∈ L ,n,m ∈ Z let

Hn,m = H ∩ [n,n+1)× [m,m+1),

Ĥn,m = H ∩{(x,y) ∈ R
2 : x � n+1 or y � m+1},

and

μn,m(H) =

{
+∞ if λ (Ĥn,m) > 0

λ (Hn,m) otherwise

where λ denotes the Lebesgue measure on R
2 and L is the set of Lebesgue measur-

able sets.
Then

〈
L ,μn,m : (n,m) ∈ 〈Z2,<〉〉 is a principal dimension structure where < is

the product order on Z
2 . Obviously here the underlying poset is not ordered.

Proof. (ax1): Let μn,m(H) < +∞, (n,m) < (n′,m′) . Then n � n′,m < m′ or n <
n′,m � m′ holds. Assume the first (the other is similar).

Evidently Ĥn′,m′ ⊂ Ĥn,m which gives that λ (Ĥn′,m′) = 0 because λ (Ĥn,m) = 0.
Hence μn′,m′(H) = λ (Hn′,m′) but Hn′,m′ ⊂ Ĥn,m which yields that μn′,m′(H) = 0.

(ax2): Let 0 < μn,m(H) < +∞, μn′,m′(H)< +∞ . Then λ (Ĥn,m) = 0, λ (Ĥn′,m′) = 0
and 0 < λ (Hn,m) < +∞ . Therefore Hn,m �⊂ Ĥn′,m′ . If (n,m) and (n′,m′) were incompa-
rable then either n < n′,m > m′ or n > n′,m < m′ would hold. In any case Hn,m ⊂ Ĥn′,m′
would hold which is a contradiction.

(ax3): 〈Z2,<〉 is a discrete lattice therefore complete.

Principal: Let (n,m) = inf{(k, l) : μk,l(H) < +∞} and (n,m) < (n′,m′) . First
observe that (n,m) ∈ {(k, l) : μk,l(H) < +∞} because 〈Z2,<〉 is discrete. Hence
μn,m(H) < +∞ .

Suppose that μn′,m′(H) = +∞ . Then λ (Ĥn′,m′) > 0. But Ĥn′,m′ ⊂ Ĥn,m which
gives that λ (Ĥn,m) > 0 and we would get that μn,m(H) = +∞ that is a contradic-
tion. �

The following example is based on an expansion of numbers, namely every num-
ber z in [0,+∞) can be uniquely written in the form

z = ee...e
x

x+1

where x ∈ [0,+∞) . This form has two parameters: the height of the tower of eee...

(that
can be 0) and x . Both parameters are uniquely determined by z .

EXAMPLE 3.22. We need some definition first.

Let g0 : [0,+∞) → R, g0(x) = x
x+1 . If n ∈ N then set gn : [0,+∞) → R, gn(x) =

egn−1(x) . Let us observe that if n < m then y ∈ Ran gn, z ∈ Ran gm implies that y < z .
Moreover

⋃
n∈N∪{0}Ran gn = [0,+∞) .
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If x ∈ [0,+∞),n ∈ N∪{0} then set hx,n(y) : [0,+∞] → R

hx,n(y) =

{
gn(y)− x if y < +∞
lim

z→+∞
gn(z)− x if y = +∞.

The limit exists because z �→ gn(z)− x strictly increasing. Hence hx,n(y) strictly in-
creasing.

Let us show that if x ∈ [0,+∞),n ∈ N∪{0} are given then there is a unique y0 ∈
[0,+∞] such that |hx,n(y)| takes its minimum in y0 .

The minimum exists because |hx,n(y)| is continuous and [0,+∞] is compact. The
minimum is unique since hx,n(y) strictly increasing.

Now we can define the dimension structure.
Let D = 〈[0,+∞),μs : s ∈ N∪{0}〉 where both [0,+∞) and N∪{0} is equipped

with the usual order and if x ∈ [0,+∞),n ∈ N∪{0} then μn(x) = y0 where y0 is the
unique number in [0,+∞] such that |hx,n(y)| takes its minimum. Then D is a finitely
synchronized normal dimension structure.

Proof. We have to prove (ax1’). Suppose that μn(x) < +∞ for some x ∈ [0,+∞),
n ∈ N∪{0} . It is easy to see that then either x ∈ Ran gn or ∀z ∈ Ran gn, x < z holds.
Both cases imply that ∀z ∈ Ran gn+1, x < z holds which yields that μn+1(x) = 0.

Finite synchronization follows from Propositions 2.34 and 2.32 and the fact that
x � y implies that ∀s ∈ S μs(x) � μs(y) .

Normality is trivial. �
Here the dimension of a point x is the height of the tower of eee...

.

A straightforward example can show that D is not ℵ0 synchronized.

4. Building new dimension structures

There are many ways how we can get a new dimension structure from already
existing ones. In this section we are going to present such constructions.

Most of the proofs are straightforward therefore they are omitted in many cases.

4.1. Substructure

PROPOSITION 4.1. Let D = 〈X ,μs : s ∈ S〉 be a dimension structure. Let Y ⊂
X ,P ⊂ S such that P inherits the order from S and P is complete. When p ∈ P then
let νp = μp|Y .

Then D ′ = 〈Y,νp : p ∈ P〉 is a dimension structure.

DEFINITION 4.2. Let D = 〈X ,μs : s ∈ S〉, D ′ = 〈Y,νp : p∈ P〉 be two dimension
structures. Let Y ⊂ X ,P ⊂ S such that P inherits the order from S . For p ∈ P assume
that νp = μp|Y .

Then D ′ is called the substructure of D .
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This method contains the important case when we leave out measures only and
keep X intact. Even more important case is defined in the following definition.

DEFINITION 4.3. Let D = 〈X ,μs : s ∈ S〉 be a dimension structure. Set X ′ =
{x ∈ X : ∃s ∈ S such that 0 < μs(x) < +∞} and S′ = {s ∈ S : ∃x ∈ X such that 0 <
μs(x) < +∞} . D ′ = 〈X ′,μs : s ∈ S′〉 is called the normalization of D and it is a normal
dimension structure.

REMARK 4.4. One can readily create examples where the dimension of a point
gets smaller in the substructure, and also where the dimension of a point gets greater in
the substructure than it was in the original structure.

E.g. let 〈P(R) : μs : s ∈ [0,1]〉 as in Example 3.1. Let Y = X = P(R) and P =
[0,0.3]∪ (0.5,0.6]∪ [0.8,1] . Let D ′ = 〈Y,νp : p ∈ P〉 . Let H,K ⊂ R such that the
Hausdorff dimension of H,K equals to 0.4 and 0.7 respectively. Then dimD ′ H = 0.3
and dimD ′ K = 0.8.

PROPOSITION 4.5. Let D ′ be a substructure of D as above. Let x ∈ Y be an
s-point in D for s ∈ P. Then x is an s-point in D ′ as well. I.e. dimD ′ x = dimD x in
this case.

4.2. Quotient structure

PROPOSITION 4.6. Let D = 〈X ,μs : s∈ S〉 be a dimension structure with S being
complete. Let X = ∪i∈IXi,Xi ∩ Xj = /0 (i, j,∈ I, i �= j) . For i ∈ I,s ∈ S let νs(i) =
sup{μs(x) : x ∈ Xi} .

Then D ′ = 〈I,νs : s ∈ S〉 is a dimension structure.

Proof. Let us check (ax1). If νs(i) < +∞,s < p ∈ S then μs(x) < +∞ ∀x ∈ Xi . It
gives that μp(x) = 0 ∀x ∈ Xi that implies that νp(i) = 0.

Now we show (ax2). If 0 < νs(i) < +∞ then ∃x0 ∈ Xi such that 0 < μs(x0) < +∞ .
If νp(i) < +∞ then μp(x) < +∞ ∀x ∈ Xi . Hence μp(x0) < +∞ and by (ax2) in D we
get that s, p are comparable. �

DEFINITION 4.7. D ′ is called the quotient of D .

EXAMPLE 4.8. (ax3) does not necessarily hold if S is not complete.
Let S = {− 1

n : n ∈ N}∪{ 1
n : n ∈ N} with the order inherited from R . Let X =

{x1,x2,x3, . . .} and if s ∈ S,xi ∈ X then let

μs(xi) =

{
0 if s � − 1

i

+∞ otherwise.

Now let X = X1 a one element partition (i.e. I = {1} ). We get that

νs(1) =

{
0 if s > 0

+∞ otherwise.
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Therefore there is no infimum in S of the set {s ∈ S : νs(1) = 0} = { 1
n : n ∈ N} .

We give a generic example for a quotient.

PROPOSITION 4.9. Let D = 〈X ,μs : s∈ S〉 be a dimension structure with S being
complete. Let us take the partition of X

X =
⋃

(d,m)∈S×[0,+∞]

CD
d,m

and set Y = {(d,m) ∈ S × [0,+∞] : ∃x ∈ X such that dimx = d,μd(x) = m} and
νd(y) = m (y ∈ Y,y = (d,m)) . Then 〈Y,νs : s ∈ S〉 is a quotient of D .

PROPOSITION 4.10. Let D ,D ′ be dimension structures as above with S being
complete. Then sup{dimD x : x ∈ Xi} � dimD ′ i .

Proof. Let s = dimD ′ i and νs(i) = m . Let us suppose that there is y ∈ Xi such
that s < dimD y = k . Then μs(y) = +∞ which gives that m = +∞ too. Also νk(i) = 0
which gives that μk(y) = 0. From s = dimD ′ i < k we get that there is p ∈ S such that
s < p < k . Then νp(i) = 0 and μp(y) = +∞ holds which yields that νp(i) = +∞ which
is a contradiction. �

4.3. Sum of structures

PROPOSITION 4.11. Let P be a partially ordered set and for all p ∈ P let Dp =
〈Xp,μ (p)

s : s ∈ Sp〉 be a dimension structures such that Xp ∩ Xq = /0 and Sp ∩ Sq =
/0 (p,q ∈ P, p �= q) . Let ±∞Sp ∈ Sp denote the minimum and maximum of Sp .

Let X =
⋃

p∈P
Xp,S =

⋃
p∈P

Sp . Let us define partial order on S: if s1,s2 ∈ S, s1 ∈
Sp1 ,s2 ∈ Sp2 (p1, p2 ∈ P) then set

s1 < s2 ⇐⇒
{

if p1 = p2 and s1 < s2 in Sp1

if p1 < p2.

For x ∈ X ,s ∈ S, x ∈ Xp,s ∈ Sq (p,q ∈ P) let

ηs(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μs(x) if p = q

0 if p < q

+∞ if q < p

+∞ if p,q are non-comparable.

Then D ′ = 〈X ,ηs : s ∈ S〉 is a dimension structure.

DEFINITION 4.12. D ′ is called the sum of {Dp : p ∈ P} over P and denoted by
⊕p∈PDp .
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There is one slight disadvantage of this method: if for a point in Xp the dimension
was +∞Sp in the original structure then it may significantly change in the new structure.

PROPOSITION 4.13. Let P be a partially ordered set and for all p ∈ P let Dp =
〈Xp,μ (p)

s : s ∈ Sp〉 be a dimension structures as above. Let D = ⊕p∈PDp If x ∈ X ,x ∈
Xp then

dimD x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dimDp x if dimDp x �=+∞Sp

dimDp x if dimDp x=+∞Sp and μ+∞p(x)<+∞
dimDp x if dimDp x=+∞Sp and μ+∞p(x)=+∞ and � ∃min{q ∈ P : p < q}
−∞Sr if dimDp x=+∞Sp and μ+∞p(x)=+∞ and r=min{q ∈ P : p < q}.

4.4. Measure sum

PROPOSITION 4.14. Let Di = 〈X ,μ (i)
s : s ∈ S〉 be dimension structures for all

i ∈ N with S being complete. Then

D =
〈
X ,

∞

∑
i=1

μ (i)
s : s ∈ S

〉

is a dimension structure.

Proof. (ax1): Let μs =
∞
∑
i=1

μ (i)
s and x ∈ X ,s, p ∈ S,s < p . If μs(x) < +∞ then

∀i ∈ N μ (i)
s (x) < +∞ which implies that ∀i μ (i)

p (x) = 0 that gives that μp(x) = 0.

(ax2): If 0 <
∞
∑
i=1

μ (i)
s (x) < +∞ then there is j ∈ N such that 0 < μ ( j)

s (x) < +∞ .

If
∞
∑
i=1

μ (i)
p (x) < +∞ then ∀i ∈ N μ (i)

p (x) < +∞ holds, particularly μ ( j)
p (x) < +∞ . That

gives that s, p are comparable. �

DEFINITION 4.15. We call D the measure sum of the system {Di : i ∈ N} .

EXAMPLE 4.16. If S is not complete then (ax3) does not necessarily hold.
Let X = {x}, S′ = {± 1

n : n ∈ N}, S = S′ ∪ {a} . If s, p ∈ S then let

s < p ⇐⇒

⎧⎪⎨
⎪⎩

s, p ∈ S′ and s < p

s = a, p = 1

s = −1, p = a.

Evidently S is a lattice. Let

μ (1)
s (x) =

{
0 if s ∈ S′,s �= −1

+∞ if s = −1 or s = a,
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and

μ (2)
s (x) =

{
0 if s ∈ S′,s > 0 or s = a

+∞ otherwise.

Then obviously there does not exists the infimum of {s ∈ S : μ (1)
s (x)+ μ (2)

s (x) = 0} =
{ 1

n : n ∈ N} .

Obviously we can have the measure sum of finitely many dimension structures
too. For principal dimension structures if S is a lattice then for finitely many dimension
structures we can omit the condition that S is complete.

PROPOSITION 4.17. Let Di = 〈X ,μ (i)
s : s ∈ S〉 be principal dimension structures

for 1 � i � n (n ∈ N) with S being a lattice. Then

D =
〈
X ,

n

∑
i=1

μ (i)
s : s ∈ S

〉

is a dimension structure.

Proof. We have to check (ax3). Let S′ = {s ∈ S :
n
∑
i=1

μ (i)
s (x) < +∞},S′i = {s ∈ S :

μ (i)
s (x) < +∞} (1 � i � n) . Clearly S′ =

n⋂
i=1

S′i . By principality condition S′i∪{s′i} is a

principal filter (1 � i � n ) where s′i = infS′i . In a lattice the intersection of finitely many
principal filters is a principal filter moreover s′ = sup{s′i : 1 � i � n} = inf

⋂n
i=1(S

′
i ∪

{s′i}) . We show that infS′ = s′ too. There are two cases.

(1) If ∃i ∈ {1, . . . ,n} such that s′ = s′i . Then clearly S′ = S′i and the statement is
obvious.

(2) If no such i exists then s′ > s′i for all i ∈ {1, . . . ,n} . That means that s′ ∈ S′i for
all i , i.e. s′ ∈ ⋂n

i=1 S′i = S′ and evidently it is the smallest element in S′ . �

EXAMPLE 4.18. We cannot omit the principality condition as Example 4.16 shows.

PROPOSITION 4.19. Let D be the measure sum of the dimension structures Di =
〈X ,μ (i)

s : s ∈ S〉 (i ∈ N) (S is complete). If x ∈ X then sup{dimDi x : i ∈ N} � dimD x .
Moreover if S is dense then sup{dimDi x : i ∈ N} = dimD x .

Proof. Set d = dimD x,e = sup{dimDi x : i ∈ N} .

If d < s ∈ S then μs(x) = 0 which implies that μ (i)
s (x) = 0 (∀i ∈ N) hence

dimDi x � d i.e. e � d .
Let us now assume that e < d for some x ∈ X while S being dense. Then there is

p∈ S such that e < p < d . We get that μ (i)
p (x) = 0 (i ∈ N) which yields that μp(x) = 0

and then d � p which is a contradiction. �
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REMARK 4.20. In the previous proposition we cannot omit the density for S . For
showing that let Di equal to the same dimension structure for all i ∈ N with S being

discrete. Let x ∈ X ,s ∈ S such that 0 < μ (i)
s (x) < +∞ . Then μ (i)

s+ (x) = 0 (i ∈ N) hence
μs+(x) = 0 and μs(x) = +∞ . Therefore sup{dimDi x : i ∈ N} = s while dimD x = s+ .

PROPOSITION 4.21. Let D be the measure sum of the dimension structures Di =
〈X ,μ (i)

s : s ∈ S〉 (i ∈ N) with S being discrete ordered. If x ∈ X let dx = sup{dimDi x :
i ∈ N} . If dx < dimD x then (dx)+ = dimD x .

Proof. Obviously μ (i)
(dx)+

(x) = 0 (i ∈ N) which implies that μ(dx)+(x) = 0 i.e.

dimD x � (dx)+ and Proposition 4.19 gives the statement. �
We show another such construction.

PROPOSITION 4.22. Let Di = 〈X ,μ (i)
s : s ∈ S〉 be dimension structures for all

i ∈ I with S being complete. Then D =
〈
X ,sup{μ (i)

s : i ∈ I} : s ∈ S
〉

is a dimension
structure.

4.5. Direct product

PROPOSITION 4.23. Let D1 = 〈X1,μ (1)
s : s ∈ S1〉, D2 = 〈X2,μ (2)

s : s ∈ S2〉 be two
dimension structures. Let X = X1 ×X2,S = S1 × S2 equipped with the product order.
For x ∈ X ,x = (x1,x2),s ∈ S,s = (s1,s2) let

ηs(x) =

{
+∞ if μ (1)

s1 (x1) = +∞ or μ (2)
s2 (x2) = +∞

μ (1)
s1 (x1) ·μ (2)

s2 (x2) otherwise.

Then D ′ = 〈X ,ηs : s ∈ S〉 is a dimension structure.

Proof. (ax1): Let s,s′ ∈ S,x ∈ X ,s = (s1,s2),x = (x1,x2),s < s′ = (s′1,s
′
2) . Then

either s1 < s′1,s2 � s′2 or s2 < s′2,s1 � s′1 .

If ηs(x) < +∞ then μ (1)
s1 (x1) < +∞ and μ (2)

s2 (x2) < +∞ . There are two cases.

1. If s1 < s′1 then μ (1)
s′1

(x) = 0 hence ηs′(x) = 0.

2. If s2 < s′2 then μ (2)
s′2

(x2) = 0 which implies again that ηs′(x) = 0.

(ax2): Let 0 < ηs(x) < +∞,ηs′(x) < +∞ and x = (x1,x2) and s = (s1,s2),s′ =
(s′1,s

′
2) . Then we know that 0 < μ (1)

s1 (x1) < +∞ and 0 < μ (2)
s2 (x2) < +∞ , μ (1)

s′1
(x1) <

+∞ and μ (2)
s′2

(x2) < +∞ . Then s1 � s′1 and s2 � s′2 which gives that s � s′ .

(ax3): If x ∈ X ,x = (x1,x2) then set S′ = {s ∈ S : ηs(x) < +∞},S′1 = {s1 ∈ S1 :

μ (1)
s1 (x1) < +∞},S′2 = {s2 ∈ S2 : μ (2)

s2 (x2) < +∞} . Then S′ = S′1 × S′2 and infS′ =
(infS′1, infS′2) hence infS′ exists. �
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DEFINITION 4.24. We call D ′ the direct product of D1 and D2 and denote it by
D1×D2 .

REMARK 4.25. Actually we showed that dimD1×D2(x1,x2)= (dimD1 x1,dimD2 x2) .

REMARK 4.26. In Examples 3.20 and 3.21 let us restrict ourself to sets with pos-
itive measure. Then the direct product of the structure in Example 3.20 with itself can
be embedded to a substructure of the structure in Example 3.21 if we identify (H,K)
with H ×K (H,K ⊂ R) .

REMARK 4.27. Let f : (R+ ∪{0})× (R+∪{0}) → R
+ and f (0,x) = f (x,0) =

0 (∀x∈R
+∪{0}) . If in the definition of ηs(x) we replace the product (of two numbers)

to f then we end up with a dimension structure as well.

PROPOSITION 4.28. The direct product of two p-small dimension structures is
p-small.

PROPOSITION 4.29. Let D1 = 〈X1,μ (1)
s : s ∈ S1〉, D2 = 〈X2,μ (2)

s : s ∈ S2〉 be two
p-small, principal dimension structures. Then D1 ×D2 is principal as well.

Proof. Let x = (x1,x2)∈ X1×X2 , S′ = {(s1,s2)∈ S1×S2 : μ(s1,s2)(x1,x2) < +∞} ,

S′i = {si ∈ Si : μ (i)
si (xi) < +∞} (i = 1,2) . Let s′i = infS′i (i = 1,2) . Then we know that

infS′ = (s′1,s
′
2) . By assumption μs′1(x1) < +∞, μs′2(x2) < +∞ .

If (s′1,s
′
2)< (s′′1 ,s

′′
2)∈ S1×S2 then ∃i∈{1,2} such that s′i < s′′i that gives μs′′i (xi)=

0 which implies that μ(s′′1 ,s′′2)(x1,x2) = 0 that we had to prove by Proposition 2.28. �
Now we define the i-direct product of arbitrary many structures.

PROPOSITION 4.30. Let Di = 〈Xi,μs : s ∈ Si〉 be dimension structures for i ∈ I .

Let Z =×i∈I Xi, Q =×i∈I Si equipped with the product order. Let z ∈ Z,q ∈Q and
let us denote the ith coordinate by zi,qi respectively. Let

ηq(z) =

{
+∞ if ∃i ∈ I such that μqi(zi) = +∞
inf{μqi(zi) : i ∈ I} otherwise.

Then D ′ = 〈Z,ηq : q ∈ Q〉 is a dimension structure.

Proof. (ax1): Let q,q′ ∈ Q,z ∈ Z,q < q′ . Then q j � q′j and there is i ∈ I such
that qi < q′i .

If ηq(z) < +∞ then μq j(z j) < +∞ ∀ j ∈ I . Hence ∀ j ∈ I μq′j (z j) < +∞ moreover

μq′i(zi) = 0. Therefore ηq′(z) = 0.

(ax2): Let 0 < ηq(z) < +∞,ηq′(z) < +∞ . Then we know that 0 < μq j(z j) < +∞
and μq′j (z j) < +∞ (∀ j ∈ I) . Which implies that ∀ j ∈ I q j � q′j which gives that q � q′ .

(ax3): If z ∈ Z then set Q′ = {q ∈ Q : ηq(z) < +∞},S′i = {s ∈ Si : μs(zi) < +∞}
(i ∈ I) . Then Q′ =×i∈I S

′
i hence infQ′ exists. �
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DEFINITION 4.31. We call D ′ the i-direct product of the system (D j : j ∈ I) and

denote it by
i× j∈I

D j .

REMARK 4.32. For i-direct product (dimD ′ z)i = dimDi zi holds.

Now we define another type of product.

PROPOSITION 4.33. Let D1 = 〈X1,μ (1)
s : s ∈ S1〉, D2 = 〈X2,μ (2)

s : s ∈ S2〉 be two
dimension structures and let D1 be small.

Let X = X1×X2,S = S1×S2 equipped with the lexicographic order. For x∈X ,x =
(x1,x2),s ∈ S,s = (s1,s2) let

μs(x) = μ(s1,s2)(x1,x2) =

{
+∞ if μs1(x1) = +∞
μs1(x1) ·μs2(x2) otherwise.

Then D ′ = 〈X ,μs : s ∈ S〉 is a dimension structure.

Proof.

(ax1): If μ(s1,s2)(x1,x2)< +∞ then either μs1(x1)= 0 or 0 < μs1(x1)< +∞ and μs2(x2)<
+∞ .

Let (s1,s2) < (s′1,s
′
2) . There are two cases.

(1) s1 = s′1,s2 < s′2 : If μs1(x1) = 0 then μs′1(x1) = 0 hence μs(x) = 0. If
μs2(x2) < +∞ then μs′2(x2) = 0 therefore μs(x) = 0.

(2) s1 < s′1 : Then μs′1(x1) = 0 hence μs(x) = 0.

(ax2): If 0 < μ(s1,s2)(x1,x2) < +∞ then 0 < μs1(x1) < +∞ and 0 < μs2(x2) < +∞ .
Let μ(s′1,s

′
2)

(x1,x2) < +∞ . Then either μs′1(x1) = 0 or 0 < μs′1(x1) < +∞ and
μs′2(x2) < +∞ . When applying (ax2) in D1 and D2 we get that s1 < s′1 or
s1 = s′1,s2 � s′2 . That gives that (s1,s2) � (s′1,s

′
2) .

(ax3): For a given x = (x1,x2) ∈ X let

S′ = {s ∈ S : μs(x) = 0}, S′i = {si ∈ Si : μsi(xi) = 0} (i = 1,2).

Then using the fact that x1 is a dim-point we get that

S′ = S′1×S2∪{dimD1 x1}×S′2

which implies that dim(x1,x2) = (dimx1,dimx2) . �

DEFINITION 4.34. We call D ′ the l-direct product of D1 and D2 and denote it

by D1
l×D2 .
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PROPOSITION 4.35. Let D1 = 〈X1,μ (1)
s : s ∈ S1〉, D2 = 〈X2,μ (2)

s : s ∈ S2〉 be two

principal dimension structures and let D1 be p-small. Then D1
l×D2 is principal as

well.

Proof. For a given x = (x1,x2) ∈ X let

S′ = {s ∈ S : μs(x) < +∞}, S′i = {si ∈ Si : μsi(xi) < +∞} (i = 1,2).

As in the proof of the previous proposition (4.33) we get that

S′ = S′1×S2∪{dimD1 x1}×S′2.

Set si = infS′i (i = 1,2) . With that we have that dimx = (s1,s2) .
Let s′ = (s′1,s

′
2) ∈ S such that (s1,s2) < (s′1,s

′
2) . There are two cases.

(1) If s1 < s′1 then μs′1(x1) = 0 which yields that μs′(x) = 0.

(2) If s1 = s′1,s2 < s′2 then by p-smallness μs′1(x1) < +∞ and μs′2(x2) = 0 which
gives again that μs′(x) = 0.

By Proposition 2.28 we are done. �

4.6. Mapping between structures

PROPOSITION 4.36. Let D1 = 〈X1,μ (1)
s : s ∈ S〉 be a dimension structure with S

being complete ordered. Let D2 = 〈X2,μ (2)
s : s ∈ S〉 be given such that X2 is a set,

μ (2)
s (s ∈ S) is a function μ (2)

s : X2 → R
+ ∪{0,+∞} . Let f : X1 → X2 be a surjective

mapping. Let ∀x ∈ X1 μ (1)
s (x) � μ (2)

s ( f (x)) and if ∀x ∈ f−1(y) (y ∈ X2) μ (1)
s (x) = 0

then μ (2)
s (y) = 0 . Then D2 is a dimension structure as well.

Proof. If μ (2)
s (y) < +∞ then there is x∈ X such that y = f (x) and then μ (1)

s (x) <

+∞ holds as well. If s < p then μ (1)
p (x) = 0 which gives that μ (2)

p (y) = 0 too. �
The previous condition holds if sup{μ (1)

s (x) : f (x) = y} = μ (2)
s (y) .

REMARK 4.37. If we substitute the condition

∀x ∈ X1 μ (1)
s (x) � μ (2)

s ( f (x))

to
∀x ∈ X1 sign(μ (1)

s (x)) = sign(μ (2)
s ( f (x)))

we get a valid statemet too.
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DEFINITION 4.38. Let Di = 〈Xi,μ (i)
s : s ∈ Si〉 be two dimension structures for

i = 1,2. Let f : X1 → X2, g : S1 → S2 be given such that g preserves the order (if
s � p (s, p ∈ S1) then g(s) � g(p)).

We call ( f ,g) a morphism between D1 and D2 if x ∈ X1,s ∈ S1 implies that

μ (1)
s (x) � μ (2)

g(s)( f (x)) .
We call ( f ,g) an isomorphism between D1 and D2 if f ,g are bijections and

x ∈ X1,s ∈ S1 implies that μ (1)
s (x) = μ (2)

g(s)( f (x)) .
We call ( f ,g) a semi-isomorphism between D1 and D2 if f ,g are bijections and

x ∈ X1,s ∈ S1 implies that

μ (1)
s (x) < +∞ ⇐⇒ μ (2)

g(s)( f (x)) < +∞.

PROPOSITION 4.39. If ( f ,g) is a semi-isomorphism between D1 and D2 then

μ (1)
s (x) = +∞ ⇐⇒ μ (2)

g(s)( f (x)) = +∞ (x ∈ X ,s ∈ S).

PROPOSITION 4.40. If ( f ,g) is a semi-isomorphism between D1 and D2 then
g(dimx) = dim f (x) (x ∈ X) .

If ( f ,g) is a isomorphism between D1 and D2 then

μ (1)
dimx(x) = μ (2)

g(dimx)( f (x)) (x ∈ X)

holds as well.

LEMMA 4.41. If ( f ,g) is a morphism between D1 and D2 and 0 < μ (1)
dimx(x) and

g(dimx) and dim f (x) are comparable then g(dimx) � dim f (x) (x ∈ X) .

Proof. From the condition we get that 0 < μ (2)
g(dimx)( f (x)) which yields the state-

ment. �

PROPOSITION 4.42. Let Di = 〈Xi,μ (i)
s : s ∈ Si〉 be two dimension structures ( i =

1,2 ) with S1,S2 being dense, complete and ordered. Let f : X1 → X2, g : S1 → S2 be
given such that g preserves the order and let g be continuous between the topologies
induced by the orders. Then g(dimx) � dim f (x) (x ∈ X) .

Proof. By Remark 2.16 we know that dimx = sup(S1)+∞
x (x ∈ X1),dimy =

sup(S2)+∞
y (y∈X2) . The density of S1,S2 and the continuity of g gives that g(supP) =

sup(g(P)) (P ⊂ S1) . But g((S1)+∞
x ) ⊂ (S2)+∞

f (x) which gives the statement. �
We present a straightforward but important example for semi-isomorphim.

PROPOSITION 4.43. Let D = 〈X ,μs : s∈ S〉 be a dimension structure. Set νs(x)=
sign

(
μs(x)

)
when x ∈ X ,s ∈ S . Then D ′ = 〈X ,νs : s ∈ S〉 is a dimension structure.

Moreover D and D ′ are semi-isomorph for f = idX ,g = idS .
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4.7. On extensions

The most problematic axiom of a dimension structure is (ax3) which requires the
existence of an infimum. In this subsection we are going to investigate if a pre-structure
satisfies (ax1) and (ax2) then how we can extend it to satisfies (ax3) as well.

DEFINITION 4.44. Let D = 〈X ,μs : s ∈ S〉 be given such that X is a set, 〈S,<〉
is a partially ordered set, μs (s ∈ S) is a function μs : X → R+ and axioms (ax1) and
(ax2) hold. Then we call D a pre-dimension structure.

THEOREM 4.45. Let D = 〈X ,μs : s ∈ S〉 be a pre-dimension structure with S
being a lattice. Then there exists an extension D̂ of D such that D̂ = 〈X ,μs : s ∈ Ŝ〉 is
a dimension structure, S ⊂ Ŝ and if p,q ∈ S then p <S q ⇐⇒ p <Ŝ q .

Proof. If for x ∈ X the infimum of Sx does not exist then add a new element to S
i.e. let

Ŝ = S∪{x̂ : x ∈ X and � ∃ infSx}
with the equivalence that x̂ = ŷ if Sx = Sy (or more precisely add the equivalence classes
to S ).

We have to define μ on the new elements. If x̂ ∈ Ŝ−S, y ∈ X then let

μx̂(y) = sup{μs(y) : s ∈ Sx}.
Let us observe that this definition works for p ∈ S too: μp(y) = sup{μs(y) : p � s} .

Let us define order on Ŝ : If t,u ∈ Ŝ then let

t �Ŝ u ⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if t,u ∈ S then t �S u

if t = x̂ ∈ Ŝ−S,u∈ S then u ∈ Sx

if t ∈ S,u = ŷ ∈ Ŝ−S then p ∈ Sy implies that t �S p

if t = x̂,u = ŷ ∈ Ŝ−S then Sy ⊂ Sx.

We have to check if it is an order.
Reflexivity: We have to check points in S and Ŝ− S and both cases are straight-

forward.
Antisymmetry: If t,u ∈ S or t,u ∈ Ŝ−S then it is obvious. Let x̂ � u, u � x̂ (u ∈

S) . Then u ∈ Sx and ∀p ∈ Sx u � p which yields that u = infSx that is a contradiction.
Let now t � ŷ, ŷ � t (t ∈ S) . Then ∀p∈ Sy t � p and t ∈ Sy which means that t = infSy

– a contradiction again.
Transitivity: Let assume that t � u,u � w . We have to check 8 cases. If t,u,w ∈ S

then it is clear that t � w holds. If t = x̂,u = ŷ,w = ẑ ∈ Ŝ−S then Sz ⊂ Sy ⊂ Sx gives
that Sz ⊂ Sx which is t � w . If t,u ∈ S,w = ẑ then p ∈ Sz implies that u � p , and then
t � p . If t,w ∈ S,u = ŷ then s ∈ Sy ⇒ t � s and w ∈ Sy which yields that t � w . If
t = x̂,u,w ∈ S then u ∈ Sx,u � w ⇒ w ∈ Sx . If t ∈ S,u = ŷ,w = ẑ then Sz ⊂ Sy and
s ∈ Sy ⇒ t � s hence s ∈ Sz ⇒ t � s . If t = x̂,w = ẑ,u ∈ S then u ∈ Sx, s ∈ Sz ⇒ u � s
that yields that Sz ⊂ Sx . If t = x̂,u = ŷ,w ∈ S then Sy ⊂ Sx, w ∈ Sy which implies that
w ∈ Sx .
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(ax1) Let t < u and μt(x) < +∞ . We have to check 4 cases. If t,u∈ S then it is (ax1) in
D . If t = x̂,u ∈ S then u ∈ Sx i.e. μu(x) = 0. If t ∈ S,u = ŷ then s ∈ Sy ⇒ t < s
hence μs(x) = 0 for all s ∈ Sy which gives that μŷ(x) = 0. If t = x̂,u = ŷ then
Sy ⊂ Sx hence μs(x) = 0 for all s ∈ Sy which gives that μŷ(x) = 0.

(ax2) Let 0 < μt(y) < +∞,μu(y) < +∞ . We have to check 4 cases. If t,u ∈ S then it
is (ax2) in D . If t = x̂,u ∈ S then ∀p ∈ Sx μp(y) < +∞ and ∃q ∈ Sx such that
0 < μq(y) < +∞ which gives that q � u hence u ∈ Sx i.e. x̂ � u . If t ∈ S,u = x̂
then ∀p ∈ Sx μp(x) < +∞ which means that each p ∈ Sx is comparable with t
therefore t � p i.e. t � x̂ . If t = x̂,u = ẑ then ∀p ∈ Sx μp(x) < +∞ and ∃q ∈ Sx

such that μq(y) > 0 and ∀r ∈ Sz μr(y) < +∞ which gives that ∀r ∈ Sz q � r
hence Sz ⊂ Sx i.e. x̂ � ẑ .

(ax3) Let
Ŝx = {s ∈ Ŝ : μs(x) < +∞} = Sx∪{ŷ ∈ Ŝ−S : μŷ(x) < +∞}.

Let infS, infŜ denote the infimum in S and Ŝ respectively.

We have two cases.

(1) If infS Sx does not exist in S . Now we show that infŜ Ŝx = x̂ . If p ∈ Sx then
x̂ � p by definition of �Ŝ . If μŷ(x) < +∞ then sup{μs(x) : s ∈ Sy}< +∞ which
gives that ∀s ∈ Sy μs(x) < +∞ hence s ∈ Sx i.e. Sy ⊂ Sx that is x̂ � ŷ .

If t ∈ S,∀s ∈ Ŝx t �Ŝ s then ∀s ∈ Sx t � s i.e. t � x̂ . If ŷ ∈ Ŝ− S,∀s ∈ Ŝx ŷ � s
then ∀s ∈ Sx ŷ � s hence s ∈ Sy which gives that Sx ⊂ Sy i.e. ŷ � x̂ .

(2) If s0 = infS Sx exists in S . In this case we show that s0 = infŜ Ŝx . If s ∈ Sx

then s0 � s . If ŷ ∈ Ŝx − S then μŷ(x) < +∞ i.e. ∀p ∈ Sy μp(x) < +∞ hence
p ∈ Sx which gives that s0 � p and we get that s0 � ŷ .

If s ∈ S and ∀t ∈ Ŝx s � t then ∀t ∈ Sx s � t . Therefore s � s0 . If ∀t ∈ Ŝx ŷ � t
then ∀t ∈ Sx ŷ � t that is t ∈ Sy that gives that Sx ⊂ Sy . Then Sx = Sy would
be a contradiction hence there exists s ∈ Sy−Sx . From lattice theory we get that
infS Sx∪{s}= s0∧s . From part (1) ŷ = infŜ Ŝy that gives that ŷ � s0∧s � s0 . �

PROPOSITION 4.46. Let D = 〈X ,μs : s ∈ S〉 be a pre-dimension structure and D̂
be its extension as described in Theorem 4.45. If D is principal then so is D̂ .

Proof. We use the notations introduced in the proof of Theorem 4.45.
There are two cases we have to manage. During that we will apply Proposition

2.28.
(1) If s0 = infŜ Ŝx ∈ S . If s0 < s ∈ S then μs(x) = 0. If s0 < ŷ then ∀p ∈ Sy s0 < p

hence μp(x) = 0 which gives that μŷ(x) = 0.
(2) If x̂ = infŜ Ŝx ∈ Ŝ− S . If x̂ < s (s ∈ S) then s ∈ Sx that is μs(x) < +∞ but

s �= infS Sx hence μs(x)= 0. If x̂ < ŷ then Sy ⊂ Sx which gives that ∀p∈ Sy μp(x) <+∞
but p �= infS Sx therefore μp(x) = 0 (∀p ∈ Sy) which implies that μŷ(x) = 0. �

Now we investigate how unique the previous extension is.
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THEOREM 4.47. Let D = 〈X ,μs : s ∈ S〉 be a pre-dimension structure with S
being a lattice. Let D be principal. Let D̂ be its extension as described in Theorem
4.45. Let D ′ = 〈X ,μs : s ∈ S′〉 be a dimension structure such that D is one of its
substructures. Then there is f : Ŝ → S′ that preserves order, injective and keeps S
pointwise fixed (s ∈ S ⊂ Ŝ ⇒ f (s) = s ∈ S′ ). Moreover μD ′

s (x) = μ D̂
s (x) if s ∈ S , and

μD ′
f (x̂)(x) � sup{μ D̂

s (x) : s ∈ Sx} .

Proof. Let

f (t) =

{
t if t ∈ S

infS′ Sx if t ∈ Ŝ−S, t = x̂.

We show that f preserves order. Let t,u ∈ Ŝ t < u . If t,u ∈ S then it is clear. If
t = x̂,u ∈ S then u ∈ Sx hence infS′ Sx � u . If t ∈ S,u = ŷ then ∀s ∈ Sy t � s therefore
t � infS′ Sy . If t = x̂,u = ŷ then Sy ⊂ Sx which yields that infS′ Sx � infS′ Sy .

Now we prove that f is injective. Let t,u ∈ Ŝ, t �= u . If t,u ∈ S then it is obvious.
If t = x̂,u ∈ S then infS′ Sx �= u because let us assume that they were equal. Then
infS′ Sx ∈ S would hold which would give that t = u – a contradiction. If t = x̂,u = ŷ
then assume that infS′ Sx = infS′ Sy . By principality it would yield that Sx = Sy hence
x̂ = ŷ would hold – a contradiction.

Evidently μD ′
s (x) = μ D̂

s (x) (s ∈ S) holds because D is a substructure of both D̂

and D ′ . If s ∈ Sx then μD ′
f (x̂)(x) � μD ′

s (x) but μD ′
s (x) = μ D̂

s (x) which gives the last
statement. �
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